Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (216)

Search Parameters:
Keywords = endocytic pathways

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17373 KiB  
Article
The Memory Gene, Murashka, Is a Regulator of Notch Signalling and Controls the Size of the Drosophila Germline Stem Cell Niche
by Thifeen Deen, Hideyuki Shimizu, Marian B. Wilkin and Martin Baron
Biomolecules 2025, 15(8), 1082; https://doi.org/10.3390/biom15081082 - 26 Jul 2025
Viewed by 288
Abstract
We identified Murashka, a RING finger protein, in an oogenesis screen as a regulator of Drosophila ovary germline stem cell niche development. Mutant alleles of murashka exhibited an enlarged niche phenotype reminiscent of increased Notch signalling and displayed genetic interactions with Notch alleles, [...] Read more.
We identified Murashka, a RING finger protein, in an oogenesis screen as a regulator of Drosophila ovary germline stem cell niche development. Mutant alleles of murashka exhibited an enlarged niche phenotype reminiscent of increased Notch signalling and displayed genetic interactions with Notch alleles, and with polychaetoid, a regulator of Notch during niche development. These interactions uncovered both positive and negative impacts on Notch in different genetic backgrounds. In S2 cells, Murashka formed a complex with Notch and colocalised with Notch in the secretory pathway. Murashka expression in S2 cells down-regulated Notch signalling levels but could result in increased fold induction due to the proportionally greater decrease in basal ligand-independent activity. In vivo Murashka expression had different outcomes on different Notch target genes. We observed a decrease in the expression of vestigial along the anterior/posterior boundary of the wing imaginal disc, but not of wingless at the dorsal/ventral boundary. Instead, weak ectopic wingless was observed, which was synergistically increased by the coexpression of Deltex, a positive regulator of ligand-independent signalling. Our results identify a novel developmental role for murashka, a gene previously only associated with a function in long-term memory, and indicate a regulatory role for Murashka through a physical interaction with Notch that has context-dependent outcomes. Murashka adds to a growing number of ubiquitin ligase regulators which interact with Notch at different locations within its secretory and endocytic trafficking pathways. Full article
(This article belongs to the Special Issue Notch and Its Regulation in Health and Disease)
Show Figures

Figure 1

26 pages, 1363 KiB  
Review
From Structure to Function: The Promise of PAMAM Dendrimers in Biomedical Applications
by Said Alamos-Musre, Daniel Beltrán-Chacana, Juan Moyano, Valeria Márquez-Miranda, Yorley Duarte, Sebastián Miranda-Rojas, Yusser Olguín, Juan A. Fuentes, Danilo González-Nilo and María Carolina Otero
Pharmaceutics 2025, 17(7), 927; https://doi.org/10.3390/pharmaceutics17070927 - 18 Jul 2025
Viewed by 408
Abstract
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells [...] Read more.
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells through various endocytic mechanisms, such as passive diffusion, clathrin-mediated endocytosis, and caveolae-mediated endocytosis, allowing them to traverse the cytoplasm and reach intracellular targets, such as the mitochondria or nucleus. Despite the significant challenge posed by the cytotoxicity of these nanoparticles, which is contingent upon the dendrimer size, surface charge, and generation, numerous strategies have been documented to modify the dendrimer surface using polyethylene glycol and other chemical groups to temporarily mitigate their cytotoxic effects. The potential of PAMAM dendrimers in cancer therapy and other biomedical applications is substantial, owing to their ability to enhance bioavailability, pharmacokinetics, and pharmacodynamics of active ingredients within the body. This underscores the necessity for further investigation into the optimization of internalization pathways and cytotoxicity of these nanoparticles. This review offers a comprehensive synthesis of the current literature on the diverse cellular internalization pathways of PAMAM dendrimers and their cargo molecules, emphasizing the mechanisms of entry, intracellular trafficking, and factors influencing these processes. Full article
(This article belongs to the Special Issue Biomedical Applications: Advances in Bioengineering and Drug Delivery)
Show Figures

