Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,450)

Search Parameters:
Keywords = emergent approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 (registering DOI) - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

26 pages, 769 KiB  
Review
Immunomodulatory and Regenerative Functions of MSC-Derived Exosomes in Bone Repair
by Manorathna Arun, Sheeja Rajasingh, Parani Madasamy and Johnson Rajasingh
Bioengineering 2025, 12(8), 844; https://doi.org/10.3390/bioengineering12080844 (registering DOI) - 5 Aug 2025
Abstract
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders [...] Read more.
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders such as osteoporosis. Mesenchymal stromal cells (MSCs), multipotent stem cells capable of differentiating into osteoblasts, have emerged as promising agents for bone regeneration, primarily through the paracrine effects of their secreted exosomes. MSC-derived exosomes are nanoscale vesicles enriched with proteins, lipids, and nucleic acids that promote intercellular communication, osteoblast proliferation and differentiation, and angiogenesis. Notably, they deliver osteoinductive microRNAs (miRNAs) that influence osteogenic markers and support bone tissue repair. In vivo investigations validate their capacity to enhance bone regeneration, increase bone volume, and improve biomechanical strength. Additionally, MSC-derived exosomes regulate the immune response, creating pro-osteogenic and pro-angiogenic factors, boosting their therapeutic efficacy. Due to their cell-free characteristics, MSC-derived exosomes offer benefits such as diminished immunogenicity and minimal risk of off-target effects. These properties position them as promising and innovative approaches for bone regeneration, integrating immunomodulatory effects with tissue-specific regenerative capabilities. Full article
Show Figures

Figure 1

15 pages, 1027 KiB  
Article
Where God Is Becoming: Anime, Theosis, and the Sacred in Process
by Valentina-Andrada Minea
Religions 2025, 16(8), 1014; https://doi.org/10.3390/rel16081014 - 5 Aug 2025
Abstract
This article explores how Japanese anime has become a space of theological imagination, where viewers encounter the divine not as fixed dogma but as a lived process. Through symbolic analysis of five spiritually resonant anime series: Puella Magi Madoka Magica, To Your Eternity, [...] Read more.
This article explores how Japanese anime has become a space of theological imagination, where viewers encounter the divine not as fixed dogma but as a lived process. Through symbolic analysis of five spiritually resonant anime series: Puella Magi Madoka Magica, To Your Eternity, Sunday Without God, Code Geass, and The Promised Neverland, the study examines how characters such as Madoka, Fushi, Ai, Lelouch, Emma, and Mujika embody a form of theosis that unfolds through memory, sacrifice, refusal, and care. Rather than representing God as omnipotent or remote, these narratives invite a vision of the divine as vulnerable, suffering, and becoming, emerging through grief, relationships, and transformations. Drawing on theological and philosophical frameworks, especially process theology and symbolic interpretation, the article argues that anime collapses the traditional boundaries between theology and philosophy by embodying both in story. In these narrative worlds, divinity is not merely represented, it is approached, co-created, and remembered. The sacred is not a theory to master, but an encounter to undergo. Anime, thus, does not offer theology as a system but rather theology as a journey: a reenchanted vision of the world where God is still becoming. Full article
(This article belongs to the Special Issue Between Philosophy and Theology: Liminal and Contested Issues)
Show Figures

