Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,865)

Search Parameters:
Keywords = element nutrients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2431 KB  
Article
Rapid Spectroscopic Analysis for Food and Feed Quality Control: Prediction of Protein and Nutrient Content in Barley Forage Using LIBS and Chemometrics
by Jinan Sabsabi, Andressa Adame, Francis Vanier, Nii Patterson, Allan Feurtado, Aïssa Harhira, Mohamad Sabsabi and François Vidal
Analytica 2025, 6(3), 29; https://doi.org/10.3390/analytica6030029 - 28 Aug 2025
Abstract
Rapid and accurate assessment of nutritional quality, particularly crude protein content and essential nutrient concentrations, remains a major challenge in the food and feed industries. In this study, laser-induced breakdown spectroscopy (LIBS) was combined with advanced chemometric modeling to predict the levels of [...] Read more.
Rapid and accurate assessment of nutritional quality, particularly crude protein content and essential nutrient concentrations, remains a major challenge in the food and feed industries. In this study, laser-induced breakdown spectroscopy (LIBS) was combined with advanced chemometric modeling to predict the levels of crude protein and key macro- and micronutrients (Ca, Mg, K, Na, Fe, Mn, P, Zn) in 61 barley forage samples composed of whole aerial plant parts ground prior to analysis. LIBS offers a compelling alternative to traditional analytical methods by enabling real-time analysis with minimal sample preparation. To minimize interference from atmospheric nitrogen, nitrogen spectral lines were excluded from the protein calibration model in favor of spectral lines from elements biochemically associated with proteins. We compared the performance of Partial Least Squares (PLSR) regression and Extreme Learning Machine (ELM) using fivefold cross-validation. ELM outperformed PLS in terms of prediction, achieving a coefficient of determination (R2) close to 1 and a ratio of performance to deviation (RPD) exceeding 2.5 for proteins and several nutrients. These results underscore the potential of LIBS-ELM integration as a robust, non-destructive, and in situ tool for rapid forage quality assessment, particularly in complex and heterogeneous plant matrices. Full article
(This article belongs to the Section Spectroscopy)
Show Figures

Figure 1

27 pages, 6918 KB  
Article
Predicting Heavy Metal and Nutrient Availability in Agricultural Soils Under Climatic Variability Using Regression and Mixed-Effects Models
by Vassilios Diakoloukas, Georgios Koutopoulis, Sotiria G. Papadimou, Marios-Efstathios Spiliotopoulos and Evangelia E. Golia
Land 2025, 14(9), 1743; https://doi.org/10.3390/land14091743 - 27 Aug 2025
Viewed by 158
Abstract
It is well known that physico-chemical soil parameters can influence, or even determine, the concentrations of heavy metals in soil. Moreover, in recent decades, there has been growing concern about the role of climatic variables such as temperature fluctuations, drought, or extreme rainfall [...] Read more.
It is well known that physico-chemical soil parameters can influence, or even determine, the concentrations of heavy metals in soil. Moreover, in recent decades, there has been growing concern about the role of climatic variables such as temperature fluctuations, drought, or extreme rainfall in affecting heavy metal availability. To examine the combined influence of soil properties and climatic changes on pollution levels, a 10-year study was conducted in an intensively cultivated region of central Greece. This work builds on an earlier study that established predictive relationships for Aqua Regia (Aq-Re)-extracted (pseudo)-total Fe and toxic Cd levels from a set of soil parameters, macronutrients or coexisting metals. The present investigation extends this approach by including DTPA-extracted metal concentrations and additional climatic predictors. The updated methodology applies Linear and Quadratic Regression models as well as Linear and Quadratic Mixed-Effects Models to account for the temporal variation driven by climate. The models were trained and validated on continuous, decade-long measurements. In many cases, this led to substantial revisions of the previously established correlations. Incorporating climate-related variables improved the predictive power of the models, revealing a more complex soil–metal dynamic than previously considered. The newly developed models demonstrated more accurate estimations of both total and available metal concentrations, even under the extreme weather conditions observed in autumn 2020. Given the importance of the Thessaly plain to the Greek agricultural sector, these models serve as a valuable tool for monitoring and risk assessment. Quantifying nutrient and toxic element availability under climate shifts is key to safeguarding Mediterranean soil health and addressing the broader impacts of the climate crisis in agroecosystems. Full article
Show Figures