Figure 1

16 pages, 4235 KiB  
Article
Feasibility of Xenogeneic Mitochondrial Transplantation in Neuronal Systems: An Exploratory Study
by Eriko Nakamura, Tomoaki Aoki, Cyrus E. Kuschner, Yusuke Endo, Jacob S. Kazmi, Tai Yin, Ryosuke Takegawa, Lance B. Becker and Kei Hayashida
Life 2025, 15(7), 998; https://doi.org/10.3390/life15070998 - 23 Jun 2025
Viewed by 491
Abstract
Mitochondrial transplantation (MTx) has emerged as a potential therapeutic approach for diseases associated with mitochondrial dysfunction, yet its scalability and cross-species feasibility remain underexplored. This study aimed to evaluate the dose-dependent uptake and molecular effects of xenogeneic mitochondrial transplantation (xeno-MTx) using rat-derived mitochondria [...] Read more.
Mitochondrial transplantation (MTx) has emerged as a potential therapeutic approach for diseases associated with mitochondrial dysfunction, yet its scalability and cross-species feasibility remain underexplored. This study aimed to evaluate the dose-dependent uptake and molecular effects of xenogeneic mitochondrial transplantation (xeno-MTx) using rat-derived mitochondria in mouse neuronal systems. HT-22 hippocampal neuronal cells and a murine model of cardiac arrest-induced global cerebral ischemia were used to assess mitochondrial uptake, gene expression, and mitochondrial DNA presence. Donor mitochondria were isolated from rat pectoralis muscle and labeled with MitoTracker dyes. Flow cytometry and confocal microscopy revealed a dose-dependent increase in donor mitochondrial uptake in vitro. Quantitative PCR demonstrated a corresponding increase in rat-specific mitochondrial DNA and upregulation of Mfn2 and Bak1, with no changes in other fusion, fission, or apoptotic genes. Inhibitor studies indicated that mitochondrial internalization may involve actin-dependent macropinocytosis and cholesterol-sensitive endocytic pathways. In vivo, rat mitochondrial DNA was detected in mouse brains post–xeno-MTx, confirming donor mitochondrial delivery to ischemic tissue. These findings support the feasibility of xeno-MTx and its dose-responsive biological effects in neuronal systems while underscoring the need for further research to determine long-term functional outcomes and clinical applicability. Full article
(This article belongs to the Special Issue Advances in Cardiac Arrest: Prognostic Performance and Management)
Show Figures

Figure 1

14 pages, 3154 KiB  
Article
Downregulation of Mitophagy, Complex I Biogenesis, and Signaling by ROBO Receptors—Implications for Psoriasis Pathogenesis
by Malin Assarsson, Jan Söderman, Olaf Dienus and Oliver Seifert
Int. J. Mol. Sci. 2025, 26(12), 5546; https://doi.org/10.3390/ijms26125546 - 10 Jun 2025
Viewed by 400
Abstract
The pathogenesis of psoriasis is complex and many specific immunopathogenic mechanisms still remain unclear. Our goal was to identify novel pathways involved in the pathogenesis of psoriasis by analyzing differentially expressed genes, and to conduct pathway and cluster analysis by comparing lesional and [...] Read more.
The pathogenesis of psoriasis is complex and many specific immunopathogenic mechanisms still remain unclear. Our goal was to identify novel pathways involved in the pathogenesis of psoriasis by analyzing differentially expressed genes, and to conduct pathway and cluster analysis by comparing lesional and non-lesional skin with healthy controls. Accordingly, 2 mm punch biopsies were taken from lesional elbow skin and non-affected adjacent skin of 23 patients with plaque-type psoriasis and from the elbow skin of 25 healthy controls. Differentially expressed genes were analyzed through RNA sequencing, and gene set enrichment analysis was used to analyze biological pathways. Our results showed downregulation of the pathway clusters “Mitophagy” and “Respiratory Electron Transport” when comparing both lesional and non-lesional skin to control skin. The pathway “Signaling by ROBO receptors” was downregulated in all three comparisons. Conversely, pathways relating to SUMOylation were upregulated when comparing lesional skin to both non-lesional and control skin, and those relating to the synthesis of PIPs at the early endosome membrane were found to be upregulated in lesional skin compared to control skin. The dysregulation of pathways relating to mitophagy (involved in the removal of damaged mitochondria), complex I biogenesis (a component of the mitochondrial respiratory chain), signaling by ROBO receptors (important for cell migration), and the synthesis of PIPs at the early endosome membrane (with a pivotal role in endocytic pathways and autophagy) suggests their potential role in psoriasis. Further research into the mechanisms of these dysregulated pathways, along with confirmation of protein expression levels, is necessary to validate their roles in psoriasis pathogenesis. Full article
(This article belongs to the Special Issue Molecular Research on Skin Inflammation)
Show Figures