Figure 1

38 pages, 471 KiB  
Review
Sleep Disorders and Stroke: Pathophysiological Links, Clinical Implications, and Management Strategies
by Jamir Pitton Rissardo, Ibrahim Khalil, Mohamad Taha, Justin Chen, Reem Sayad and Ana Letícia Fornari Caprara
Med. Sci. 2025, 13(3), 113; https://doi.org/10.3390/medsci13030113 - 5 Aug 2025
Abstract
Sleep disorders and stroke are intricately linked through a complex, bidirectional relationship. Sleep disturbances such as obstructive sleep apnea (OSA), insomnia, and restless legs syndrome (RLS) not only increase the risk of stroke but also frequently emerge as consequences of cerebrovascular events. OSA, [...] Read more.
Sleep disorders and stroke are intricately linked through a complex, bidirectional relationship. Sleep disturbances such as obstructive sleep apnea (OSA), insomnia, and restless legs syndrome (RLS) not only increase the risk of stroke but also frequently emerge as consequences of cerebrovascular events. OSA, in particular, is associated with a two- to three-fold increased risk of incident stroke, primarily through mechanisms involving intermittent hypoxia, systemic inflammation, endothelial dysfunction, and autonomic dysregulation. Conversely, stroke can disrupt sleep architecture and trigger or exacerbate sleep disorders, including insomnia, hypersomnia, circadian rhythm disturbances, and breathing-related sleep disorders. These post-stroke sleep disturbances are common and significantly impair rehabilitation, cognitive recovery, and quality of life, yet they remain underdiagnosed and undertreated. Early identification and management of sleep disorders in stroke patients are essential to optimize recovery and reduce the risk of recurrence. Therapeutic strategies include lifestyle modifications, pharmacological treatments, medical devices such as continuous positive airway pressure (CPAP), and emerging alternatives for CPAP-intolerant individuals. Despite growing awareness, significant knowledge gaps persist, particularly regarding non-OSA sleep disorders and their impact on stroke outcomes. Improved diagnostic tools, broader screening protocols, and greater integration of sleep assessments into stroke care are urgently needed. This narrative review synthesizes current evidence on the interplay between sleep and stroke, emphasizing the importance of personalized, multidisciplinary approaches to diagnosis and treatment. Advancing research in this field holds promise for reducing the global burden of stroke and improving long-term outcomes through targeted sleep interventions. Full article
29 pages, 3268 KiB  
Article
Wavelet Multiresolution Analysis-Based Takagi–Sugeno–Kang Model, with a Projection Step and Surrogate Feature Selection for Spectral Wave Height Prediction
by Panagiotis Korkidis and Anastasios Dounis
Mathematics 2025, 13(15), 2517; https://doi.org/10.3390/math13152517 - 5 Aug 2025
Abstract
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a [...] Read more.
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a comprehensive predictive methodology for wave height prediction by integrating novel Takagi–Sugeno–Kang fuzzy models within a multiresolution analysis framework. The multiresolution analysis emerges via wavelets, since they are prominent models characterised by their inherent multiresolution nature. The maximal overlap discrete wavelet transform is utilised to generate the detail and resolution components of the time series, resulting from this multiresolution analysis. The novelty of the proposed model lies on its hybrid training approach, which combines least squares with AdaBound, a gradient-based algorithm derived from the deep learning literature. Significant wave height prediction is studied as a time series problem, hence, the appropriate inputs to the model are selected by developing a surrogate-based wrapped algorithm. The developed wrapper-based algorithm, employs Bayesian optimisation to deliver a fast and accurate method for feature selection. In addition, we introduce a projection step, to further refine the approximation capabilities of the resulting predictive system. The proposed methodology is applied to a real-world time series pertaining to spectral wave height and obtained from the Poseidon operational oceanography system at the Institute of Oceanography, part of the Hellenic Center for Marine Research. Numerical studies showcase a high degree of approximation performance. The predictive scheme with the projection step yields a coefficient of determination of 0.9991, indicating a high level of accuracy. Furthermore, it outperforms the second-best comparative model by approximately 49% in terms of root mean squared error. Comparative evaluations against powerful artificial intelligence models, using regression metrics and hypothesis test, underscore the effectiveness of the proposed methodology. Full article
