Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = endosperm appearance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4596 KiB  
Article
OsMYBR1, a 1R-MYB Family Transcription Factor Regulates Starch Biosynthesis in Rice Endosperm
by Kunyong Huang, Long Chen, Guiai Jiao, Zheyan Ruan, Xinwei Li, Shaoqing Tang, Peisong Hu and Xiangjin Wei
Life 2025, 15(6), 962; https://doi.org/10.3390/life15060962 - 16 Jun 2025
Viewed by 544
Abstract
Starch is the primary component of the endosperm and plays a crucial role in rice quality. Although the enzymes involved in starch synthesis have been extensively studied, the transcription factors that regulate these enzymes remain largely unknown. Here, we identified a MYB family [...] Read more.
Starch is the primary component of the endosperm and plays a crucial role in rice quality. Although the enzymes involved in starch synthesis have been extensively studied, the transcription factors that regulate these enzymes remain largely unknown. Here, we identified a MYB family transcription factor, OsMYBR1, that regulates starch biosynthesis in rice. OsMYBR1 is highly expressed during endosperm development. Mutations of OsMYBR1 result in reduced grain thickness and a decrease in 1000-grain weight. The endosperm of osmybr1 mutants exhibit rounded and loosely packed starch granules, decreased amylose content, altered fine structure of amylopectin, and modified physicochemical properties. The analysis of RT-qPCR showed that the expression of several starch-synthesis enzyme-coding genes (SSEGs), including OsGBSSⅠ, OsAGPL1, OsAGPL2, OsBEⅡb, OsISA1, PHOL, and OsSSⅢa, is altered in osmybr1 mutants. Further experiments indicated that OsMYBR1 directly binds to the promoters of OsGBSSⅠ, OsAGPL1, OsAGPL2, OsISA1, OsBEⅡb, and PHOL, resulting in an increase in the expression of OsGBSSⅠ but a decrease in the expression of OsAGPL2, OsISA1, and OsSSⅢa. In contrast, OsMYBR1-overexpressing endosperm appears normal, with starch granule morphology, increased amylopectin content, and improved alkali spreading value, indicating enhanced rice eating and cooking quality (ECQ). These findings suggest that the overexpression of OsMYBR1 could be a promising strategy for improving rice ECQ. Full article
(This article belongs to the Special Issue Recent Advances in Crop Genetics and Breeding)
Show Figures

Figure 1

18 pages, 2235 KiB  
Article
Creating a Superior Wx Allele with Temperature-Responsive Amylose Regulation and a Novel Transcriptional Pattern in Rice via CRISPR/Cas9-Mediated Promoter Editing
by Jiali Yan, Jiawen Yu, Huimin Shen, Lihui Zhou, Zhuanzhuan Chen, Xiaolei Fan, Qianfeng Li, Changquan Zhang, Qing Liu, Lichun Huang and Qiaoquan Liu
Foods 2025, 14(8), 1330; https://doi.org/10.3390/foods14081330 - 11 Apr 2025
Viewed by 675
Abstract
High quality stands as a pivotal competitive edge in the rice industry. Optimizing amylose content (AC) and the physicochemical properties of endosperm starch by regulating the Wx gene is crucial for enhancing rice grain quality. In this study, we created a novel Wx [...] Read more.
High quality stands as a pivotal competitive edge in the rice industry. Optimizing amylose content (AC) and the physicochemical properties of endosperm starch by regulating the Wx gene is crucial for enhancing rice grain quality. In this study, we created a novel Wxb-d25 allele by deleting a 25 bp segment (−26 to −2) within the Wx core promoter using CRISPR/Cas9. Compared with the wild type and the previously reported Wxb-i1, Wxb-d25 exhibited no significant changes in agronomic traits. However, its grains displayed temperature-dependent variations in AC and altered transparency and viscosity characteristics, holding the potential to synergistically improve both the eating and cooking quality (ECQ) and appearance quality (AQ) of rice. Further studies demonstrated that this promoter modification, by partially disrupting the transcription initiator, significantly downregulated the original Wx-01 transcript and generated a novel Wx transcript (ONT.7395.1) in Wxb-d25 grains. Despite its low expression abundance, the ONT.7395.1 transcript could be completely processed into mature Wx mRNA. The combined effects of the dual transcripts resulted in significantly increased Wx gene expression and AC in Wxb-d25 grains under conventional cultivation conditions. These findings provide a genetic resource and a theoretical foundation for utilizing the Wxb-d25 allele to improve rice grain quality. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Figure 1

