Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (179)

Search Parameters:
Keywords = endogenous phenolics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1168 KB  
Article
The Use of Metabolic Inducers in Wheat to Increase the Nutritional and Functional Value of Grain
by Wojciech Biszczak, Izabela Jośko, Michał Świeca, Karol Kraska, Małgorzata Haliniarz and Krzysztof Różyło
Molecules 2025, 30(24), 4699; https://doi.org/10.3390/molecules30244699 - 8 Dec 2025
Viewed by 204
Abstract
Stimulation of plant metabolism is a research direction for increasing the nutritional and functional value of food. In a two-year field experiment with spring wheat, eight inducers from different groups (bio- and abiotic; exo- and endogenous) were used. The tested inducers had varied [...] Read more.
Stimulation of plant metabolism is a research direction for increasing the nutritional and functional value of food. In a two-year field experiment with spring wheat, eight inducers from different groups (bio- and abiotic; exo- and endogenous) were used. The tested inducers had varied and significant effects on wheat grain yield and quality. Hydrogen peroxide, chitin, and chitosan hydrochloride increased phenolic content and antioxidant activity (by 13.7%, 15.7%, and 10.1%, respectively, compared to control). Analysis of the amino acid composition of caryopses flour showed a significant increase in the content of aspartic acid, alanine, phenylalanine, and arginine after the application of hydrogen peroxide. Application of chitosan hydrochloride, L-phenylalanine, and chitin resulted in an increase in APX gene expression, while sodium hypochlorite significantly decreased CAT gene expression. Potassium iodide and sodium hypochlorite significantly reduced grain yield (by 10.6% and 14.4%, respectively, compared to control) and also worsened quality parameters of grain. Hydrogen peroxide, chitin, and chitosan hydrochloride showed the greatest stimulatory potential, as their application did not worsen, and in some cases improved, yield parameters and increased the phenolic content and antioxidant activity of grain. Hydrogen peroxide further improved the amino acid composition of grains. However, further research is needed to understand the mechanisms of effects on plants and to optimize the use of these inducers in agricultural practice. Full article
Show Figures

Figure 1

15 pages, 772 KB  
Review
Health-Promoting Properties of Sorghum Bioactive Compounds—A Comprehensive Bibliometric Analysis
by Jakub Frankowski, Aleksandra Zielińska, Mateusz Labudda, Maciej Ireneusz Kluz, Miroslava Kačániová and Przemysław Łukasz Kowalczewski
Nutrients 2025, 17(23), 3732; https://doi.org/10.3390/nu17233732 - 28 Nov 2025
Viewed by 541
Abstract
Background/Objectives: Sorghum (Sorghum bicolor Moench) is a globally cultivated cereal and an increasingly important crop in Europe due to its exceptional adaptability to climate change and low input requirements. It represents a rich source of bioactive compounds, including phenolic acids, flavonoids, [...] Read more.
Background/Objectives: Sorghum (Sorghum bicolor Moench) is a globally cultivated cereal and an increasingly important crop in Europe due to its exceptional adaptability to climate change and low input requirements. It represents a rich source of bioactive compounds, including phenolic acids, flavonoids, tannins, and 3-deoxyanthocyanidins, which exhibit strong antioxidant, anti-inflammatory, and metabolic regulatory properties. Methods: This review, as a bibliometric analysis, summarizes and discusses current evidence on the health-promoting effects of sorghum, with particular emphasis on its antioxidant, metabolic, and cardiovascular benefits. Results: The antioxidant potential of sorghum is mainly attributed to its phenolic profile, which varies considerably depending on genotype, environmental factors, and processing methods. Human and animal studies demonstrate that sorghum-derived polyphenols enhance endogenous antioxidant enzyme activity, decrease oxidative stress biomarkers, and beneficially modulate gut microbiota composition. Sorghum-based foods are characterized by low to medium glycemic indices, promoting improved postprandial glucose regulation, insulin sensitivity, and prolonged satiety. Furthermore, sorghum bioactive peptides and phenolic acids contribute to cardiovascular health by lowering serum cholesterol levels, reducing inflammatory markers, and exhibiting angiotensin-converting enzyme (ACE) inhibitory activity. Conclusions: Overall, sorghum constitutes a gluten-free, antioxidant-rich grain with significant potential for mitigating oxidative stress, supporting metabolic balance, and preventing chronic non-communicable diseases. Full article
(This article belongs to the Special Issue Antioxidant-Rich Natural Fruit and Vegetable Foods and Human Health)
Show Figures