(This article belongs to the Special Issue Applications of Mathematics in Neural Networks and Machine Learning)
12 pages, 2363 KiB  
Article
MCC950 Alleviates Fat Embolism-Induced Acute Respiratory Distress Syndrome Through Dual Modulation of NLRP3 Inflammasome and ERK Pathways
by Chin-Kuo Lin, Zheng-Wei Chen, Yu-Hao Lin, Cheng-Ta Yang, Chung-Sheng Shi, Chieh-Mo Lin, Tzu Hsiung Huang, Justin Ching Hsien Lu, Kwok-Tung Lu and Yi-Ling Yang
Int. J. Mol. Sci. 2025, 26(15), 7571; https://doi.org/10.3390/ijms26157571 (registering DOI) - 5 Aug 2025
Abstract
Fat embolism is a critical medical emergency often resulting from long bone fractures or amputations, leading to acute respiratory distress syndrome (ARDS). The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity, is activated by reactive oxygen species and [...] Read more.
Fat embolism is a critical medical emergency often resulting from long bone fractures or amputations, leading to acute respiratory distress syndrome (ARDS). The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity, is activated by reactive oxygen species and tissue damage, contributing to inflammatory responses. This study examines the role of NLRP3 in fat embolism-induced ARDS and evaluates the therapeutic potential of MCC950, a selective NLRP3 antagonist. Fat embolism was induced by fatty micelle injection into the tail vein of Sprague Dawley rats. Pulmonary injury was assessed through lung weight gain as an edema indicator, NLRP3 expression via Western blot, and IL-1β levels using ELISA. Histological damage and macrophage infiltration were evaluated with hematoxylin and eosin staining. Fat embolism significantly increased pulmonary NLRP3 expression, lipid peroxidation, IL-1β release, and macrophage infiltration within four hours, accompanied by severe pulmonary edema. NLRP3 was localized in type I alveolar cells, co-localizing with aquaporin 5. Administration of MCC950 significantly reduced inflammatory responses, lipid peroxidation, pulmonary edema, and histological damage, while attenuating MAPK cascade phosphorylation of ERK and Raf. These findings suggest that NLRP3 plays a critical role in fat embolism-induced acute respiratory distress syndrome, and its inhibition by MCC950 may offer a promising therapeutic approach. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 2202 KiB  
Article
Galactose Inhibits the Translation of Erg1, Enhancing the Antifungal Activities of Azoles Against Candida albicans
by Sijin Hang, Li Wang, Zhe Ji, Xuqing Shen, Xinyu Fang, Wanqian Li, Yuanying Jiang and Hui Lu
Antibiotics 2025, 14(8), 799; https://doi.org/10.3390/antibiotics14080799 (registering DOI) - 5 Aug 2025
Abstract
Background/Objectives: The diminished efficacy of azoles in treating fungal infections is attributed to the emergence of resistance among pathogenic fungi. Employing a synergistic approach with other compounds to enhance the antifungal activity of azoles has shown promise, yet the availability of clinically valuable [...] Read more.
Background/Objectives: The diminished efficacy of azoles in treating fungal infections is attributed to the emergence of resistance among pathogenic fungi. Employing a synergistic approach with other compounds to enhance the antifungal activity of azoles has shown promise, yet the availability of clinically valuable adjuvants for azoles and allylamines remains limited. Studies have demonstrated that the human host environment provides multiple carbon sources, which can influence the susceptibility of C. albicans to antifungal agents. Therefore, a comprehensive investigation into the mechanisms by which carbon sources modulate the susceptibility of C. albicans to azoles may uncover a novel pathway for enhancing the antifungal efficacy of azoles. Methods: This study explored the impact of various carbon sources on the antifungal efficacy of azoles through methodologies including minimum inhibitory concentration (MIC) assessments, super-MIC growth (SMG) assays, disk diffusion tests, and spot assays. Additionally, the mechanism by which galactose augments the antifungal activity of azoles was investigated using a range of experimental approaches, such as gene knockout and overexpression techniques, quantitative real-time PCR (qRT-PCR), Western blot analysis, and cycloheximide (CHX) chase experiments. Results: This study observed that galactose enhances the efficacy of azoles against C. albicans by inhibiting the translation of Erg1. This results in the suppression of Erg1 protein levels and subsequent inhibition of ergosterol biosynthesis in C. albicans. Conclusions: In C. albicans, the translation of Erg1 is inhibited when galactose is utilized as a carbon source instead of glucose. This novel discovery of galactose’s inhibitory effect on Erg1 translation is expected to enhance the antifungal efficacy of azoles. Full article
Show Figures