13 pages, 4061 KiB  
Article
An Integrative Analysis of the Transcriptome and Proteome of Rice Grain Chalkiness Formation Under High Temperature
by Shaolu Zhao, Ruijie Cao, Linhe Sun, Dongying Zhuang, Min Zhong, Fengli Zhao, Guiai Jiao, Pengfei Chen, Xinwei Li, Yingqing Duan, Xiaoxue Li, Shaoqing Tang, Shen Ni, Peisong Hu and Xiangjin Wei
Plants 2024, 13(23), 3309; https://doi.org/10.3390/plants13233309 - 26 Nov 2024
Viewed by 1081
Abstract
Exposure to high temperatures can impair the grain-filling process in rice (Oryza sativa L.), potentially leading to the formation of chalky endosperm, but the molecular regulation mechanism remains largely elusive. Here, we reported that high-temperature (HT) stress (day/night, 35 °C/30 °C) reduces [...] Read more.
Exposure to high temperatures can impair the grain-filling process in rice (Oryza sativa L.), potentially leading to the formation of chalky endosperm, but the molecular regulation mechanism remains largely elusive. Here, we reported that high-temperature (HT) stress (day/night, 35 °C/30 °C) reduces both the grain-filling rate and grain weight of Ningjing 1 variety compared to normal temperatures (NT, day/night, 28 °C/23 °C). Grains under HT stress exhibited an opaque, milky-white appearance, alongside significant alterations in starch physicochemical properties. An integrated transcriptomic analysis of grains under HT revealed up-regulation of genes related to defense mechanisms and oxidoreductase activity, while genes involved in sucrose and starch synthesis were down-regulated, and α-amylase genes were up-regulated. Proteomic analysis of grains under HT echoed this pattern. These results demonstrate that high temperature during the grain-filling stage significantly increases rice chalkiness by down-regulating genes related to sucrose and starch synthesis, while up-regulating those involved in starch degradation. Full article
(This article belongs to the Special Issue Molecular Breeding and Germplasm Improvement of Rice—2nd Edition)
Show Figures

Figure 1

13 pages, 2945 KiB  
Article
Physicochemical and Morphological Changes in Long-Grain Brown Rice Milling: A Study Using Image Visualization Technologies
by Xiwu Jia, Rong Dong, Xuan Chen, Zhan Wang, Hongjian Zhang and Wangyang Shen
Foods 2024, 13(19), 3033; https://doi.org/10.3390/foods13193033 - 24 Sep 2024
Cited by 1 | Viewed by 1616
Abstract
This study evaluated the changes in physicochemical properties and appearance quality of long-grain rice during the grinding process using image technologies and aimed to provide reference for future research. The brown rice milling process was divided into three stages, and flatbed scanning, scanning [...] Read more.
This study evaluated the changes in physicochemical properties and appearance quality of long-grain rice during the grinding process using image technologies and aimed to provide reference for future research. The brown rice milling process was divided into three stages, and flatbed scanning, scanning electron microscopy (SEM), X-ray micro-computed tomography (micro-CT), low-field nuclear magic resonance (LF-NMR), and headspace–gas chromatography–ion mobility spectrometry (HS–GC–IMS) were employed to examine the physicochemical and volatile properties of the samples. Results revealed a continuous increase in the degree of milling, with a broken rice rate and a whiteness value increasing by 50.84% and 21.13%, respectively, compared with those during the initial stage; dietary fiber and vitamin B1 contents were reduced by 54.41% and 66.67%, respectively. The image results visualized showed that the cortex of brown rice was gradually peeled off with the increase in milling degree; the cortical thickness was gradually reduced, the endosperm was gradually exposed, and the surface was smoother and shinier. T2 populations exhibited a shift toward longer relaxation times, followed by a decrease in relaxation time during the milling process. Additionally, 31 target compounds impacting rice flavor, mainly ketones, alcohols, and esters, were identified, and the concentration of volatile substances in the B region decreased with the reduction in the bran layer; the concentration of volatile substances in the C region provided rice flavor, which increased with the milling process. This study showed changes in the physicochemical properties and appearance quality of long-grain brown rice during milling. Furthermore, the use of various image processing techniques offers significant insights for optimizing processing parameters and enhancing overall quality and taste. Full article
(This article belongs to the Special Issue Grain Quality Characterization before and after Processing)
Show Figures