Figure 1

19 pages, 787 KB  
Article
Effects of Supplemental Antioxidative Substances on Micronutrient Retention and Antioxidative Capacity in Rapeseed Oil During Low-Temperature Ethanol Steam Deodorization
by Fangrong Liu, Chengming Wang, Aifeng Niu, Yu Wang, Guowei Ling, Shilin Liu, Yuhan Yi and Mingshuang Xia
Foods 2025, 14(22), 3907; https://doi.org/10.3390/foods14223907 - 15 Nov 2025
Viewed by 410
Abstract
This study investigated the effects of four antioxidative substances, α-tocopherol (α-TP), phytosterols (PS), squalene (SQ), and propyl gallate (PG), on micronutrient retention and antioxidative capacity of rapeseed oil during ethanol steam deodorization (ESD, 140–220 °C). Results demonstrated that supplementation with these antioxidants increased [...] Read more.
This study investigated the effects of four antioxidative substances, α-tocopherol (α-TP), phytosterols (PS), squalene (SQ), and propyl gallate (PG), on micronutrient retention and antioxidative capacity of rapeseed oil during ethanol steam deodorization (ESD, 140–220 °C). Results demonstrated that supplementation with these antioxidants increased the retention rates (percentage relative to initial content) of tocopherols, phenols, carotenoids, phytosterols, and squalene by up to 2.92%, 46.25%, 25.82%, 1.03%, and 60.15%, respectively. These improvements are attributed to the protective effects of the supplemental antioxidative substances against thermal and oxidative degradation. Moreover, α-TP and PG increased the antioxidative capacity of the oil after ESD at 180 °C for 60 min by 10.37% and 5.35%, respectively, which can be attributed to their increased concentrations and synergistic interactions with endogenous antioxidants. A model oil system of caprylic triglyceride supplemented with binary mixtures of antioxidative substances revealed synergistic behavior in blends of α-TP with PG or CE (β-carotene), and of CE with PG or PS, through complementary interactions, whereas antagonism occurred in blends of PS with PG, and of SQ at a high concentration (40.10 mg/100 g) with α-TP, PG or CE, due to unfavorable molecular interactions. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 3653 KB  
Review
Insights into Asexual Propagation Techniques and Molecular Mechanisms Underlying Adventitious Root Formation in Apple Rootstocks
by Yanjing Gong, Muhammad Anees Arif, Xiaozhao Xu, Mingshan Lei, Jean Yves Uwamungu, Shuncai Wang and Hongming Wang
Horticulturae 2025, 11(11), 1366; https://doi.org/10.3390/horticulturae11111366 - 13 Nov 2025
Viewed by 615
Abstract
Apple represents one of the most economically significant fruit crops worldwide, and the performance of its scion is largely determined by the physiological and genetic characteristics of the rootstock. Despite their superior ecological adaptability and growth-controlling attributes, many dwarfing apple rootstocks exhibit inherently [...] Read more.
Apple represents one of the most economically significant fruit crops worldwide, and the performance of its scion is largely determined by the physiological and genetic characteristics of the rootstock. Despite their superior ecological adaptability and growth-controlling attributes, many dwarfing apple rootstocks exhibit inherently poor rooting competence, which poses a critical limitation to their large-scale clonal propagation and commercial utilization. Adventitious root (AR) formation is a pivotal yet highly intricate developmental process that governs the success of asexual propagation. It is orchestrated by a complex network of hormonal signaling, transcriptional regulation, metabolic reprogramming, and environmental cues. Over the past decade, remarkable advances have elucidated the physiological, biochemical, and molecular frameworks underpinning AR formation in apple rootstocks. This review provides an integrative synthesis of current progress in vegetative propagation techniques—including cutting, layering, and tissue culture—and systematically dissects the endogenous and exogenous factors influencing AR development. Particular emphasis is placed on the regulatory interplay among phytohormones, carbohydrate and nitrogen metabolism, phenolic compounds, transcription factors (such as WUSCHEL-RELATED HOMEOBOX (WOX), LATERAL ORGAN BOUNDARIES DOMAIN (LBD), and RESPONSE FACTOR (ARF families), and epigenetic modulators that collectively coordinate root induction and emergence. Furthermore, emerging insights into multi-omics integration and genotype-specific molecular regulation are discussed as strategic pathways toward enhancing propagation efficiency. Collectively, this review establishes a comprehensive theoretical framework for optimizing the asexual propagation of apple rootstocks and provides critical molecular guidance for breeding novel, easy-to-root genotypes that can drive the sustainable intensification of global apple production. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