Figure 1

10 pages, 228 KiB  
Review
A Review of the Latest Updates in Cytogenetic and Molecular Classification and Emerging Approaches in Identifying Abnormalities in Acute Lymphoblastic Leukemia
by Chaimae El Mahdaoui, Hind Dehbi and Siham Cherkaoui
Lymphatics 2025, 3(3), 23; https://doi.org/10.3390/lymphatics3030023 - 5 Aug 2025
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous hematologic malignancy defined by the uncontrolled proliferation of lymphoid precursors. Accurate diagnosis and effective therapeutic strategies hinge on a comprehensive understanding of the genetic and molecular landscape of ALL. This review synthesizes the latest updates in [...] Read more.
Acute lymphoblastic leukemia (ALL) is a heterogeneous hematologic malignancy defined by the uncontrolled proliferation of lymphoid precursors. Accurate diagnosis and effective therapeutic strategies hinge on a comprehensive understanding of the genetic and molecular landscape of ALL. This review synthesizes the latest updates in cytogenetic and molecular classifications, emphasizing the 2022 World Health Organization (WHO) and International Consensus Classification (ICC) revisions. Key chromosomal alterations such as BCR::ABL1 and ETV6::RUNX1 and emerging subtypes including Ph-like ALL, DUX4, and MEF2D rearrangements are examined for their prognostic significance. Furthermore, we assess novel diagnostic tools, notably next-generation sequencing (NGS) and optical genome mapping (OGM). While NGS excels at identifying point mutations and small indels, OGM offers high-resolution structural variant detection with 100% sensitivity in multiple validation studies. These advancements enhance our grasp of leukemogenesis and pave the way for precision medicine in both B- and T-cell ALL. Ultimately, integrating these innovations into routine diagnostics is crucial for personalized patient management and improving clinical outcomes. Full article
(This article belongs to the Collection Acute Lymphoblastic Leukemia (ALL))
23 pages, 1804 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

35 pages, 4098 KiB  
Article
Prediction of Earthquake Death Toll Based on Principal Component Analysis, Improved Whale Optimization Algorithm, and Extreme Gradient Boosting
by Chenhui Wang, Xiaotao Zhang, Xiaoshan Wang and Guoping Chang
Appl. Sci. 2025, 15(15), 8660; https://doi.org/10.3390/app15158660 (registering DOI) - 5 Aug 2025
Abstract
Earthquakes, as one of the most destructive natural disasters, often cause significant casualties and severe economic losses. Accurate prediction of earthquake fatalities is of great importance for pre-disaster prevention and mitigation planning, as well as post-disaster emergency response deployment. To address the challenges [...] Read more.
Earthquakes, as one of the most destructive natural disasters, often cause significant casualties and severe economic losses. Accurate prediction of earthquake fatalities is of great importance for pre-disaster prevention and mitigation planning, as well as post-disaster emergency response deployment. To address the challenges of small sample sizes, high dimensionality, and strong nonlinearity in earthquake fatality prediction, this paper proposes an integrated modeling approach (PCA-IWOA-XGBoost) combining Principal Component Analysis (PCA), the Improved Whale Optimization Algorithm (IWOA), and Extreme Gradient Boosting (XGBoost). The method first employs PCA to reduce the dimensionality of the influencing factor data, eliminating redundant information and improving modeling efficiency. Subsequently, the IWOA is used to intelligently optimize key hyperparameters of the XGBoost model, enhancing the prediction accuracy and stability. Using 42 major earthquake events in China from 1970 to 2025 as a case study, covering regions including the west (e.g., Tonghai in Yunnan, Wenchuan, Jiuzhaigou), central (e.g., Lushan in Sichuan, Ya’an), east (e.g., Tangshan, Yingkou), north (e.g., Baotou in Inner Mongolia, Helinger), northwest (e.g., Jiashi in Xinjiang, Wushi, Yongdeng in Gansu), and southwest (e.g., Lancang in Yunnan, Lijiang, Ludian), the empirical results showed that the PCA-IWOA-XGBoost model achieved an average test set accuracy of 97.0%, a coefficient of determination (R2) of 0.996, a root mean square error (RMSE) and mean absolute error (MAE) reduced to 4.410 and 3.430, respectively, and a residual prediction deviation (RPD) of 21.090. These results significantly outperformed the baseline XGBoost, PCA-XGBoost, and IWOA-XGBoost models, providing improved technical support for earthquake disaster risk assessment and emergency response. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 769 KiB  
Review
Intersections Between Allergic Diseases and Multiple Sclerosis: Mechanisms, Clinical Implications, and Hypersensitivity Reactions to Therapy
by Guillermo Cervera-Ygual, Ana Delgado-Prada and Francisco Gascon-Gimenez
Allergies 2025, 5(3), 26; https://doi.org/10.3390/allergies5030026 - 5 Aug 2025
Abstract
Multiple sclerosis (MS) and allergic diseases, traditionally considered immunologically opposing entities, may share pathogenic mechanisms rooted in immune dysregulation. While MS is predominantly mediated by Th1 and Th17 responses and allergies by Th2 responses, emerging evidence suggests overlapping immunological pathways, including the involvement [...] Read more.
Multiple sclerosis (MS) and allergic diseases, traditionally considered immunologically opposing entities, may share pathogenic mechanisms rooted in immune dysregulation. While MS is predominantly mediated by Th1 and Th17 responses and allergies by Th2 responses, emerging evidence suggests overlapping immunological pathways, including the involvement of histamine, regulatory T cells, and innate lymphoid cells. This review synthesizes current knowledge on the epidemiological and immunopathological associations between MS and allergies. Epidemiological studies have yielded inconsistent results, with some suggesting a protective role for respiratory and food allergies against MS onset, while others find no significant correlation. Clinical studies indicate that food allergies in adults may be associated with increased MS inflammatory activity, whereas childhood atopy might exert a protective effect. In addition, we review hypersensitivity reactions to disease-modifying treatments for MS, detailing their immunological mechanisms, clinical presentation, and management, including desensitization protocols where applicable. Finally, we explore how treatments for allergic diseases—such as clemastine, allergen immunotherapy, montelukast, and omalizumab—may modulate MS pathophysiology, offering potential therapeutic synergies. Understanding the interplay between allergic and autoimmune processes is critical for optimizing care and developing innovative treatment approaches in MS. Full article
(This article belongs to the Section Physiopathology)
Show Figures