Figure 1

18 pages, 2580 KB  
Article
Ecological Stoichiometric Characteristics and Adaptive Strategies of Herbaceous Plants in the Yellow River Delta Wetland, China
by Mengjiao Luo, Jiaxuan Liu, Fanzhu Qu, Bowen Sun, Yang Yu and Bo Guan
Biology 2025, 14(9), 1132; https://doi.org/10.3390/biology14091132 - 27 Aug 2025
Viewed by 195
Abstract
The content and stoichiometric ratios of plant biogenic elements are key indicators for understanding plants’ ecological traits and their responses to environmental changes. However, it remains unclear how wetland herbaceous plants allocate these biogenic elements and how they relate to soil conditions. This [...] Read more.
The content and stoichiometric ratios of plant biogenic elements are key indicators for understanding plants’ ecological traits and their responses to environmental changes. However, it remains unclear how wetland herbaceous plants allocate these biogenic elements and how they relate to soil conditions. This study examines the variations in carbon (C), nitrogen (N), and phosphorus (P) stoichiometry across different organs and life forms, and their response to soil factors in Yellow River Delta wetlands. We analyzed the stoichiometric characteristics of 44 herbaceous species (17 annuals and 27 perennials) and their organs (leaves and stems). The results showed that annual plants show higher N and P but lower C content compared to perennials, indicating distinct life history strategies. In plant organs, leaves exhibited higher C, N, and P concentrations than stems, reflecting functional adaptation. Notably, random forest analysis identified stem C content as a key indicator for life history strategy differentiation. Furthermore, soil factors directly influenced organ-level stoichiometry but showed limited effects across life forms. The plants demonstrated P limitation with high sensitivity to soil P availability. This study provides new insights into organ-specific nutrient allocation strategies in wetland plants and offers valuable guidance for coastal wetland conservation. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 1535 KB  
Article
Optimizing Nitrogen Supplementation: Timing Strategies to Mitigate Waterlogging Stress in Winter- and Spring-Type Canola
by Haochen Zhao, Onusha Sharmita, Abu Bakar Siddique, Sergey Shabala, Meixue Zhou and Chenchen Zhao
Plants 2025, 14(17), 2641; https://doi.org/10.3390/plants14172641 - 25 Aug 2025
Viewed by 282
Abstract
Canola is an important rotation crop in Australia’s high-rainfall zone (HRZ), where frequent waterlogging occurs. Due to its lack of aerenchyma, canola is more vulnerable to waterlogging. Recent studies have shown that nitrogen supplementation can benefit crop growth under waterlogging stress. However, limited [...] Read more.
Canola is an important rotation crop in Australia’s high-rainfall zone (HRZ), where frequent waterlogging occurs. Due to its lack of aerenchyma, canola is more vulnerable to waterlogging. Recent studies have shown that nitrogen supplementation can benefit crop growth under waterlogging stress. However, limited reports have addressed the physiological responses and macronutrient changes in either winter or spring canola with strategically timed fertilizer applications. This study investigated the physiological and elemental responses of two canola genotypes to nitrogen application at different timings during waterlogging stress. By imposing waterlogging stress in pot-based trials for 21 days using spring-type (Dynatron) and winter-type (Nizza) canola, our results demonstrated that nitrogen application one week prior to the onset of waterlogging marginally improved soil plant analysis development (SPAD) values in the two types of canola, but only significantly enhanced stomatal conductance along with reduced photosynthetic efficiency in Dynatron at the end of waterlogging, indicating genotypic differences. Furthermore, applying fertilizer a week before waterlogging enhanced macronutrient accumulation in Dynatron, including phosphorus, potassium, magnesium, and calcium. In contrast, Nizza only exhibited a significant increase in magnesium accumulation. Fertilizer application had no effect on reducing Mn and Fe accumulation in canola, indicating that Mn and Fe toxicity, typically associated with soil waterlogging, was not a contributing factor in nitrogen-induced waterlogging alleviation. Collectively, our results demonstrated genotype-specific nutrient dynamics, which should be considered in nitrogen-induced waterlogging alleviation. Full article
(This article belongs to the Special Issue Towards Crops Resilience to Waterlogging)
Show Figures