Figure 1

14 pages, 5392 KiB  
Article
Phenotypic Analysis and Gene Cloning of Rice Floury Endosperm Mutant wcr (White-Core Rice)
by Yihao Yang, Xiaoyi Yang, Lingjun Wu, Zixing Sun, Yi Zhang, Ziyan Shen, Juan Zhou, Min Guo and Changjie Yan
Plants 2024, 13(18), 2653; https://doi.org/10.3390/plants13182653 - 22 Sep 2024
Cited by 1 | Viewed by 1375
Abstract
The composition and distribution of storage substances in rice endosperm directly affect grain quality. A floury endosperm mutant, wcr (white-core rice), was identified, exhibiting a loose arrangement of starch granules with a floury opaque appearance in the inner layer of mature grains, resulting [...] Read more.
The composition and distribution of storage substances in rice endosperm directly affect grain quality. A floury endosperm mutant, wcr (white-core rice), was identified, exhibiting a loose arrangement of starch granules with a floury opaque appearance in the inner layer of mature grains, resulting in reduced grain weight. The total starch and amylose content remained unchanged, but the levels of the four component proteins in the mutant brown rice significantly decreased. Additionally, the milled rice (inner endosperm) showed a significant decrease in total starch and amylose content, accompanied by a nearly threefold increase in albumin content. The swelling capacity of mutant starch was reduced, and its chain length distribution was altered. The target gene was mapped on chromosome 5 within a 65 kb region. A frameshift mutation occurred due to an insertion of an extra C base in the second exon of the cyOsPPDKB gene, which encodes pyruvate phosphate dikinase. Expression analysis revealed that wcr not only affected genes involved in starch metabolism but also downregulated expression levels of genes associated with storage protein synthesis. Overall, wcr plays a crucial role as a regulator factor influencing protein synthesis and starch metabolism in rice grains. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding)
Show Figures

Figure 1

19 pages, 2854 KiB  
Article
New Observations of the Effects of the Cytoplasm of Aegilops kotschyi Boiss. in Bread Wheat Triticum aestivum L.
by Chaolan Fan, Joanna Melonek and Adam J. Lukaszewski
Genes 2024, 15(7), 855; https://doi.org/10.3390/genes15070855 - 28 Jun 2024
Cited by 1 | Viewed by 1673
Abstract
The cytoplasm of Aegilops kotschyi is known for the induction of male sterility and haploidy in wheat. Both systems originally appeared rather simple, but manipulation of the standard chromosome constitution of the nuclear genome revealed additional interactions. This study shows that while there [...] Read more.
The cytoplasm of Aegilops kotschyi is known for the induction of male sterility and haploidy in wheat. Both systems originally appeared rather simple, but manipulation of the standard chromosome constitution of the nuclear genome revealed additional interactions. This study shows that while there is little or no allelic variation at the main fertility restorer locus Rfmulti on chromosome arm 1BS, additional genes may also be involved in the nuclear–mitochondrial genome interactions, affecting not only male fertility but also the growth rate, from pollen competition for fertilization and early endosperm divisions all the way to seed size and plant maturity. Some of these effects appear to be of a sporophytic nature; others are gametophytic. Induction of parthenogenesis by a rye inducer in conjunction with the Ae. kotschyi cytoplasm is well known. However, here we show that the cytoplasmic-nuclear interactions affect all aspects of double fertilization: producing maternal haploids from unfertilized eggs, diploids from fertilized eggs or synergids, embryo-less kernels, and fertilized eggs without fertilization of the double nucleus in the embryo sack. It is unclear how frequent the inducers of parthenogenesis are, as variation, if any, is obscured by suppressors present in the wheat genome. Genetic dissection of a single wheat accession revealed five distinct loci affecting the rate of maternal haploid production: four acting as suppressors and one as an enhancer. Only when the suppressing haplotypes are confirmed may it be possible to the identify genetic variation of haploidy inducers, map their position(s), and determine their nature and the mode of action. Full article
(This article belongs to the Special Issue Genetics and Breeding of Polyploid Plants)
Show Figures