Figure 1

36 pages, 2520 KiB  
Review
Revisiting Pathogen Exploitation of Clathrin-Independent Endocytosis: Mechanisms and Implications
by Oliver Goldmann and Eva Medina
Cells 2025, 14(10), 731; https://doi.org/10.3390/cells14100731 - 16 May 2025
Cited by 1 | Viewed by 772
Abstract
Endocytosis is a specialized transport mechanism in which the cell membrane folds inward to enclose large molecules, fluids, or particles, forming vesicles that are transported within the cell. It plays a crucial role in nutrient uptake, immune responses, and cellular communication. However, many [...] Read more.
Endocytosis is a specialized transport mechanism in which the cell membrane folds inward to enclose large molecules, fluids, or particles, forming vesicles that are transported within the cell. It plays a crucial role in nutrient uptake, immune responses, and cellular communication. However, many pathogens exploit the endocytic pathway to invade and survive within host cells, allowing them to evade the immune system and establish infection. Endocytosis can be classified as clathrin-mediated (CME) or clathrin-independent (CIE), based on the mechanism of vesicle formation. Unlike CME, which involves the formation of clathrin-coated vesicles that bud from the plasma membrane, CIE does not rely on clathrin-coated vesicles. Instead, other mechanisms facilitate membrane invagination and vesicle formation. CIE encompasses a variety of pathways, including caveolin-mediated, Arf6-dependent, and flotillin-dependent pathways. In this review, we discuss key features of CIE pathways, including cargo selection, vesicle formation, routes taken by internalized cargo, and the regulatory mechanisms governing CIE. Many viruses and bacteria hijack host cell CIE mechanisms to facilitate intracellular trafficking and persistence. We also revisit the exploitation of CIE by bacterial and viral pathogens, highlighting recent discoveries in entry mechanisms, intracellular fate, and host-pathogen interactions. Understanding how pathogens manipulate CIE in host cells can inform the development of novel antimicrobial and immunomodulatory interventions, offering new avenues for disease prevention and treatment. Full article
Show Figures

Figure 1

24 pages, 1707 KiB  
Review
Endocytic Pathways Unveil the Role of Syndecans in the Seeding and Spreading of Pathological Protein Aggregates: Insights into Neurodegenerative Disorders
by Anett Hudák and Tamás Letoha
Int. J. Mol. Sci. 2025, 26(9), 4037; https://doi.org/10.3390/ijms26094037 - 24 Apr 2025
Cited by 1 | Viewed by 685
Abstract
Alzheimer’s disease and other neurodegenerative disorders are characterized by the accumulation of misfolded proteins, such as amyloid-beta, tau, and α-synuclein, which disrupt neuronal function and contribute to cognitive decline. Heparan sulfate proteoglycans, particularly syndecans, play a pivotal role in the seeding, aggregation, and [...] Read more.
Alzheimer’s disease and other neurodegenerative disorders are characterized by the accumulation of misfolded proteins, such as amyloid-beta, tau, and α-synuclein, which disrupt neuronal function and contribute to cognitive decline. Heparan sulfate proteoglycans, particularly syndecans, play a pivotal role in the seeding, aggregation, and spreading of toxic protein aggregates through endocytic pathways. Among these, syndecan-3 is particularly critical in regulating the internalization of misfolded proteins, facilitating their propagation in a prion-like manner. This review examines the mechanisms by which syndecans, especially SDC3, contribute to the seeding and spreading of pathological protein aggregates in neurodegenerative diseases. Understanding these endocytic pathways provides valuable insights into the potential of syndecans as biomarkers and therapeutic targets for early intervention in Alzheimer’s disease and other related neurodegenerative disorders. Full article
Show Figures