Figure 1

16 pages, 4347 KB  
Article
Developmental Stage-Dependent Distribution and Interrelationships of Leaf Nutrients and Flavonoids in Lithocarpus litseifolius (Hance) Chun
by Yan-Fen Huang, Shao-Fen Jian, Yang Lin and Chu Zhong
Agronomy 2025, 15(9), 2029; https://doi.org/10.3390/agronomy15092029 - 25 Aug 2025
Viewed by 276
Abstract
Lithocarpus litseifolius, a traditional sweet tea rich in dihydrochalcones, relies on plant nutrients for secondary metabolite accumulation. However, nutrient distribution patterns during leaf development and its relationship with secondary metabolites remain inadequately characterized. This study examined mineral elements, carbon and nitrogen metabolites, [...] Read more.
Lithocarpus litseifolius, a traditional sweet tea rich in dihydrochalcones, relies on plant nutrients for secondary metabolite accumulation. However, nutrient distribution patterns during leaf development and its relationship with secondary metabolites remain inadequately characterized. This study examined mineral elements, carbon and nitrogen metabolites, and primary dihydrochalcones in L. litseifolius leaves at various developmental stages, and analyzed their interrelationships. Mineral nutrients such as phosphate (P), potassium (K), magnesium (Mg), zinc (Zn), boron (B), and copper (Cu), along with trilobatin, were most abundant in the youngest leaves. Conversely, calcium (Ca), iron (Fe), sulfur (S), manganese (Mn), selenium (Se), sugars, soluble protein, amino acids, chlorophyll, and carotenoids predominantly accumulated in old leaves, paralleling the distribution of phlorizin. Nitrogen (N) and molybdenum (Mo) concentrations were higher in mature leaves. In young leaves, P, K, Mg, S, Mn, Zn, and B positively correlated with phlorizin and trilobatin, while N, chlorophyll, carotenoids, and fructose correlated negatively. Trilobatin was the primary contributor to hydroxyl radical (·OH) scavenging capacity. Redundancy analysis highlighted N, P, Mg, B, Zn, Cu, Fe, Mo, and Se as key mineral nutrients influencing phlorizin and trilobatin accumulation. These findings offer insights for mineral nutrient management and effective utilization of L. litseifolius. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 3774 KB  
Article
Establishing Leaf Tissue Nutrient Standards and Documenting Nutrient Disorder Symptomology of Greenhouse-Grown Cilantro (Coriandrum sativum)
by Danielle Clade, Patrick Veazie, Jennifer Boldt, Kristin Hicks, Christopher Currey, Nicholas Flax, Kellie Walters and Brian Whipker
Appl. Sci. 2025, 15(17), 9266; https://doi.org/10.3390/app15179266 - 22 Aug 2025
Viewed by 322
Abstract
Cilantro (Coriandrum sativum L.) is a popular annual culinary herb grown for its leaves or seeds. With the increase in hydroponic herb production in controlled environments, a need exists for leaf tissue nutrient standards specific to this production system. The objective of [...] Read more.
Cilantro (Coriandrum sativum L.) is a popular annual culinary herb grown for its leaves or seeds. With the increase in hydroponic herb production in controlled environments, a need exists for leaf tissue nutrient standards specific to this production system. The objective of this study was to develop comprehensive foliar mineral nutrient interpretation ranges for greenhouse-grown cilantro. Cilantro plants were grown in a hydroponic sand culture system to induce and document nutritional disorders. Plants were supplied with a modified Hoagland’s solution, which was adjusted to individually add or omit one nutrient per treatment while holding all others constant. Deficiency and toxicity symptoms were photographed, after which the plant tissue was collected to determine plant dry weight and critical tissue nutrient concentrations. Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), iron (Fe), and zinc (Zn) deficiencies, as well as B toxicity, were induced. Deficiencies of copper (Cu), manganese (Mn), and molybdenum (Mo) were not observed during the experiment. Additional foliar tissue analysis data (n = 463) were compiled to create nutrient interpretation ranges for 12 essential elements based on a hybrid meta-analysis Sufficiency Range Approach (SRA). This approach defines ranges for deficient, low, sufficient, high, and excessive values. For each element, the optimal distribution was selected according to the lowest Bayesian Information Criterion (BIC) value. A Normal distribution best represented K and S. A Gamma distribution best represented P, Ca, Mn, and Mo, whereas a Weibull distribution best represented N, Mg, B, Cu, Fe, and Zn. These interpretation ranges, along with descriptions of typical symptomology and critical tissue nutrient concentrations, provide useful tools for both diagnosing nutritional disorders and interpreting foliar nutrient analysis results of greenhouse-grown cilantro. Full article
(This article belongs to the Special Issue Crop Yield and Nutrient Use Efficiency)
Show Figures

