Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = electrospun polyurethane membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1623 KiB  
Article
Effect of Absolute Ethanol and Thermal Treatment on Shrinkage and Mechanical Properties of TPU Electrospun Nanofiber Membranes
by Lei Wang, Ming Kong, Shengchun Wang, Chunsheng Li and Min Yang
Coatings 2025, 15(8), 897; https://doi.org/10.3390/coatings15080897 (registering DOI) - 1 Aug 2025
Viewed by 177
Abstract
Thermoplastic polyurethane (TPU) electrospun fiber membranes possess unique micro-nano structures and excellent properties. Adjusting their wettability enables the directional transportation of lubricants. A conventional method for adjusting porosity and wettability involves inducing membrane shrinkage using absolute ethanol and heat treatment. However, the shrinkage [...] Read more.
Thermoplastic polyurethane (TPU) electrospun fiber membranes possess unique micro-nano structures and excellent properties. Adjusting their wettability enables the directional transportation of lubricants. A conventional method for adjusting porosity and wettability involves inducing membrane shrinkage using absolute ethanol and heat treatment. However, the shrinkage response and the corresponding changes in the tensile properties of TPU fiber membranes after induction remain unclear, limiting their applications. Thus, in this study, after being peeled off, the samples were first left to stand at room temperature (RT) for 24 h to release residual stress and stabilize their dimensions, and then treated with dehydrated ethanol at RT and high temperature, respectively, with their shrinkage behaviors observed and recorded. The results showed that TPU nanofiber membranes shrank significantly in absolute ethanol, and the degree of shrinkage was temperature-dependent. The shrinkage rates were 2% and 4% in dehydrated ethanol at room temperature and high temperature, respectively, and heating increased the shrinkage effect by 200%. These findings prove that absolute ethanol causes TPU fibers to shrink, and high temperatures further promote shrinkage. However, although the strong synergistic effect of heat and solvent accelerates shrinkage, it may induce internal structural defects, resulting in the deterioration of mechanical properties. The contraction response induced by anhydrous ethanol stimulation can be used to directionally adjust the local density and modulus of TPU nanofiber membranes, thereby changing the wettability. This approach provides new opportunities for applications in areas such as medium transportation and interface friction reduction in lubrication systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

16 pages, 5120 KiB  
Article
A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells
by Jesús Alejandro Torres-Betancourt, Rene Hernández-Delgadillo, Juan Valerio Cauich-Rodríguez, Diego Adrián Oliva-Rico, Juan Manuel Solis-Soto, Claudia María García-Cuellar, Yesennia Sánchez-Pérez, Nayely Pineda-Aguilar, Samantha Flores-Treviño, Irene Meester, Sergio Eduardo Nakagoshi-Cepeda, Katiushka Arevalo-Niño, María Argelia Akemi Nakagoshi-Cepeda and Claudio Cabral-Romero
J. Funct. Biomater. 2024, 15(10), 309; https://doi.org/10.3390/jfb15100309 - 16 Oct 2024
Cited by 2 | Viewed by 1574
Abstract
Electrospun membranes (EMs) have a wide range of applications, including use as local delivery systems. In this study, we manufactured a polyurethane Tecoflex™ EM loaded with bismuth-based lipophilic nanoparticles (Tecoflex™ EMs-BisBAL NPs). The physicochemical and mechanical characteristics, along with the antitumor and bactericidal [...] Read more.
Electrospun membranes (EMs) have a wide range of applications, including use as local delivery systems. In this study, we manufactured a polyurethane Tecoflex™ EM loaded with bismuth-based lipophilic nanoparticles (Tecoflex™ EMs-BisBAL NPs). The physicochemical and mechanical characteristics, along with the antitumor and bactericidal effects, were evaluated using a breast cancer cell line and methicillin-susceptible and resistant Staphylococcus aureus (MRSA). Drug-free Tecoflex™ EMs and Tecoflex™ EMs-BisBAL NPs had similar fiber diameters of 4.65 ± 1.42 µm and 3.95 ± 1.32 µm, respectively. Drug-free Tecoflex™ EMs did not negatively impact a human fibroblast culture, indicating that the vehicle is biocompatible. Tecoflex™ EMs-BisBAL NPs increased 94% more in size than drug-free Tecoflex™ EMs, indicating that the BisBAL NPs enhanced hydration capacity. Tecoflex™ EMs-BisBAL NPs were highly bactericidal against both methicillin-susceptible S. aureus and MRSA clinical isolates, inhibiting their growth by 93.11% and 61.70%, respectively. Additionally, Tecoflex™ EMs-BisBAL NPs decreased the viability of MCF-7 tumor cells by 86% after 24 h exposure and 70.1% within 15 min. Regarding the mechanism of action of Tecoflex™ EMs-BisBAL NPs, it appears to disrupt the tumor cell membrane. In conclusion, Tecoflex™ EMs-BisBAL NPs constitute an innovative low-cost drug delivery system for human breast cancer and postoperative wound infections. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 3605 KiB  
Article
Incorporation of Copper Nanoparticles on Electrospun Polyurethane Membrane Fibers by a Spray Method
by Tamer Al Kayal, Giulia Giuntoli, Aida Cavallo, Anissa Pisani, Paola Mazzetti, Rossella Fonnesu, Alfredo Rosellini, Mauro Pistello, Mario D’Acunto, Giorgio Soldani and Paola Losi
Molecules 2023, 28(16), 5981; https://doi.org/10.3390/molecules28165981 - 9 Aug 2023
Cited by 8 | Viewed by 2408
Abstract
Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, [...] Read more.
Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, and thus are often used as antimicrobial agents. In this study, a combined electrospinning/spray technique was employed to fabricate electrospun polyurethane membranes loaded with copper nanoparticles at different surface densities (10, 20, 25, or 30 μg/cm2). This method allows particle deposition onto the surface of the membranes without the use of chemical agents. SEM images showed that polyurethane fibers own homogeneous thickness (around 650 nm), and that spray-deposited copper nanoparticles are evenly distributed. STEM-EDX demonstrated that copper nanoparticles are deposited onto the surface of the fibers and are not covered by polyurethane. Moreover, a uniaxial rupture test showed that particles are firmly anchored to the electrospun fibers. Antibacterial tests against model microorganisms Escherichia coli indicated that the prepared electrospun membranes possess good bactericidal effect. Finally, the antiviral activity against SARS-CoV-2 was about 90% after 1 h of direct contact. The obtained results suggested that the electrospun membranes possess antimicrobial activities and can be used in medical and industrial applications. Full article
Show Figures