21 pages, 7305 KB  
Article
Integration of Physiological and Transcriptomic Analyses Provides Insights into the Regulatory Mechanisms of Adventitious Root Formation in Phoebe bournei Cuttings
by Yuhua Li, Haining Xu, Yongjie Zheng, Chenglin Luo, Yueting Zhang, Xinliang Liu and Yanfang Wu
Horticulturae 2025, 11(10), 1238; https://doi.org/10.3390/horticulturae11101238 - 13 Oct 2025
Viewed by 790
Abstract
Phoebe bournei is an important economic tree species in China, its large-scale propagation is limited by the difficulty of adventitious root (AR) formation in cuttings. In this study, morphological, physiological, and transcriptomic analyses were conducted to investigate the process of AR formation in [...] Read more.
Phoebe bournei is an important economic tree species in China, its large-scale propagation is limited by the difficulty of adventitious root (AR) formation in cuttings. In this study, morphological, physiological, and transcriptomic analyses were conducted to investigate the process of AR formation in P. bournei. The results showed that ARs mainly originated from callus tissue. During AR formation, soluble sugar and soluble protein contents changed significantly. Malondialdehyde (MDA) and oxygen free radicals (OFRs) peaked at first sampling stage (PB0), while the activities of polyphenol oxidase (PPO) and indoleacetic acid oxidase (IAAO) exhibited similar patterns. Lignin content increased during callus induction stage, whereas phenolic content continuously declined throughout rooting. Endogenous hormone levels also changed markedly, and Orthogonal partial least squares discriminant analysis (OPLS-DA) analysis indicated that indole-3-acetic acid (IAA) and abscisic acid (ABA) played dominant roles in this process. KEGG enrichment analysis revealed significant enrichment of the phenylpropanoid biosynthesis pathway in all three comparison groups. A total of 48 differentially expressed genes (DEGs) were enriched in plant hormone signal transduction pathways, with 22 and 14 genes associated with IAA and ABA signaling, respectively. Weighted gene co-expression network analysis (WGCNA) further identified two hub modules related to IAA and ABA contents, including eight hub genes such as D6PKL1 and ISTL1. Correlation analysis revealed that the hub genes D6PKL1 and HSP were significantly positively correlated with IAA4 in the IAA signaling pathway. Overall, this study provides new insights into the mechanisms underlying AR formation in P. bournei cuttings and offers a theoretical basis for optimizing its clonal propagation system. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

19 pages, 1008 KB  
Article
Combined Pre- and Postharvest Melatonin Treatments Improve the Functional Quality of the Sweet Cherry cv. ‘Sunburst’
by Fernando Garrido-Auñón, María Emma García-Pastor, María Serrano, Daniel Valero and Vicente Agulló
Foods 2025, 14(19), 3337; https://doi.org/10.3390/foods14193337 - 26 Sep 2025
Viewed by 1178
Abstract
Chronic metabolic disorders have increased recently due to changes in dietary habits and lifestyle. Red-coloured fruits, such as sweet cherries, are rich in anthocyanins and other (poly)phenolic compounds with health-promoting properties, which has garnered growing scientific interest. Melatonin elicitation has emerged as a [...] Read more.
Chronic metabolic disorders have increased recently due to changes in dietary habits and lifestyle. Red-coloured fruits, such as sweet cherries, are rich in anthocyanins and other (poly)phenolic compounds with health-promoting properties, which has garnered growing scientific interest. Melatonin elicitation has emerged as a promising strategy to improve the functional quality of these fruits. This research investigates, for the first time, the combined effect of pre- and postharvest melatonin treatments, followed by a cold storage (2 °C) of 21 days, on the endogenous melatonin and phenolic compound levels of 90 sweet cherries (n = 3) from the ‘Sunburst’ cultivar and harvested from 9 trees per treatment. Single preharvest or postharvest melatonin treatments increased the endogenous melatonin content via direct absorption and activation of key biosynthetic genes, while they reduced anthocyanin, hydroxycinnamic acid, and flavonol levels, likely due to a ripening-delaying effect at harvest. Nevertheless, the combined treatment increased endogenous melatonin levels 5-fold compared to harvest and increased all measured polyphenolic compound levels, including a 29% rise in total anthocyanins reverting the delay in the ripening process. These effects suggest upregulation of genes in the phenylpropanoid pathway and could improve fruit’s functional quality. The response to melatonin is cultivar- and dose-dependent. Future research should investigate genetic and transcriptomic validation to confirm these potential effects and assess whether increased bioactive compound content would translate into measurable human health benefits. Full article
Show Figures