Figure 1

24 pages, 1583 KB  
Review
Targeting Cancer Translational Plasticity: IRES-Driven Metabolism and Survival Within the Tumor Microenvironment
by Fabrizio Damiano, Benedetta Di Chiara Stanca, Laura Giannotti, Eleonora Stanca, Angela Francesca Dinoi and Luisa Siculella
Cancers 2025, 17(17), 2731; https://doi.org/10.3390/cancers17172731 - 22 Aug 2025
Viewed by 457
Abstract
The tumor microenvironment creates strong stress conditions, including hypoxia and nutrient depletion, which cause the blocking of cap-dependent translation. Under stressful conditions, cancer cells exploit the cap-independent translation mechanism mediated by internal ribosome entry site (IRES), which ensures continued protein synthesis. IRES elements [...] Read more.
The tumor microenvironment creates strong stress conditions, including hypoxia and nutrient depletion, which cause the blocking of cap-dependent translation. Under stressful conditions, cancer cells exploit the cap-independent translation mechanism mediated by internal ribosome entry site (IRES), which ensures continued protein synthesis. IRES elements located in the 5′ untranslated regions of specific mRNAs allow selective translation of key anti-apoptotic and adaptive proteins. These proteins promote cellular processes that sustain cell survival, among them metabolic reprogramming, redox balance, and epithelial-to-mesenchymal transition, thus facilitating tumor progression and therapy resistance. IRES activity is dynamically regulated by IRES trans-acting factors, such as YB-1, PTB, and hnRNPA1, which respond to cellular stress by enhancing translation of crucial mRNAs. Emerging therapeutic strategies include pharmacological IRES inhibitors, RNA-based approaches targeting ITAF interactions, and IRES-containing vectors for controlled therapeutic gene expression. A deeper understanding of translational reprogramming, IRES structural diversity, and ITAF function is essential to develop targeted interventions to overcome therapeutic resistance and eliminate persistent tumor cell populations. Full article
(This article belongs to the Special Issue Targeting the Tumor Microenvironment (Volume II))
Show Figures

Figure 1

18 pages, 5394 KB  
Article
Chemical Speciation and Ecological Risk of Heavy Metals in Municipal Sewage Sludge from Bangkok, Thailand
by Rujirat Buthnoo and Daoroong Sungthong
Sustainability 2025, 17(17), 7572; https://doi.org/10.3390/su17177572 - 22 Aug 2025
Viewed by 388
Abstract
Municipal sewage sludge is a potential soil amendment rich in organic matter and nutrients, yet its reuse is often constrained by heavy metal contamination. This study evaluated six heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in sludge collected from seven centralized [...] Read more.
Municipal sewage sludge is a potential soil amendment rich in organic matter and nutrients, yet its reuse is often constrained by heavy metal contamination. This study evaluated six heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in sludge collected from seven centralized wastewater treatment plants in Bangkok, Thailand, by analyzing physicochemical properties, total metal concentrations, and chemical speciation. Three ecological risk indices, the geo-accumulation index (Igeo), risk assessment code (RAC), and potential ecological risk index (PERI), were applied to assess contamination status, mobility, and ecological threat. The sludge exhibited high levels of organic matter and essential nutrients, indicating potential for agricultural reuse; however, elevated electrical conductivity at some sites may pose salinity risks if unmanaged. Speciation analysis revealed that Cd and Zn were largely present in mobile and redox-sensitive fractions, Cr and Pb were primarily in stable residual forms, and Cu and Ni occurred in moderately mobile forms influenced by environmental conditions. Across all indices, Cd consistently posed the highest ecological risk, followed by Zn, in a site-dependent manner, while Cr and Pb represented low risk. These findings provide a clearer understanding of metal behavior in sewage sludge and underscore the importance of integrating chemical speciation with multi-index risk assessment in sludge management. Incorporating such approaches into national guidelines, particularly in countries lacking established heavy metal limits, can strengthen monitoring frameworks, guide safe and sustainable reuse, and support regulatory development in contexts with limited monitoring data. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