Figure 1

13 pages, 1198 KiB  
Review
The Role of Mitochondrial DNA in Modulating Chemoresistance in Esophageal Cancer: Mechanistic Insights and Therapeutic Potential
by Koji Tanaka, Yasunori Masuike, Yuto Kubo, Takashi Harino, Yukinori Kurokawa, Hidetoshi Eguchi and Yuichiro Doki
Biomolecules 2025, 15(8), 1128; https://doi.org/10.3390/biom15081128 - 5 Aug 2025
Abstract
Chemotherapy remains a cornerstone in the treatment of esophageal cancer (EC), yet chemoresistance remains a critical challenge, leading to poor outcomes and limited therapeutic success. Mitochondrial DNA (mtDNA) has emerged as a pivotal player in mediating these responses, influencing cellular metabolism, oxidative stress [...] Read more.
Chemotherapy remains a cornerstone in the treatment of esophageal cancer (EC), yet chemoresistance remains a critical challenge, leading to poor outcomes and limited therapeutic success. Mitochondrial DNA (mtDNA) has emerged as a pivotal player in mediating these responses, influencing cellular metabolism, oxidative stress regulation, and apoptotic pathways. This review provides a comprehensive overview of the mechanisms by which mtDNA alterations, including mutations and copy number variations, drive chemoresistance in EC. Specific focus is given to the role of mtDNA in metabolic reprogramming, including its contribution to the Warburg effect and lipid metabolism, as well as its impact on epithelial–mesenchymal transition (EMT) and mitochondrial bioenergetics. Recent advances in targeting mitochondrial pathways through novel therapeutic agents, such as metformin and mitoquinone, and innovative approaches like CRISPR/Cas9 gene editing, are also discussed. These interventions highlight the potential for overcoming chemoresistance and improving patient outcomes. By integrating mitochondrial diagnostics with personalized treatment strategies, we propose a roadmap for future research that bridges basic mitochondrial biology with translational applications in oncology. The insights offered in this review emphasize the critical need for continued exploration of mtDNA-targeted therapies to address the unmet needs in EC management and other diseases associated with mitochondria. Full article
(This article belongs to the Special Issue Esophageal Diseases: Molecular Basis and Therapeutic Approaches)
Show Figures