Graphical abstract

21 pages, 2129 KB  
Article
Comparative Study on Antioxidant Potential of Schinus terebinthifolius Extracts Prepared by Conventional Extraction, Accelerated Solvent Extraction, and Pulsed Electric Field Method
by Tanakarn Chaithep, Anurak Muangsanguan, Juan M. Castagnini, Francisco J. Marti-Quijal, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Francisco J. Barba and Warintorn Ruksiriwanich
Molecules 2025, 30(17), 3589; https://doi.org/10.3390/molecules30173589 - 2 Sep 2025
Viewed by 1557
Abstract
Oxidative stress is a major contributor to skin aging and related disorders. This study comparatively evaluated the bioefficacy of Schinus terebinthifolius Raddi leaf extracts prepared using three extraction techniques: conventional extraction (CE), accelerated solvent extraction (ASE), and pulsed electric field (PEF) extraction, with [...] Read more.
Oxidative stress is a major contributor to skin aging and related disorders. This study comparatively evaluated the bioefficacy of Schinus terebinthifolius Raddi leaf extracts prepared using three extraction techniques: conventional extraction (CE), accelerated solvent extraction (ASE), and pulsed electric field (PEF) extraction, with 50% (v/v) ethanol and water as green solvents. Among all tested conditions, the CE-derived extract (C-4), obtained with 50% (v/v) ethanol for 120 min, exhibited the highest extraction yield (29.7%). It also showed the highest total phenolic (668.56 ± 11.52 mg gallic acid equivalent (GAE)/g dry material (DM)) and flavonoid content (2629.92 ± 112.61 mg quercetin equivalent (QE)/100 g DM), and potent antioxidant activity against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical (12,645.50 ± 60.31 µmol Trolox equivalent (TE)/g DM) and oxygen radical absorbance capacity assay (ORAC: 7180.27 ± 101.79 µM TE/100 g DM). Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analysis revealed a diverse phytochemical profile rich in polyphenols, including gallic acid, p-coumaric acid, rutin, rosmarinic acid, caffeic acid, and epicatechin. Cellular assays in hydrogen peroxide (H2O2)-induced HaCaT keratinocytes demonstrated that C-4 extract significantly enhanced cell viability and upregulated endogenous antioxidant genes (superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPX)), with effects comparable to established antioxidants such as epigallocatechin gallate (EGCG) and ascorbic acid. These findings highlight the influence of extraction parameters on phytochemical yield and biological activity, supporting the potential application of CE-derived S. terebinthifolius extracts as effective, sustainable ingredients for cosmeceutical formulations targeting oxidative stress-mediated skin aging. Full article
Show Figures