Figure 1

22 pages, 3635 KiB  
Article
Human Papillomavirus Type 16 Stimulates WAVE1- and WAVE2-Dependent Actin Protrusions for Endocytic Entry
by Daniel J. Fernandez, Stephanie Cheng, Ruben Prins, Sarah F. Hamm-Alvarez and W. Martin Kast
Viruses 2025, 17(4), 542; https://doi.org/10.3390/v17040542 - 8 Apr 2025
Viewed by 773
Abstract
Human papillomavirus type 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16–cell surface interactions trigger [...] Read more.
Human papillomavirus type 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16–cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott–Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of actin protrusions that occur at the cellular surface upon HPV addition to cells, and that this stimulation is a key step prior to endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both internalize HPV16 at a significantly reduced rate. Microscopic analysis of fluorescently labeled cells revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface within a timeframe that precedes endocytosis. Within that same timeframe, we also found that HPV16-treated cells express cellular dorsal surface filopodia, which does not occur in cells lacking WAVE1 and WAVE2. Taken together, this study provides evidence that WAVE1 and WAVE2 mediate a key step prior to HPV entry into cells that involves actin reorganization in the form of cellular dorsal surface protrusions. Full article
(This article belongs to the Special Issue Human and Animal Papillomavirus: Infections, Genetics, and Vaccines)
Show Figures

Figure 1

20 pages, 3306 KiB  
Article
Mdm2-Mediated Ubiquitination Plays a Pivotal Role in Differentiating the Endocytic Roles of GRK2 and Arrestin3
by Shujie Wang, Dooti Kundu, Xiaohan Zhang, Xinru Tian, Lulu Peng and Kyeong-Man Kim
Int. J. Mol. Sci. 2025, 26(7), 3238; https://doi.org/10.3390/ijms26073238 - 31 Mar 2025
Viewed by 490
Abstract
Upon activation of certain G protein-coupled receptors, Mdm2 promotes the ubiquitination of both GRK2 and arrestin3. Similar to arrestin3, GRK2 ubiquitination was associated with its endocytic activity and proteasomal degradation. Ubiquitination of GRK2 was essential for arrestin3 ubiquitination, and vice versa. Cellular components [...] Read more.
Upon activation of certain G protein-coupled receptors, Mdm2 promotes the ubiquitination of both GRK2 and arrestin3. Similar to arrestin3, GRK2 ubiquitination was associated with its endocytic activity and proteasomal degradation. Ubiquitination of GRK2 was essential for arrestin3 ubiquitination, and vice versa. Cellular components involved in arrestin3 ubiquitination, including Gβγ, clathrin, and 14-3-3η, were also necessary for GRK2 ubiquitination. Additionally, the arrestin-biased signaling pathway contributed to the ubiquitination of both GRK2 and arrestin3. By employing Mdm2-knockdown cells alongside GRK2 and arrestin3 mutants deficient in ubiquitination sites, as well as receptors lacking phosphorylation sites, we established that the ubiquitinated forms of GRK2 and arrestin3 facilitate clathrin-dependent endocytosis, whereas non-ubiquitinated GRK2 and arrestin3 are responsible for caveolar and a distinct third endocytic pathway, respectively. In the context of clathrin-mediated endocytosis, arrestin3’s interaction with clathrin and GRK2’s interaction with the β2-adaptin subunit of adaptor protein complex 2 were critical. These findings suggest that GRK2 and arrestin3 ubiquitination are mutually dependent, with their ubiquitination states determining their roles in distinct endocytic pathways. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 8319 KiB  
Article
1-Pyrene Carboxylic Acid: An Internalization Enhancer for Short Oligoarginines
by Csaba Bató, Ildikó Szabó, Mo’ath Yousef, Dorina Lenzinger, Fülöp Károly Grébecz, Tamás Visnovitz, Szilvia E. Bősze, Zoltán Bánóczi and Gábor Mező
Int. J. Mol. Sci. 2025, 26(5), 2202; https://doi.org/10.3390/ijms26052202 - 28 Feb 2025
Viewed by 845
Abstract
Getting through the cell membrane is challenging, and transporting a therapeutic agent while entering the cell is even more complicated. Cell-penetrating peptides (CPPs) are valuable tools for solving this problem, although they have drawbacks. In this work, the synthesis and investigation of efficient [...] Read more.
Getting through the cell membrane is challenging, and transporting a therapeutic agent while entering the cell is even more complicated. Cell-penetrating peptides (CPPs) are valuable tools for solving this problem, although they have drawbacks. In this work, the synthesis and investigation of efficient CPPs are described. We used an aromatic group, 1-pyrene carboxylic acid (PCA), to enhance internalization. We designed oligoarginines to investigate the effect of PCA in different positions at the N-terminus or in the side chain. Our novel peptide derivatives showed remarkable internalization on tumor cell lines, and more than one endocytic pathway plays a role in their internalization mechanism. With this modification, there is an opportunity to design short oligoarginines that can rival well-known CPPs like octaarginine in internalization. Full article
(This article belongs to the Special Issue Bioconjugates and Application)
Show Figures