20 pages, 1896 KB  
Article
Effect of Hydraulic Retention Time on Nutrient Removal in a Microalgae-Based Tertiary Treatment: A Pilot-Scale Study in Winter Conditions
by Sofia Vaz, Rui Martins, Helena M. Pinheiro and Laura Monteiro
Sustainability 2025, 17(16), 7553; https://doi.org/10.3390/su17167553 - 21 Aug 2025
Viewed by 286
Abstract
The wastewater treatment (WWT) industry is currently facing challenges imposed by the revised urban WWT directive, particularly in terms of nitrogen (N) and phosphorus (P) removal. This implies the need for mandatory tertiary treatment, for which microalgae cultivation shows great sustainability promise. This [...] Read more.
The wastewater treatment (WWT) industry is currently facing challenges imposed by the revised urban WWT directive, particularly in terms of nitrogen (N) and phosphorus (P) removal. This implies the need for mandatory tertiary treatment, for which microalgae cultivation shows great sustainability promise. This study investigated the impact of hydraulic retention time (HRT) on nutrient removal in open-air microalgae cultivation for tertiary WWT under winter conditions. Two pilot-scale semi-continuous raceway systems were operated with indigenous microalgae, natural sunlight, and no pH control. HRT values of 4, 5.5, and 7 days were tested, and N, P, and carbon (C) removal and recovery were measured. All conditions allowed nitrogen removal, complying with the revised urban WWT directive. Regarding P, only the 7-day HRT condition consistently complied with the directive’s lowest limit (<0.5 mg P·L−1) in the treated water, while 5.5 and 4 days left up to 0.7 and 1.0 mg P·L−1, respectively, in up to 25% of the samples. A stable microalgae consortium was established under variable light, pH, and dissolved oxygen conditions, albeit with variable biomass productivity. Elemental mass balances revealed that nutrients were mostly recovered in the produced biomass, particularly at high HRT, including effective CO2 capture from the atmosphere. Full article
Show Figures

Graphical abstract

28 pages, 791 KB  
Article
Co-Application of Sheep Manure and Azotobacter Biofertilizer Enhances Growth, Yield, Essential Oil Profile, and Antioxidant Activity in Summer Savory
by Ugur Benli, Gulsum Yaldiz and Mahmut Camlica
Biology 2025, 14(8), 1096; https://doi.org/10.3390/biology14081096 - 21 Aug 2025
Viewed by 372
Abstract
Overuse of chemical fertilizers can threaten the agro-ecological balance, including an excessive accumulation of certain elements, such as nitrogen and phosphorus. On the other hand, organic fertilizers and biofertilizers, which are eco-friendly and cost-effective, increase biological nitrogen fixation and enhance the availability of [...] Read more.
Overuse of chemical fertilizers can threaten the agro-ecological balance, including an excessive accumulation of certain elements, such as nitrogen and phosphorus. On the other hand, organic fertilizers and biofertilizers, which are eco-friendly and cost-effective, increase biological nitrogen fixation and enhance the availability of nutrients to plants. The aim of this research was to study the possibility of using a full (22.50 t/ha) and 50% (11.25 t/ha) treatment of sheep manure with azotobacter (100 mL/20 L) instead of inorganic fertilizers for increasing savory (Satureja hortensis L.) growth production and yield value as well as improving chemical and biological properties. The results showed that the treatment with 50% sheep manure recorded the highest total dry herb (3.18 t/ha) yield. The inorganic fertilizer resulted in the highest essential oil content (1.43% v/w) and γ-terpinene (10.38% v/v), cymol (5.90% v/v), and α-bisabolene (5.28% v/v) values. The maximum carvacrol value (42.54% v/v) was recorded in the savory herb after applying no fertilization to the plants, while the highest concentration of thymol (16.09% v/v) was obtained by applying the full sheep manure treatment. The full sheep manure + azotobacter treatment had the highest mean α-terpinene value (7.22% v/v), and the 50% sheep manure + azotobacter treatment had the highest mean α-phellandrene value (6.44% v/v). The highest DPPH activity (60.86%) and FRAP value (69.64 mg TE/g DW) were observed with the azotobacter + full sheep manure treatment, while the highest total phenolic content (96.87 mg GAE/g DW) and total flavonoid content (45.97 mg QE/g DW) in the savory herb were obtained from the combination treatment of 50% sheep manure doses + azotobacter. Principal coordinate analysis (PCA) revealed distinct clustering of treatments, with PC1 and PC2 explaining >60% of the variance, highlighting the dominant role of sheep manure doses in morphological/yield properties. Heatmap analysis grouped the treatments (right) and examined properties (bottom) as two main groups. The full sheep manure + biofertilizer and inorganic fertilizer treatments were found in the first group, depending on the treatments. Moreover, the heatmap analysis revealed that the full and 50% sheep manure (SM) treatments played critical roles in separating the examined properties, and the DPPH and carvacrol properties were grouped together compared to other properties. Thus, the results suggest that treatment with azotobacter could be employed in combination with appropriate rates of sheep manure to obtain the maximum benefits regarding herb yield, biological activity, and essential oil components. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