Figure 1

19 pages, 4895 KiB  
Article
Integrative Analysis of Oleosin Genes Provides Insights into Lineage-Specific Family Evolution in Brassicales
by Zhi Zou, Li Zhang and Yongguo Zhao
Plants 2024, 13(2), 280; https://doi.org/10.3390/plants13020280 - 18 Jan 2024
Cited by 2 | Viewed by 2053
Abstract
Oleosins (OLEs) are a class of small but abundant structural proteins that play essential roles in the formation and stabilization of lipid droplets (LDs) in seeds of oil crops. Despite the proposal of five oleosin clades (i.e., U, SL, SH, T, and M) [...] Read more.
Oleosins (OLEs) are a class of small but abundant structural proteins that play essential roles in the formation and stabilization of lipid droplets (LDs) in seeds of oil crops. Despite the proposal of five oleosin clades (i.e., U, SL, SH, T, and M) in angiosperms, their evolution in eudicots has not been well-established. In this study, we employed Brassicales, an economically important order of flowering plants possessing the lineage-specific T clade, as an example to address this issue. Three to 10 members were identified from 10 species representing eight plant families, which include Caricaceae, Moringaceae, Akaniaceae, Capparaceae, and Cleomaceae. Evolutionary and reciprocal best hit-based homologous analyses assigned 98 oleosin genes into six clades (i.e., U, SL, SH, M, N, and T) and nine orthogroups (i.e., U1, U2, SL, SH1, SH2, SH3, M, N, and T). The newly identified N clade represents an ancient group that has already appeared in the basal angiosperm Amborella trichopoda, which are constitutively expressed in the tree fruit crop Carica papaya, including pulp and seeds of the fruit. Moreover, similar to Clade N, the previously defined M clade is actually not Lauraceae-specific but an ancient and widely distributed group that diverged before the radiation of angiosperm. Compared with A. trichopoda, lineage-specific expansion of the family in Brassicales was largely contributed by recent whole-genome duplications (WGDs) as well as the ancient γ event shared by all core eudicots. In contrast to the flower-preferential expression of Clade T, transcript profiling revealed an apparent seed/embryo/endosperm-predominant expression pattern of most oleosin genes in Arabidopsis thaliana and C. papaya. Moreover, the structure and expression divergence of paralogous pairs was frequently observed, and a good example is the lineage-specific gain of an intron. These findings provide insights into lineage-specific family evolution in Brassicales, which facilitates further functional studies in nonmodel plants such as C. papaya. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding of Oilseed Crops)
Show Figures