Figure 1

22 pages, 4371 KiB  
Article
AMPK Activation Downregulates TXNIP, Rab5, and Rab7 Within Minutes, Thereby Inhibiting the Endocytosis-Mediated Entry of Human Pathogenic Viruses
by Viktoria Diesendorf, Veronica La Rocca, Michelle Teutsch, Haisam Alattar, Helena Obernolte, Kornelia Kenst, Jens Seibel, Philipp Wörsdörfer, Katherina Sewald, Maria Steinke, Sibylle Schneider-Schaulies, Manfred B. Lutz and Jochen Bodem
Cells 2025, 14(5), 334; https://doi.org/10.3390/cells14050334 - 24 Feb 2025
Viewed by 1407
Abstract
Cellular metabolism must adapt rapidly to environmental alterations and adjust nutrient uptake. Low glucose availability activates the AMP-dependent kinase (AMPK) pathway. We demonstrate that activation of AMPK or the downstream Unc-51-like autophagy-activating kinase (ULK1) inhibits receptor-mediated endocytosis. Beyond limiting dextran uptake, this activation [...] Read more.
Cellular metabolism must adapt rapidly to environmental alterations and adjust nutrient uptake. Low glucose availability activates the AMP-dependent kinase (AMPK) pathway. We demonstrate that activation of AMPK or the downstream Unc-51-like autophagy-activating kinase (ULK1) inhibits receptor-mediated endocytosis. Beyond limiting dextran uptake, this activation prevents endocytic uptake of human pathogenic enveloped and non-enveloped, positive- and negative-stranded RNA viruses, such as yellow fever, dengue, tick-borne encephalitis, chikungunya, polio, rubella, rabies lyssavirus, and SARS-CoV-2, not only in mammalian and insect cells but also in precision-cut lung slices and neuronal organoids. ULK1 activation inhibited enveloped viruses but not EV71. However, receptor presentation at the cytoplasmic membrane remained unaffected, indicating that receptor binding was unchanged, while later stages of endocytosis were targeted via two distinct pathways. Drug-induced activation of the AMPK pathway reduced early endocytic factor TXNIP by suppressing translation. In contrast, the amounts of Rab5 and the late endosomal marker Rab7 decreased due to translation inactivation and ULK1-dependent proteasome activation within minutes. Furthermore, activation of AMPK hindered the late replication steps of SARS-CoV-2 by reducing viral RNAs and proteins and the endo-lysosomal markers LAMP1 and GRP78, suggesting a reduction in early and late endosomes and lysosomes. Inhibition of the PI3K and mTORC2 pathways, which sense amino acid and growth factor availability, promotes AMPK activity and blocks viral entry. Our results indicate that AMPK and ULK1 emerge as restriction factors of cellular endocytosis, impeding the receptor-mediated endocytic entry of enveloped and non-enveloped RNA viruses. Full article
Show Figures