Figure 1

20 pages, 1545 KiB  
Review
Nanomedicine as a Promising Treatment Approach for Obesity
by Abeer Alanazi, Alexander Craven, Spiridon V. Spirou, Maria Jose Santos-Martinez, Carlos Medina and Oliviero L. Gobbo
J. Nanotheranostics 2025, 6(3), 21; https://doi.org/10.3390/jnt6030021 - 5 Aug 2025
Abstract
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by [...] Read more.
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by overcoming these limitations through targeted drug delivery and enhanced therapeutic precision. This review examines key nanotechnological strategies in obesity management, including targeting white adipose tissue (WAT) and the vascular marker prohibitin, promoting WAT browning, and utilizing photothermal therapy and magnetic hyperthermia as nanotheranostic tools. We discuss major nanomedicine platforms—such as liposomes, nanoemulsions, and polymeric nanoparticles—alongside emerging applications in gene nanotherapy and herbal formulations. Potential toxicity concerns are also addressed. In summary, nanomedicine holds substantial potential to revolutionize obesity treatment through targeted, effective, and multifunctional therapeutic strategies. Full article
Show Figures

Figure 1

8 pages, 648 KiB  
Case Report
Leptomeningitis as Rare Secondary Dissemination in MEITL (Monomorphic Intestinal Epitheliotropic T-Cell Lymphoma)
by Mihaiela Lungu, Violeta Diana Oprea, Elena Niculeț, Luminița Lăcrămioara Apostol, Marius Ionuț Păduraru, Ana Maria Ionescu and Andrei Lucian Zaharia
Life 2025, 15(8), 1243; https://doi.org/10.3390/life15081243 - 5 Aug 2025
Abstract
(1) Background: Monomorphic intestinal epitheliotropic T-cell lymphoma (MEITL) is a very rare subtype of lymphoma, being involved in less than 5% of lymphomas of the digestive tract. Accurate diagnosis is extremely challenging due to the lack of specific clinical symptoms and the low [...] Read more.
(1) Background: Monomorphic intestinal epitheliotropic T-cell lymphoma (MEITL) is a very rare subtype of lymphoma, being involved in less than 5% of lymphomas of the digestive tract. Accurate diagnosis is extremely challenging due to the lack of specific clinical symptoms and the low specificity of the diagnostic approaches. (2) Methods: We present the case of a patient admitted to the Neurology Clinic of the Emergency Clinical Hospital of Galati, Romania, with progressive cranial nerve impairment. (3) Results: Analyzing clinical and paraclinical data and corroborating the previous known diagnosis of MEITL, the positive diagnosis was that of meningitis with atypical lymphocytes with MEITL as starting point. The cytology of CSF was the basis for the diagnostic confirmation. (4) Conclusions: The present case is a rare situation of secondary dissemination of MEITL. We were not able to identify a similar report in the available literature that associated urothelial carcinoma with leptomeningeal MEITL-sourced neoplastic lesions. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

18 pages, 441 KiB  
Article
Classical SO(n) Spins on Geometrically Frustrated Crystals: A Real-Space Renormalization Group Approach
by Angel J. Garcia-Adeva
Crystals 2025, 15(8), 715; https://doi.org/10.3390/cryst15080715 (registering DOI) - 5 Aug 2025
Abstract
A real-space renormalization group (RG) framework is formulated for classical SO(n) spin models defined on d-dimensional crystal lattices composed of corner-sharing hyper-tetrahedra, a class of geometrically frustrated crystal structures. This includes, as specific instances, the classical Heisenberg model on the kagome and pyrochlore [...] Read more.
A real-space renormalization group (RG) framework is formulated for classical SO(n) spin models defined on d-dimensional crystal lattices composed of corner-sharing hyper-tetrahedra, a class of geometrically frustrated crystal structures. This includes, as specific instances, the classical Heisenberg model on the kagome and pyrochlore crystals. The approach involves computing the partition function and corresponding order parameters for spin clusters embedded in the crystal, to leading order in symmetry-breaking fields generated by surrounding spins. The crystal geometry plays a central role in determining the scaling relations and the associated critical behavior. To illustrate the efficacy of the method, a reduced manifold of symmetry-allowed ordered states for isotropic nearest-neighbor interactions is analyzed. The RG flow systematically excludes the emergence of a q=0 ordered phase within the antiferromagnetic sector, independently of both the spatial dimensionality of the crystal and the number of spin components. Extensions to incorporate more elaborate crystal-symmetry-induced ordering patterns and fluctuation-driven phenomena—such as order-by-disorder—are also discussed. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

Back to TopTop