Figure 1

18 pages, 6228 KiB  
Article
Development of Triploid Seedless Nagpur Mandarin (Citrus reticulata Blanco) through Endosperm Rescue
by Vijayakumari Narukulla, Yogesh Lahane, Shashi Pandey, Krutika Fiske, Priya Uge, Kartiki Kawale and Vasileios Ziogas
Agronomy 2023, 13(11), 2814; https://doi.org/10.3390/agronomy13112814 - 14 Nov 2023
Cited by 3 | Viewed by 2527
Abstract
Nagpur mandarin is a popular table fruit across India and is exported to various countries. Only 1% of the total production is processed into various products. The development of seedless cultivars will boost agricultural incomes by enhancing the potential for export and processing. [...] Read more.
Nagpur mandarin is a popular table fruit across India and is exported to various countries. Only 1% of the total production is processed into various products. The development of seedless cultivars will boost agricultural incomes by enhancing the potential for export and processing. At present, only a couple of commercially seedless varieties are available, but these have yet to become popular. A research study was undertaken to quickly develop a high-quality seedless variety of Nagpur mandarin by combining the available technologies, viz., endosperm rescue, somatic embryogenesis, and mini-grafting, at CCRI, Nagpur. Complete plantlets of C. reticulata Blanco cv. Nagpur mandarin was successfully regenerated from hybrid endosperm tissue via somatic embryogenesis after attempting various permutations and combinations of media at various stages of regeneration, right from the primary callus to complete plantlet production. Maximum response (93.33%) and survival (91.67%) for primary callus induction were obtained in Murashige and Tucker (MT) + Malt Extract (ME) + Casein Hydrolysate (CH) (500 mg/L) +2,4-dichlorophenoxyacetic acid (2,4-D) (2 mg/L) medium. Maximum stimulation for embryogenesis and morphogenesis occurred in 2MT + CH (500 mg/L) + adenine sulfate (ad.s) (2 mg/L) + Benzyl Adenine (BA) (0.25 mg/L). The highest response (95.84%) for shoot differentiation occurred in MT + adenine sulphate (2 mg/L) + Gibberellic Acid (GA3) (1 mg/L) + BA (1 mg/L) (94.85%). The surviving plantlets were tested for ploidy status through flow Cytometry, chromosomal counting/cytogenetic technique, leaf morphology, stomatal characteristics, and the appearance of prominent thorns. In initial evaluation trials, the fruits of the triploid field-planted trees were found to be commercially seedless. These results demonstrated the recovery of stable triploids from the hybrid endosperm via somatic embryogenesis, which is the first of its kind in the field of Citrus triploid breeding in India. Full article
(This article belongs to the Special Issue Fruit Growing: Production Practices and Post-Harvest Management)
Show Figures

Figure 1

13 pages, 8510 KiB  
Article
Regulation of Grain Chalkiness and Starch Metabolism by FLO2 Interaction Factor 3, a bHLH Transcription Factor in Oryza sativa
by Xianyu Tang, Weiping Zhong, Kunmei Wang, Xin Gong, Yunong Xia, Jieying Nong, Langtao Xiao and Shitou Xia
Int. J. Mol. Sci. 2023, 24(16), 12778; https://doi.org/10.3390/ijms241612778 - 14 Aug 2023
Cited by 3 | Viewed by 1938
Abstract
Chalkiness is a key determinant that directly affects the appearance and cooking quality of rice grains. Previously, Floury endosperm 2 (FLO2) was reported to be involved in the formation of rice chalkiness; however, its regulation mechanism is still unclear. Here, FLO2 [...] Read more.
Chalkiness is a key determinant that directly affects the appearance and cooking quality of rice grains. Previously, Floury endosperm 2 (FLO2) was reported to be involved in the formation of rice chalkiness; however, its regulation mechanism is still unclear. Here, FLO2 interaction factor 3 (OsFIF3), a bHLH transcription factor, was identified and analyzed in Oryza sativa. A significant increase in chalkiness was observed in OsFIF3-overexpressed grains, coupled with a round, hollow filling of starch granules and reduced grain weight. OsFIF3 is evolutionarily conserved in monocotyledons, but variable in dicotyledons. Subcellular localization revealed the predominant localization of OsFIF3 in the nucleus. The DAP-seq (DNA affinity purification sequencing) results showed that OsFIF3 could affect the transcriptional accumulation of β-amylase 1, α-amylase isozyme 2A-like, pectinesterase 11, β-glucosidase 28 like, pectinesterase, sucrose transport protein 1 (SUT1), and FLO2 through the binding of the CACGTG motif on their promoters. Moreover, FLO2 and SUT1 with abundant OsFIF3 binding signals showed significant expression reduction in OsFIF3 overexpression lines, further confirming OsFIF3’s role in starch metabolism regulation and energy material allocation. Taken together, these findings show that the overexpression of OsFIF3 inhibits the expression of FLO2 and SUT1, thereby increasing grain chalkiness and affecting grain weight. Full article
(This article belongs to the Special Issue Molecular Research in Rice, 2nd Edition)
Show Figures