Graphical abstract

30 pages, 24558 KiB  
Article
In Vitro Functional Validation of an Anti-FREM2 Nanobody for Glioblastoma Cell Targeting
by Gloria Krapež, Neja Šamec, Alja Zottel, Mojca Katrašnik, Ana Kump, Jernej Šribar, Igor Križaj, Jurij Stojan, Rok Romih, Gregor Bajc, Matej Butala, Serge Muyldermans and Ivana Jovčevska
Antibodies 2025, 14(1), 8; https://doi.org/10.3390/antib14010008 - 24 Jan 2025
Viewed by 2217
Abstract
Background/Objectives: Glioblastomas are the most common brain malignancies. Despite the implementation of multimodal therapy, patient life expectancy after diagnosis is barely 12 to 18 months. Glioblastomas are highly heterogeneous at the genetic and epigenetic level and comprise multiple different cell subpopulations. Therefore, [...] Read more.
Background/Objectives: Glioblastomas are the most common brain malignancies. Despite the implementation of multimodal therapy, patient life expectancy after diagnosis is barely 12 to 18 months. Glioblastomas are highly heterogeneous at the genetic and epigenetic level and comprise multiple different cell subpopulations. Therefore, small molecules such as nanobodies, able to target membrane proteins specific to glioblastoma cells or specific cell types within the tumor are being investigated as novel tools to treat glioblastomas. Methods: Here, we describe the identification of such a nanobody and its in silico and in vitro validation. NB3F18, as we named it, is directed against the membrane-associated protein FREM2, overexpressed in glioblastoma stem cells. Results: Three dimensional in silico modeling indicated that NB3F18 and FREM2 form a stable complex. Surface plasmon resonance confirmed their interaction with moderate affinity. As we demonstrated by flow cytometry, NB3F18 binds to glioblastoma stem cells to a greater extent than to differentiated glioblastoma cells and astrocytes. Immunocytochemistry revealed surface localization of NB3F18 on glioblastoma stem cells, whereas cytoplasmic localization of NB3F18 was observed in other cell lines. NB3F18 was detected by transmission electron microscopy on the plasma membrane and in various compartments of the endocytic pathway, from endocytic vesicles to multivesicular bodies (endosomes) and lysosomes. Interestingly, NB3F18 was cytotoxic to glioblastoma stem cells. Conclusions: Collectively, NB3F18 has been qualified as an interesting tool to target glioblastoma cells and as a potential vehicle to deliver biological or pharmaceutical agents to these cells. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Graphical abstract