26 pages, 8002 KB  
Article
Functional Genomic Characteristics of Marine Sponge-Associated Microbulbifer spongiae MI-GT
by Nabila Ishaq, Qianqian Song, Micha Ilan and Zhiyong Li
Microorganisms 2025, 13(8), 1940; https://doi.org/10.3390/microorganisms13081940 - 20 Aug 2025
Viewed by 368
Abstract
The genus Microbulbifer comprises a group of marine, gram-negative bacteria known for their remarkable ability to adapt to a variety of environments. Therefore, this study aimed to investigate the genetic diversity and metabolic characteristics of M. spongiae MI-GT and three Microbulbifer reference [...] Read more.
The genus Microbulbifer comprises a group of marine, gram-negative bacteria known for their remarkable ability to adapt to a variety of environments. Therefore, this study aimed to investigate the genetic diversity and metabolic characteristics of M. spongiae MI-GT and three Microbulbifer reference strains by genomic and comparative genomic analysis. Compared to free-living reference strains, the lower GC content, higher number of strain-specific genes, pseudogenes, unique paralogs, dispensable genes, and mobile gene elements (MGEs) such as genomic islands (GIs) and insertion sequence (IS) elements, while the least number of CAZymes, indicates that M. spongiae MI-GT may be a facultative sponge-symbiont. Comparative genomic analysis indicates that M. spongiae MI-GT possesses a plasmid and a higher number of strain-specific genes than Microbulbifer reference strains, showing that M. spongiae MI-GT may have acquired unique genes to adapt sponge-host environment. Moreover, there are differences in the functional distribution of genes belonging to different COG-classes in four Microbulbifer strains. COG-functional analysis reveals a lower number of strain-specific genes associated with metabolism, energy production, and motility in M. spongiae MI-GT compared to Microbulbifer reference strains, suggesting that sponge-associated lifestyle may force this bacterium to acquire nutrients from the sponge host and loss motility genes. Finally, we found that several proteins associated with oxidative stress response (sodC, katA, catA, bcp, trmH, cspA), osmotic stress response (dsbG, ampG, amiD_2, czcA, czcB, and corA), and tolerance to biotoxic metal proteins (dsbG, ampG, amiD_2, czcA, czcB, and corA) are absent in M. spongiae MI-GT but present in Microbulbifer reference strains, indicating that M. spongiae MI-GT live in a stable and less stress environment provided by the sponge host than free-living Microbulbifer strains. Our results suggest M. spongiae MI-GT exhibits gene characteristics related to its adaptation to the sponge host habitat, meanwhile reflecting its evolution towards a sponge-associated lifestyle. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Microbiology in China 2025)
Show Figures