Figure 1

26 pages, 1336 KiB  
Review
Genetic Improvements in Rice Grain Quality: A Review of Elite Genes and Their Applications in Molecular Breeding
by Diankai Gong, Xue Zhang, Fei He, Ying Chen, Rui Li, Jipan Yao, Manli Zhang, Wenjing Zheng and Guangxing Yu
Agronomy 2023, 13(5), 1375; https://doi.org/10.3390/agronomy13051375 - 15 May 2023
Cited by 25 | Viewed by 6576
Abstract
High yield and superior quality are the main objectives of rice breeding and research. While innovations in rice breeding have increased production to meet growing demand, the universal issue of balancing high yield and susperior quality has led to a lack of focus [...] Read more.
High yield and superior quality are the main objectives of rice breeding and research. While innovations in rice breeding have increased production to meet growing demand, the universal issue of balancing high yield and susperior quality has led to a lack of focus on improving rice quality. With rising living standards, improving rice quality has become increasingly important. Rice grain quality is a complex trait influenced by both genetic and environmental factors, with four primary aspects: milling quality, appearance quality, eating and cooking quality, and nutritional quality. While different populations have varying demands for rice quality, the core traits that contribute to rice quality include grain shape and chalkiness in terms of appearance, as well as endosperm composition that influences cooking and sensory evaluation. Researchers have made substantial advancements in discovering genes/QTLs associated with critical traits including appearance, aroma, texture, and nutritional properties. Markers derived from these genetic discoveries have provided an efficient tool for marker-assisted selection to improve rice quality. Thus, this review focuses on elite genes and their applications in breeding practices to quickly develop superior quality rice varieties that meet various market demands. Full article
(This article belongs to the Special Issue Advances in Crop Molecular Breeding and Genetics)
Show Figures

Figure 1

13 pages, 3661 KiB  
Article
Profiling and Quantification of Anthocyanins in Purple-Pericarp Sweetcorn and Purple-Pericarp Maize
by Apurba Anirban, Hung T. Hong and Tim J. O’Hare
Molecules 2023, 28(6), 2665; https://doi.org/10.3390/molecules28062665 - 15 Mar 2023
Cited by 6 | Viewed by 2883
Abstract
Purple-pericarp sweetcorn accessions, derived from crossing purple-pericarp maize with white shrunken2 sweetcorn, were assessed for differences in anthocyanin profile at both sweetcorn eating stage and at full kernel maturity. The ‘Tim1’ sweetcorn line developed a similar total anthocyanin concentration to its ‘Costa Rica’ [...] Read more.
Purple-pericarp sweetcorn accessions, derived from crossing purple-pericarp maize with white shrunken2 sweetcorn, were assessed for differences in anthocyanin profile at both sweetcorn eating stage and at full kernel maturity. The ‘Tim1’ sweetcorn line developed a similar total anthocyanin concentration to its ‘Costa Rica’ parent when assessed at sweetcorn-eating stage. At full maturity it surpassed the purple maize parent, but this was mainly due to the presence of starch diluting the anthocyanin concentration of the latter. The anthocyanin/colour relationship was affected by both total anthocyanin concentration and the ratio of cyanidin- to pelargonidin-based anthocyanins. Malonylation of anthocyanins was also found to vary and did not appear to be linked with either cyanidin:pelargonidin ratio or total anthocyanin concentration. In addition, anthocyanin synthesis was affected by kernel maturity at harvest, with colour development increasing in conjunction with a progression of anthocyanin development across the kernel surface. Pigmentation was present in the aleurone, pericarp and vitreous endosperm of kernels of the purple-pericarp maize parent and purple-pericarp sweetcorn accessions when fully mature, but pigmentation was only apparent in the pericarp at sweetcorn-eating stage. Importantly for consumers, anthocyanin pigmentation covered almost the entire kernel surface at sweetcorn-eating stage. Full article
Show Figures