Figure 1

20 pages, 1655 KB  
Article
Probiotic Potential of Some Lactic Acid Bacteria Isolated from Blue Maize Atole Agrio from Veracruz, México
by Margarita Torres-Gregorio, Rosa María Ribas-Aparicio, María Guadalupe Aguilera-Arreola, Gustavo F. Gutiérrez-López and Humberto Hernández-Sánchez
Fermentation 2025, 11(8), 474; https://doi.org/10.3390/fermentation11080474 - 19 Aug 2025
Viewed by 909
Abstract
Mexican culture offers a great variety of traditional maize-based fermented foods that are beneficial for human health. Atole agrio (sour atole), prepared from blue maize (Zea mays) in the state of Veracruz, has been scarcely studied as a potential functional food. [...] Read more.
Mexican culture offers a great variety of traditional maize-based fermented foods that are beneficial for human health. Atole agrio (sour atole), prepared from blue maize (Zea mays) in the state of Veracruz, has been scarcely studied as a potential functional food. The purpose of this study was to select endogenous potentially probiotic lactic acid bacteria (LAB) from freshly fermented blue maize atole agrio. Samples of spontaneously fermented atole agrio were used for the isolation of LAB on MRS agar. The abilities to tolerate acidic pH, bile salts, and sodium chloride, as well as surface hydrophobicity and aggregation capabilities, were used as criteria for probiotic potential. Selected LAB were identified using MALDI-TOF-MS. Finally, safety-related characterizations, such as hemolytic activity and antibiotic susceptibility, were performed. In the initial stages of fermentation, the presence of fungi, yeasts, coliform organisms, and LAB were detected, and in the final fermentation process, where the blue atole agrio reached a pH of 4, 49 isolates of LAB were obtained. Sixteen isolates showed high tolerance to pH 2, and seven of them showed tolerance to 3% bile salts and 4% sodium chloride. The seven isolates were identified as Pediococcus pentosaceus. Although the seven isolates showed low hydrophobicity to hexadecane and chloroform, they had medium autoaggregation and coaggregation with pathogens. The seven isolates showed notable antibacterial properties against Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Escherichia coli, and Listeria monocytogenes, as well as good amylolytic capacity. All the P. pentosaceus strains were non-hemolytic, sensible to clindamycin and resistant to the other 11 antibiotics tested. Only subtle differences were found among the seven isolates, which can be considered potential candidates for probiotics. The freshly fermented blue maize atole agrio can be considered a functional food containing potentially probiotic LAB and the antioxidant phenolic compounds present in blue maize. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

31 pages, 3977 KB  
Article
Exploring the Cytokinin Profile of Doliocarpus dentatus (Aubl.) Standl. From Guyana and Its Relationship with Secondary Metabolites: Insights into Potential Therapeutic Benefits
by Ewart A. Smith, Ainsely Lewis, Erin N. Morrison, Kimberly Molina-Bean, Suresh S. Narine and R. J. Neil Emery
Metabolites 2025, 15(8), 533; https://doi.org/10.3390/metabo15080533 - 6 Aug 2025
Viewed by 1104
Abstract
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, [...] Read more.
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, phytohormones responsible for plant cell division, growth and differentiation, are gaining traction for their therapeutic potential in human health. This study screened and quantified endogenous cytokinins and correlated detected cytokinins with selected secondary metabolites. Methods: Liquid chromatography–mass spectrometry was used to acquire phytohormone and metabolite data. Bioinformatics tools were used to assess untargeted metabolomics datasets via statistical and pathway analyses, and chemical groupings of putative metabolites. Results: In total, 20 of the 35 phytohormones were detected and quantified in both ecotypes, with the red ecotype displaying higher free base and glucoside cytokinin concentrations and exhibited 6.2 times the total CK content when compared to the white ecotype. Pathway analysis revealed flavonoid and monoterpenoid biosynthesis in red and white ecotypes, respectively. Positive correlations between specific cytokinins and alkaloids, and between trans-Zeatin and isopentenyladenosine riboside with phenolic compounds were observed. Conclusions: These results suggest that the red ecotype’s elevated cytokinin levels coupled with flavonoid biosynthesis enrichment support its preference in Guyanese traditional medicine. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