20 pages, 3149 KiB  
Article
Look Beyond Plasma Membrane Biophysics: Revealing Considerable Variability of the Dipole Potential Between Plasma and Organelle Membranes of Living Cells
by Mate Szabo, Bence Cs. Szabo, Kitti Kurtan, Zoltan Varga, Gyorgy Panyi, Peter Nagy, Florina Zakany and Tamas Kovacs
Int. J. Mol. Sci. 2025, 26(3), 889; https://doi.org/10.3390/ijms26030889 - 22 Jan 2025
Cited by 1 | Viewed by 1644
Abstract
Due to the lack of measurement techniques suitable for examining compartments of intact, living cells, membrane biophysics is almost exclusively investigated in the plasma membrane despite the fact that its alterations in intracellular organelles may also contribute to disease pathogenesis. Here, we employ [...] Read more.
Due to the lack of measurement techniques suitable for examining compartments of intact, living cells, membrane biophysics is almost exclusively investigated in the plasma membrane despite the fact that its alterations in intracellular organelles may also contribute to disease pathogenesis. Here, we employ a novel, easy-to-use, confocal microscopy-based approach utilizing F66, an environment-sensitive fluorophore in combination with fluorescent organelle markers and quantitative image analysis to determine the magnitude of the molecular order-related dipole potential in the plasma membrane and intracellular organelles of various tumor and neural cell lines. Our comparative analysis demonstrates considerable intracellular variations of the dipole potential that may be large enough to modulate protein functions, with an inward decreasing gradient on the route of the secretory/endocytic pathway (plasma membrane >> lysosome > Golgi > endoplasmic reticulum), whereas mitochondrial membranes are characterized by a dipole potential slightly larger than that of lysosomes. Our approach is suitable and sensitive enough to quantify membrane biophysical properties selectively in intracellular compartments and their comparative analysis in intact, living cells, and, therefore, to identify the affected organelles and potential therapeutic targets in diseases associated with alterations in membrane lipid composition and thus biophysics such as tumors, metabolic, neurodegenerative, or lysosomal storage disorders. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

21 pages, 45460 KiB  
Article
The Type III Intermediate Filament Protein Peripherin Regulates Lysosomal Degradation Activity and Autophagy
by Roberta Romano, Paola Cordella and Cecilia Bucci
Int. J. Mol. Sci. 2025, 26(2), 549; https://doi.org/10.3390/ijms26020549 - 10 Jan 2025
Cited by 1 | Viewed by 1247
Abstract
Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and [...] Read more.
Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery. Moreover, peripherin silencing affects lysosomal activity, inhibiting EGFR degradation and the degradation of a fluorogenic substrate for proteases. Furthermore, we demonstrate that peripherin silencing affects lysosomal biogenesis by reducing the TFEB and TFE3 contents. Finally, in peripherin-depleted cells, the autophagic flux is strongly inhibited. Therefore, these data indicate that peripherin has an important role in regulating lysosomal biogenesis, and positioning and functions of lysosomes, affecting both the endocytic and autophagic pathways. Considering that peripherin is the most abundant intermediate filament protein of peripheral neurons, its dysregulation, affecting its functions, could be involved in the onset of several neurodegenerative diseases of the peripheral nervous system characterized by alterations in the endocytic and/or autophagic pathways. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 3853 KiB  
Article
Keratinocyte-Mediated Antigen Presentation in Psoriasis: Preliminary Insights from In Vitro Studies
by Katarzyna Zima, Dorota Purzycka-Bohdan, Aneta Szczerkowska-Dobosz and Magdalena Gabig-Cimińska
Int. J. Mol. Sci. 2024, 25(24), 13387; https://doi.org/10.3390/ijms252413387 - 13 Dec 2024
Cited by 1 | Viewed by 1995
Abstract
Antigen presentation plays a critical role in the pathogenesis of immune-mediated disorders. This study aimed to investigate the effects of IFN-γ and a cytokine mix (5MIX: IL-1α, IL-17A, IL-22, OsM, and TNF-α) on the antigen-presenting capabilities of keratinocytes, with a specific focus on [...] Read more.
Antigen presentation plays a critical role in the pathogenesis of immune-mediated disorders. This study aimed to investigate the effects of IFN-γ and a cytokine mix (5MIX: IL-1α, IL-17A, IL-22, OsM, and TNF-α) on the antigen-presenting capabilities of keratinocytes, with a specific focus on immune-mediated dermatological conditions such as psoriasis (Ps). To achieve this, keratinocytes were treated with IFN-γ and 5MIX, and their impact on the expression of key antigen-presentation molecules, HLA-DRα and CD74, was assessed. Transcriptomic analysis revealed that IFN-γ alone altered the expression of 254 genes, highlighting its central role in modulating immune responses, including the recruitment of immune cells and regulation of inflammation. Temporal experiments further demonstrated that IFN-γ and 5MIX enhanced early endocytic activity and lysosomal degradation pathways, both essential for effective antigen presentation and T-cell activation. To extend these findings to a clinical context, a co-culture model using keratinocytes derived from psoriatic patients was established. This model revealed increased cytokine production following antigen stimulation, indicating robust and consistent CD4+ and naïve T-cell responses. These results elucidate the complex dynamics of cytokine signaling and antigen presentation in keratinocytes, providing insights into potential therapeutic strategies for immune-mediated skin disorders like Ps. Full article
(This article belongs to the Special Issue Immunological and Molecular Networks in the Skin and Skin Diseases)
Show Figures