Figure 1

12 pages, 655 KB  
Article
Exogenous Calcium on Calcium Accumulation, Uptake and Utilization in Tomato
by Chunyan Wu, Nan Xia and Wei Wang
Horticulturae 2025, 11(8), 986; https://doi.org/10.3390/horticulturae11080986 - 19 Aug 2025
Viewed by 281
Abstract
Calcium (Ca) is an essential nutrient element crucial for plant growth and development, especially in tomatoes. This study investigated the effects of foliar spraying with different concentrations (3 g·L−1, 6 g·L−1, 9 g·L−1) of calcium chloride (CaCl [...] Read more.
Calcium (Ca) is an essential nutrient element crucial for plant growth and development, especially in tomatoes. This study investigated the effects of foliar spraying with different concentrations (3 g·L−1, 6 g·L−1, 9 g·L−1) of calcium chloride (CaCl2) on growth, calcium uptake, distribution, fruit yield, and quality of tomato plants. The results showed that foliar application of calcium fertilizer significantly increased dry matter accumulation, fruit quality, and yield. Calcium application promoted calcium uptake by tomato plants, significantly increased the distribution proportion of calcium in roots and fruits, and significantly decreased the distribution proportion in stems and leaves. The overall calcium distribution proportion within the plant was leaf > stem > root > fruit. In conclusion, foliar spraying with 3–6 g·L−1 CaCl2 can significantly improve tomato yield and quality by regulating calcium distribution and enhancing dry matter accumulation, providing a theoretical basis for the efficient application of calcium fertilizer in protected tomato cultivation. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

28 pages, 3804 KB  
Article
Sustainable Management of Bottom Ash and Municipal Sewage Sludge as a Source of Micronutrients for Biomass Production
by Jacek Antonkiewicz, Beata Kołodziej, Maja Bryk, Magdalena Kądziołka, Robert Pełka and Tilemachos Koliopoulos
Sustainability 2025, 17(16), 7493; https://doi.org/10.3390/su17167493 - 19 Aug 2025
Viewed by 298
Abstract
Sustainable waste management is one of the most serious global challenges today. Reusing waste materials can be an effective alternative to landfill, while recovering valuable nutrients. The purpose of this six-year field study was to investigate the potential of bottom ash from combustion [...] Read more.
Sustainable waste management is one of the most serious global challenges today. Reusing waste materials can be an effective alternative to landfill, while recovering valuable nutrients. The purpose of this six-year field study was to investigate the potential of bottom ash from combustion of bituminous coal or biomass and municipal sewage sludge, and different doses of the waste mixtures, as a micronutrient source for plants. Yield, concentration, concentration index, uptake and simplified balance of the micronutrients (manganese, iron, molybdenum, cobalt, aluminium) in plant biomass were measured. Results showed that the wastes differently affected the parameters studied, which generally increased via treatment as follows: coal ash, biomass ash < coal or biomass ash mixtures with sewage sludge < sewage sludge. Irrespective of treatment, micronutrient recovery rate followed the following trend: Mn > Mo > Fe > Co > Al, from 0.32–25.82% for Mn to 0.04–0.28% for Al. For individual elements, recovery depended on waste. For Mn, Fe and Al, the application of ash separately or in mixtures with sludge at higher doses reduced recovery (0.04–0.78%). For Mn, Fe, Al and Mo, the application of ash–sludge mixtures at lower doses increased recovery (0.11–5.82%), with the highest recoveries when sludge was used separately (0.28–25.82%). For Co, the separate application of sewage sludge and ash–sludge mixture at the lower dose increased recovery (2.41–2.52%), with the highest Co recovery following the separate application of coal ash (2.78%). Ash, sludge and their mixtures were a valuable source of micronutrients for plants. Ash–sludge mixtures improved micronutrient uptake compared to ash used separately. Application of these wastes as fertilisers aligns with the EU Action Plan on the Circular Economy and can contribute to achieving SDGs 2 and 12. Full article
(This article belongs to the Special Issue Organic Matter Degradation, Biomass Conversion and CO2 Reduction)
Show Figures