Graphical abstract

11 pages, 245 KiB  
Review
Recent Research Advances in the Development of Chalkiness and Transparency in Rice
by Peng Fan, Jian Xu, Haiyan Wei, Guodong Liu, Zhenzhen Zhang, Jinyu Tian and Hongcheng Zhang
Agriculture 2022, 12(8), 1123; https://doi.org/10.3390/agriculture12081123 - 29 Jul 2022
Cited by 21 | Viewed by 3937
Abstract
The appearance quality of rice represent the primary concern of consumers when choosing rice, as well as a necessary condition for high-quality rice. In the past, the focus of attention on rice appearance quality was mainly on chalkiness, and most previous reviews on [...] Read more.
The appearance quality of rice represent the primary concern of consumers when choosing rice, as well as a necessary condition for high-quality rice. In the past, the focus of attention on rice appearance quality was mainly on chalkiness, and most previous reviews on rice appearance quality focused on the chalky phenotype of rice, while some more generalized chalkiness as the only indicator of rice appearance quality. This paper objectively analyses the definitions and interrelationships of rice appearance quality indicators at the present stage. Then, the formation mechanism and research status of rice appearance quality were analyzed from three aspects: endosperm structure, genetic background, and endosperm material basis. The two indicators (chalkiness and transparency) were selected, having the greatest influence on appearance, as the starting point. On this basis, the problems in the current research on rice appearance quality were analyzed and relevant suggestions are put forward, aiming to provide a theoretical basis for the overall improvement of rice appearance quality under large-scale production conditions. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
14 pages, 3789 KiB  
Article
The Underlying Physicochemical Properties and Starch Structures of indica Rice Grains with Translucent Endosperms under Low-Moisture Conditions
by Fei Chen, Yan Lu, Lixu Pan, Xiaolei Fan, Qianfeng Li, Lichun Huang, Dongsheng Zhao, Changquan Zhang and Qiaoquan Liu
Foods 2022, 11(10), 1378; https://doi.org/10.3390/foods11101378 - 10 May 2022
Cited by 8 | Viewed by 2985
Abstract
Rice grain quality is a complex trait that includes processing, appearance, eating, cooking, and nutrition components. The amylose content (AC) in the rice endosperm affects the eating and cooking quality along with the appearance of milled rice. In this study, four indica rice [...] Read more.
Rice grain quality is a complex trait that includes processing, appearance, eating, cooking, and nutrition components. The amylose content (AC) in the rice endosperm affects the eating and cooking quality along with the appearance of milled rice. In this study, four indica rice varieties with different ACs were used to study the factors affecting endosperm transparency along with the physical and chemical characteristics and eating quality of translucent endosperm varieties. Endosperm transparency was positively correlated with water content and negatively correlated with the cumulative area of cavities within starch granules. The indica landrace 28Zhan had a translucent endosperm and exhibited good taste. Based on starch fine structure analysis, long-chain amylopectin and the B2 chain of amylopectin might be major contributors to the good taste and relatively slow digestion of this landrace. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