15 pages, 4805 KB  
Article
Postharvest 2,4-Epibrassinolide Treatment Delays Senescence and Increases Chilling Tolerance in Flat Peach
by Bin Xu, Haixin Sun, Xuena Rang, Yanan Ren, Ting Zhang, Yaoyao Zhao and Yuquan Duan
Agronomy 2025, 15(8), 1835; https://doi.org/10.3390/agronomy15081835 - 29 Jul 2025
Viewed by 845
Abstract
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide [...] Read more.
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide (EBR) is a crucial endogenous hormone involved in plant response to both biological and environmental stressors. At present, most studies focus on the mechanisms of mitigating CI using a single concentration of EBR treatment, while few studies focus on the effects varying EBR concentrations have on CI. The purpose of this research is to explore the effects of varying concentrations of EBR on the postharvest quality and cold resistance of peach fruit, thereby establishing a basis for refining a technical framework of environmentally sustainable strategies to mitigate postharvest CI. The results show that EBR treatment effectively inhibits the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by maintaining the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), thereby delaying the internal browning process of postharvest peaches. In addition, EBR treatment reduced the consumption of total phenolics by inhibiting the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL). Experimental results identify that 5 μmol L−1 EBR treatment emerged as the most effective concentration for maintaining core postharvest quality attributes. It significantly delayed the decrease in firmness, reduced weight loss, effectively inhibited the production of H2O2 and O2·, particularly during the early storage period, strongly restrained the activity of PAL, and maintained lower rot rates and internal browning indexes. While the 15 μmol L−1 EBR treatment enhanced antioxidant activity, increased total phenolic content at certain stages, and maintained higher soluble solids and acid content, its effects on key physical quality parameters, like firmness and weight loss, were less pronounced compared to the 5 μmol L−1 treatment. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

12 pages, 5740 KB  
Article
Effect of pH on the Efficiency of Pyrogallol, Gallic Acid, and Alkyl Gallates in Trapping Methylglyoxal
by Haria Hadjipakkou and Eftychia Pinakoulaki
Molecules 2025, 30(15), 3086; https://doi.org/10.3390/molecules30153086 - 23 Jul 2025
Viewed by 994
Abstract
Methylglyoxal (MGO) is a highly reactive a-dicarbonyl compound produced in foods and endogenously in humans and constitutes a predominant precursor of advanced glycation end products that contribute to the pathology of several diseases, including diabetes and neurodegenerative diseases. In this study, the [...] Read more.
Methylglyoxal (MGO) is a highly reactive a-dicarbonyl compound produced in foods and endogenously in humans and constitutes a predominant precursor of advanced glycation end products that contribute to the pathology of several diseases, including diabetes and neurodegenerative diseases. In this study, the efficiency of pyrogallol, gallic acid, ethyl, and propyl gallate in trapping MGO was investigated at pH 6.5 to 8.0. Pyrogallol was the most efficient MGO-trapping agent, followed by gallic acid, whereas the alkyl gallates were notably less efficient, particularly at slightly acidic and neutral pH. The increase of pH from slightly acidic to alkaline enhanced the MGO-trapping efficiency of all compounds, albeit to a different extent that correlated inversely to the pKa of the most acidic -OH phenolic group, demonstrating the contribution of the deprotonated forms of the phenolic compounds in the enhanced reactivity towards MGO. The reaction products of pyrogallol, identified as the most efficient compound in MGO-trapping, were analyzed and characterized by liquid chromatography-mass spectrometry (LC-MS). Both mono-MGO and di-MGO conjugated adducts of pyrogallol were detected, with the mono-MGO adduct being dominant solely at acidic pH and the di-MGO pyrogallol adducts becoming prevalent at neutral and alkaline pH. Therefore, the pH was determined as a main factor that controls the reaction pathways of the phenolic compounds with MGO. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

20 pages, 7847 KB  
Article
Brassinosteroid-Mediated Resistance to Cobalt-Induced Toxicity by Regulating Hormonal Balance, Cellular Metabolism, and Antioxidant Defense in Maize
by Abdul Salam, Jinzhe Chang, Liupeng Yang, Muhammad Zeeshan, Anas Iqbal, Ali Raza Khan, Muhammad Siddique Afridi, Zaid Ulhassan, Wardah Azhar, Zhixiang Zhang and Peiwen Zhang
Plants 2025, 14(13), 2076; https://doi.org/10.3390/plants14132076 - 7 Jul 2025
Cited by 3 | Viewed by 1294
Abstract
Brassinosteroids (BRs) play an essential role in regulating plant metabolic pathways that influence growth, development, and stress responses. However, their role in alleviating cobalt (Co) stress has not been extensively studied. This research aimed to assess the impact of exogenous BRs (0.1 µM) [...] Read more.
Brassinosteroids (BRs) play an essential role in regulating plant metabolic pathways that influence growth, development, and stress responses. However, their role in alleviating cobalt (Co) stress has not been extensively studied. This research aimed to assess the impact of exogenous BRs (0.1 µM) on maize subjected to Co stress (300 µM) in a hydroponic experiment. The results indicated that BR supplementation significantly decreased the accumulation of H2O2 by 17.79 and 16.66%, O2•− by 28.5 and 21.48%, and MDA by 37.5 and 37.9% in shoot and root, respectively, as compared to Co stress alone. Additionally, BRs enhanced endogenous levels of BRs (31.16%) and growth hormones (IAA 50.8%, JA 57.8%, GA 52.5%), and reduced Co contents by 26.3% in roots and 36.1% in shoots. BRs enhanced antioxidant enzyme activity both in the shoot and root, leading to reduced ROS levels as confirmed by laser scanning confocal microscopy. Furthermore, BRs increased phenols, flavonoids, and soluble sugars, and elevated total protein content. Observations from transmission electron microscopy indicated reduced ultrastructural damage in plants treated with BRs under Co stress. Taken together, this study highlights the role of BRs in alleviating Co stress in maize, demonstrating their efficiency in enhancing stress tolerance by modulating hormone levels and key metabolic processes. Full article
Show Figures