Figure 1

16 pages, 1647 KB  
Article
APOBEC1-Dependent RNA Eiting of TNF Signaling Orchestrates Ileal Villus Morphogenesis in Pigs: Integrative Transcriptomic and Editomic Insights
by Wangchang Li, Wenxin Chen, Yancan Wang, Qianqian Wang, Huansheng Yang, Qiye Wang and Bin Wang
Animals 2025, 15(16), 2419; https://doi.org/10.3390/ani15162419 - 18 Aug 2025
Viewed by 255
Abstract
The ileum serves as the primary site for nutrient digestion and absorption in the intestine, with villus height representing a critical indicator of intestinal absorptive capacity. To investigate the regulatory mechanisms underlying ileal villus development, we conducted a feeding trial using crossbred pigs [...] Read more.
The ileum serves as the primary site for nutrient digestion and absorption in the intestine, with villus height representing a critical indicator of intestinal absorptive capacity. To investigate the regulatory mechanisms underlying ileal villus development, we conducted a feeding trial using crossbred pigs (Duroc × Landrace × Yorkshire) with an initial body weight of 27.74 ± 0.28 kg, stratifying them into high-villus and low-villus groups based on ileal villus height (n = 4). The results revealed 849 differentially RNA-edited genes (REGs) between the two groups, including 472 hyper-edited genes in the low-villus group and 377 in the high-villus group. Functional enrichment analysis showed that these REGs were significantly enriched in inflammation-related pathways, particularly the TNF signaling pathway and IL-17 signaling pathway, with TNF pathway genes exhibiting notably higher editing levels in the high-villus group. Additionally, 46 differentially expressed genes (DEGs) were identified, comprising 22 upregulated in the low-villus group and 24 in the high-villus group, which were similarly enriched in TNF and IL-17 signaling pathways. Integrated quadrant analysis of the RNA editing and transcriptomic profiles demonstrated that pro-inflammatory genes CXCL10 (C-X-C motif chemokine 10), CCL2 (C-C motif chemokine ligand 2), CREB3L2 (CAMP-responsive element-binding protein 3-like 2), and PIK3R1 (Phosphoinositide-3-kinase regulatory subunit 1) were highly expressed in the low-villus group but exhibited significantly lower RNA editing levels compared to the high-villus group. Furthermore, the expression of the inflammation-suppressive RNA editing enzyme APOBEC1 (apolipoprotein B mRNA editing enzyme catalytic subunit 1) showed correlation with villus height (R = 0.81, p < 0.05). Collectively, our findings indicate that RNA editing dynamics influence the variation in ileal villus height within inflammation-associated pathways, particularly the TNF signaling pathway. Enhanced RNA editing of this pathway may mitigate intestinal inflammation and promote healthy ileal villus developments. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 2650 KB  
Article
Effects of Raw Materials and Pyrolysis Temperatures on Physicochemical Properties of Biochars Derived from Hemp Stalks
by Xia An, Ziyi Zhu, Xiahong Luo, Changli Chen, Tingting Liu, Lina Zou, Shaocui Li and Yuxue Liu
Plants 2025, 14(16), 2564; https://doi.org/10.3390/plants14162564 - 18 Aug 2025
Viewed by 404
Abstract
Hemp stalk, a widely available agricultural waste, is an ideal eco-friendly raw material for biochar production. Carbonization experiments were conducted as a novel approach for the scalable and value-added utilization of hemp stalk under oxygen-exclusion conditions. The effects of feedstock types—Hibiscus cannabinus [...] Read more.
Hemp stalk, a widely available agricultural waste, is an ideal eco-friendly raw material for biochar production. Carbonization experiments were conducted as a novel approach for the scalable and value-added utilization of hemp stalk under oxygen-exclusion conditions. The effects of feedstock types—Hibiscus cannabinus (KS), Corchorus spp. (JS), and Boehmeria spp. (RS)—and pyrolysis temperatures on biochar properties were analyzed through the measurements of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy. The pH and electrical conductivity (EC) of biochars increased with increasing pyrolysis temperature. Notably, EC was significantly higher for RS (940–2278 μS/cm) than for KS (517–879 μS/cm) and JS (583–863 μS/cm). The C content in these three biochars increased as the temperature increased, whereas the H/C atomic ratio decreased, most notably in JS (by 0.33%). According to FTIR and XRD data, with the pyrolysis temperature increasing, the acidic oxygen-containing groups on biochar surfaces reduced. KS700, with superior aromatic structure and stability, may be able to effectively adsorb heavy metal ions. RS700, with relatively high pH and EC, was suitable for alleviating soil acidification and nutrient deficiency. The feedstock and pyrolysis temperature significantly affected the element content, pore structure, and stability of biochars derived from hemp stalk. Full article
Show Figures

Figure 1

Back to TopTop