12 pages, 2393 KiB  
Article
Exogenous Melatonin Improves the Quality Performance of Rice under High Temperature during Grain Filling
by Xiaolei Fan, Jie Zhao, Xiaosong Sun, Yun Zhu, Qianfeng Li, Lin Zhang, Dongsheng Zhao, Lichun Huang, Changquan Zhang and Qiaoquan Liu
Agronomy 2022, 12(4), 949; https://doi.org/10.3390/agronomy12040949 - 15 Apr 2022
Cited by 22 | Viewed by 3655
Abstract
With the increasing greenhouse effect, high temperature has become the most unfavorable environmental factor for the rice grain filling process, affecting rice yield and quality mainly through changing the composition and structure of starch in rice grains. Research has focused on the rational [...] Read more.
With the increasing greenhouse effect, high temperature has become the most unfavorable environmental factor for the rice grain filling process, affecting rice yield and quality mainly through changing the composition and structure of starch in rice grains. Research has focused on the rational management of water and fertilizer, and spraying of exogenous chemicals, which have become important measures to alleviate high temperature stress of rice. As a multifunctional molecule, melatonin has the potential to improve plant stress resistance by enhancing the scavenging efficiency of reactive oxygen species (ROS), thus protecting plants from the adverse effects of abiotic stress. The present study used a typical japonica rice variety Nipponbare (NPB) as the experimental material, which was treated with high temperature and melatonin during grain-filling stages. The effects of exogenous melatonin on the rice growth and quality traits, as well as starch synthesis, in response to high temperature were analyzed systematically. Exogenous melatonin significantly increased the rice leaf photosynthetic and heat-resistance properties. Melatonin could alleviate the effects of high temperature on the key physicochemical properties related to rice quality. Furthermore, milled rice from NPB plants treated with melatonin had better endosperm appearance under high temperature. Further study found that exogenous melatonin could stabilize the chain length distribution of starch in NPB (especially amylopectin), which implied that melatonin could be used in rice cultivation to alleviate the effect of high temperature on quality, optimization of amylopectin synthesis can also improve rice quality. The results of the present study provide a new idea and research direction to alleviate high temperature stress of rice in the context of global warming. Full article
Show Figures

Figure 1

11 pages, 4314 KiB  
Communication
Progressive Aggregation of 16 kDa Gamma-Zein during Seed Maturation in Transgenic Arabidopsis thaliana
by Elsa Arcalis, Davide Mainieri, Alessandro Vitale, Eva Stöger and Emanuela Pedrazzini
Int. J. Mol. Sci. 2021, 22(23), 12671; https://doi.org/10.3390/ijms222312671 - 24 Nov 2021
Cited by 3 | Viewed by 2452
Abstract
Prolamins constitute a unique class of seed storage proteins, present only in grasses. In the lumen of the endoplasmic reticulum (ER), prolamins form large, insoluble heteropolymers termed protein bodies (PB). In transgenic Arabidopsis (Arabidopsis thaliana) leaves, the major maize (Zea mays [...] Read more.
Prolamins constitute a unique class of seed storage proteins, present only in grasses. In the lumen of the endoplasmic reticulum (ER), prolamins form large, insoluble heteropolymers termed protein bodies (PB). In transgenic Arabidopsis (Arabidopsis thaliana) leaves, the major maize (Zea mays) prolamin, 27 kDa γ-zein (27γz), assembles into insoluble disulfide-linked polymers, as in maize endosperm, forming homotypic PB. The 16 kDa γ-zein (16γz), evolved from 27γz, instead forms disulfide-bonded dispersed electron-dense threads that enlarge the ER lumen without assembling into PB. We have investigated whether the peculiar features of 16γz are also maintained during transgenic seed development. We show that 16γz progressively changes its electron microscopy appearance during transgenic Arabidopsis embryo maturation, from dispersed threads to PB-like, compact structures. In mature seeds, 16γz and 27γz PBs appear very similar. However, when mature embryos are treated with a reducing agent, 27γz is fully solubilized, as expected, whereas 16γz remains largely insoluble also in reducing conditions and drives insolubilization of the ER chaperone BiP. These results indicate that 16γz expressed in the absence of the other zein partners forms aggregates in a storage tissue, strongly supporting the view that 16γz behaves as the unassembled subunit of a large heteropolymer, the PB, and could have evolved successfully only following the emergence of the much more structurally self-sufficient 27γz. Full article
Show Figures

Figure 1

Back to TopTop