Graphical abstract

15 pages, 3301 KB  
Article
Exogenous GA3 Promotes Germination by Reducing Endogenous Inhibitors in Sainfoin (Onobrychis viciifolia) Seeds
by Yanyan Luo, Kun Wang, Yuheng Yao and Lili Nan
Plants 2025, 14(10), 1464; https://doi.org/10.3390/plants14101464 - 14 May 2025
Cited by 1 | Viewed by 1248
Abstract
Endogenous inhibitors can inhibit seed germination, and GA3 can promote seed germination. Whether GA3 can affect the changes in endogenous inhibitors has not been clarified. In order to study the effect of GA3 on the endogenous inhibitors in sainfoin ( [...] Read more.
Endogenous inhibitors can inhibit seed germination, and GA3 can promote seed germination. Whether GA3 can affect the changes in endogenous inhibitors has not been clarified. In order to study the effect of GA3 on the endogenous inhibitors in sainfoin (Onobrychis viciifolia) seeds, the systematic separation method and gas chromatography–mass pectrometry (GC-MS) method were used to determine the endogenous inhibitors using cabbage (Brassica rapa var. glabra Regel) as a bioassay model to validate the inhibitory activity in sainfoin seeds, and then the optimal concentration of GA3 was determined to promote seed germination. The results showed that endogenous inhibitors existed in the pod coat, seed coat, and seed embryo of sainfoin seeds, with the methanol and ethyl acetate phases showing the highest degree of inhibition. The organic compounds were mainly organic acids, phenols, lipids, and alkanes. The levels of changes in germination indicators, storage substances, and antioxidant enzymes determined that 600 mg/L GA3 was the optimum concentration to promote germination of sainfoin seed. It was also found that 600 mg/L GA3 reduced the relative content of endogenous inhibitors and changed the content of endogenous hormones. In summary, the presence of endogenous inhibitors may be one of the reasons for the low germination rate of sainfoin seeds, with 3-methoxycatechol and 4-nitrosodiphenylamine playing a major role. GA3 can reduce the relative content and types of endogenous inhibitors to promote the germination of sainfoin seeds. Our experimental results provide the basis for subsequent exploration of the mechanism of specific endogenous inhibitors and the identification of deeper molecular mechanisms. Full article
Show Figures