Figure 1

18 pages, 5753 KiB  
Article
Mycoplasma bovis Invades Non-Phagocytic Cells by Clathrin-Dependent Endocytic Pathways and Escapes from Phagocytic Vesicles
by Bin Li, Yabin Lu, Yaru Feng, Xiaolong Jiao, Qiuyu Zhang, Mengting Zhou, Yuyu Zhang, Jian Xu, Yuefeng Chu and Duoliang Ran
Pathogens 2024, 13(11), 1003; https://doi.org/10.3390/pathogens13111003 - 15 Nov 2024
Viewed by 1351
Abstract
Mycoplasma bovis (M. bovis) is capable of causing pneumonia, arthritis, mastitis, and various other ailments in cattle of all age groups, posing a significant threat to the healthy progression of the worldwide cattle industry. The invasion of non-phagocytic host cells serves [...] Read more.
Mycoplasma bovis (M. bovis) is capable of causing pneumonia, arthritis, mastitis, and various other ailments in cattle of all age groups, posing a significant threat to the healthy progression of the worldwide cattle industry. The invasion of non-phagocytic host cells serves as a pivotal mechanism enabling M. bovis to evade the immune system and penetrate mucosal barriers, thereby promoting its spread. To investigate the differences in M. bovis invasion into four types of non-phagocytic cells (Madin–Darby bovine kidney (MDBK) cells, embryonic bovine lung (EBL) cells, bovine embryo tracheal (EBTr) cells and bovine turbinate (BT) cells) and further elucidate its invasion mechanism, this study first optimized the experimental methods for M. bovis invasion into cells. Utilizing laser scanning confocal microscopy, transmission electron microscopy, and high-content live-cell imaging systems, the invasion process of M. bovis into four types of non-phagocytic cells was observed. The invasion rates of three different strains of M. bovis (PG45, 07801, 08M) were quantified through the plate counting method. In order to clarify the specific pathway of M. bovis invasion into cells, chlorpromazine (CPZ), amiloride (AMI), and methyl-β-cyclodextrin (M-β-CD) were used to inhibit CLR-mediated clathrin-dependent endocytosis (CDE) pathway, macropinocytosis, and lipid raft pathway, respectively. Subsequently, the invasion rates of PG45 into these four types of cells were measured. Using siRNA technology, the expression of clathrin (CLR) in EBL cells was knocked down to further verify the role of CLR in the invasion process of M. bovis. The results showed that the optimal conditions for M. bovis to invade non-phagocytic cells were a multiplicity of infection (MOI) of 1000 and an optimal invasion time of 4 h. All three strains of M. bovis have the ability to invade the four types of non-phagocytic cells, yet their invasion abilities vary significantly. Observations from transmission electron microscopy further confirmed that at 120 min post-infection, PG45 had successfully invaded EBL cells and was present within endocytic vesicles. It is noteworthy that almost all PG45 successfully escaped from the endocytic vesicles after 240 min of infection had passed. Through chemical inhibition experiments and CLR protein knockdown experiments, it was found that when the CDE and lipid raft pathways were blocked or CLR protein expression was reduced, the invasion rates of PG45, 07801, and 08M in MDBK, EBL, EBTr, and BT cells were significantly decreased (p < 0.05). The above results indicate that M. bovis can invade all types of non-phagocytic cells through endocytic pathways involving CDE (clathrin-dependent endocytosis) or lipid raft-mediated endocytosis, and possesses the ability to escape from phagosomes. Full article
Show Figures

Figure 1

Back to TopTop