Figure 1

17 pages, 3345 KB  
Article
A Preliminary Study on the Qualitative and Quantitative Changes of Amino Acids in Whole Apple, Apple Peel, and Flesh Samples Grown in Lithuania
by Aurita Bračiulienė, Vaidotas Žvikas, Mindaugas Liaudanskas and Valdimaras Janulis
Plants 2025, 14(9), 1330; https://doi.org/10.3390/plants14091330 - 28 Apr 2025
Viewed by 1138
Abstract
Amino acids are vital gradient compounds involved in protein synthesis and the regulation of physiological functions. Ten essential amino acids cannot be produced endogenously and must be obtained through dietary sources of animal or plant origin. Apples are among the most widely consumed [...] Read more.
Amino acids are vital gradient compounds involved in protein synthesis and the regulation of physiological functions. Ten essential amino acids cannot be produced endogenously and must be obtained through dietary sources of animal or plant origin. Apples are among the most widely consumed fruits globally and contain not only vital nutrients such as carbohydrates, fatty acids, organic acids, and amino acids but also a rich variety of bioactive compounds, including flavonoids and phenolic and triterpenic acids. Due to their diverse range of health-promoting compounds, apples could serve as a potential plant-based source of amino acids. Scientific literature provides fragmented data describing the qualitative and quantitative variation of amino acid composition in apples and their different parts. The purpose of this study was to determine the variation in the qualitative and quantitative composition of amino acids in whole apples, as well as in their peel and flesh samples, grown under Lithuanian climatic conditions. This study investigated 10 different apple cultivars, grown in Lithuania. A total of 15 free amino acids were identified using the UHPLC–MS/MS methodology, including 7 essential and 8 nonessential amino acids. In the apple sample, the predominant amino acid was aspartic acid (Asp). The highest content of Asp was found in apple flesh (742.73 ± 37.14 μg/g dw, p < 0.05), followed by whole apple (705.32 ± 35.27 μg/g dw, p < 0.05), and apple peel (370.78 ± 18.54 μg/g dw, p < 0.05) samples of the ‘Lodel’ cultivar. The distribution of total amino acid content (TAAC) in different apple parts is presented in descending order: apple flesh > whole apple > apple peel. The Lithuanian apple cultivars—‘Alva’ (547.26 ± 27.36 μg/g dw–998.13 ± 49.91 μg/g dw), ‘Lodel’ (561.85 ± 28.09 μg/g dw–954.24 ± 47.62 μg/g dw), and ‘Rubin’ (132.92 ± 6.65 μg/g dw–835.08 ± 41.75 μg/g dw)—were identified as those that accumulated the highest TAAC in their fruit samples. Full article
Show Figures

Figure 1

28 pages, 2038 KB  
Review
Lion’s Mane Mushroom (Hericium erinaceus): A Neuroprotective Fungus with Antioxidant, Anti-Inflammatory, and Antimicrobial Potential—A Narrative Review
by Alex Graça Contato and Carlos Adam Conte-Junior
Nutrients 2025, 17(8), 1307; https://doi.org/10.3390/nu17081307 - 9 Apr 2025
Cited by 10 | Viewed by 43430
Abstract
Hericium erinaceus, commonly known as lion’s mane mushroom, has gained increasing scientific interest due to its rich composition of bioactive compounds and diverse health-promoting properties. This narrative review provides a comprehensive overview of the nutritional and therapeutic potential of H. erinaceus, [...] Read more.
Hericium erinaceus, commonly known as lion’s mane mushroom, has gained increasing scientific interest due to its rich composition of bioactive compounds and diverse health-promoting properties. This narrative review provides a comprehensive overview of the nutritional and therapeutic potential of H. erinaceus, with a particular focus on its anti-inflammatory, antioxidant, and antimicrobial activities. A structured literature search was performed using databases such as PubMed, Scopus, Science Direct, Web of Science, Science Direct, and Google Scholar. Studies published in the last two decades focusing on H. erinaceus’ bioactive compounds were included. The chemical composition of H. erinaceus includes polysaccharides, terpenoids (hericenones and erinacines), and phenolic compounds, which exhibit potent antioxidant effects by scavenging reactive oxygen species (ROS) and inducing endogenous antioxidant enzymes. Additionally, H. erinaceus shows promising antimicrobial activity against bacterial and fungal pathogens, with potential applications in combating antibiotic-resistant infections. The mushroom’s capacity to stimulate nerve growth factor (NGF) synthesis has highlighted its potential in preventing and managing neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. Advances in biotechnological methods, including optimized cultivation techniques and novel extraction methods, may further enhance the bioavailability and pharmacological effects of H. erinaceus. Despite promising findings, clinical validation remains limited. Future research should prioritize large-scale clinical trials, the standardization of extraction methods, and the elucidation of pharmacokinetics to facilitate its integration into evidence-based medicine. The potential of H. erinaceus as a functional food, nutraceutical, and adjunct therapeutic agent highlights the need for interdisciplinary collaboration between researchers, clinicians, and regulatory bodies. Full article
Show Figures

Figure 1

Back to TopTop