Figure 1

14 pages, 4195 KiB  
Article
Supercritical Impregnation of Mesoglycan and Lactoferrin on Polyurethane Electrospun Fibers for Wound Healing Applications
by Stefania Mottola, Gianluca Viscusi, Giovanna Iannone, Raffaella Belvedere, Antonello Petrella, Iolanda De Marco and Giuliana Gorrasi
Int. J. Mol. Sci. 2023, 24(11), 9269; https://doi.org/10.3390/ijms24119269 - 25 May 2023
Cited by 11 | Viewed by 1944
Abstract
Fibrous membranes of thermoplastic polyurethane (TPU) were fabricated through a uni-axial electrospinning process. Fibers were then separately charged with two pharmacological agents, mesoglycan (MSG) and lactoferrin (LF), by supercritical CO2 impregnation. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analysis [...] Read more.
Fibrous membranes of thermoplastic polyurethane (TPU) were fabricated through a uni-axial electrospinning process. Fibers were then separately charged with two pharmacological agents, mesoglycan (MSG) and lactoferrin (LF), by supercritical CO2 impregnation. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analysis proved the formation of a micrometric structure with a homogeneous distribution of mesoglycan and lactoferrin. Besides, the degree of retention is calculated in four liquid media with different pHs. At the same time, angle contact analysis proved the formation of a hydrophobic membrane loaded with MSG and a hydrophilic LF-loaded one. The impregnation kinetics demonstrated a maximum loaded amount equal to 0.18 ± 0.20% and 0.07 ± 0.05% for MSG and LT, respectively. In vitro tests were performed using a Franz diffusion cell to simulate the contact with the human skin. The release of MSG reaches a plateau after about 28 h while LF release leveled off after 15 h. The in vitro compatibility of electrospun membranes has been evaluated on HaCaT and BJ cell lines, as human keratinocytes and fibroblasts, respectively. The reported data proved the potential application of fabricated membranes for wound healing. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Biomedical Fields)
Show Figures

Figure 1

14 pages, 4977 KiB  
Article
Fabrication of CuO-NP-Doped PVDF Composites Based Electrospun Triboelectric Nanogenerators for Wearable and Biomedical Applications
by Bindhu Amrutha, Gajula Prasad, Ponnan Sathiyanathan, Mohammad Shamim Reza, Hongdoo Kim, Madhvesh Pathak and Arun Anand Prabu
Polymers 2023, 15(11), 2442; https://doi.org/10.3390/polym15112442 - 25 May 2023
Cited by 26 | Viewed by 3389
Abstract
A flexible and portable triboelectric nanogenerator (TENG) based on electrospun polyvinylidene fluoride (PVDF) doped with copper oxide (CuO) nanoparticles (NPs, 2, 4, 6, 8, and 10 wt.-% w.r.t. PVDF content) was fabricated. The structural and crystalline properties of the as-prepared PVDF-CuO composite membranes [...] Read more.
A flexible and portable triboelectric nanogenerator (TENG) based on electrospun polyvinylidene fluoride (PVDF) doped with copper oxide (CuO) nanoparticles (NPs, 2, 4, 6, 8, and 10 wt.-% w.r.t. PVDF content) was fabricated. The structural and crystalline properties of the as-prepared PVDF-CuO composite membranes were characterized using SEM, FTIR, and XRD. To fabricate the TENG device, the PVDF-CuO was considered a tribo-negative film and the polyurethane (PU) a counter-positive film. The output voltage of the TENG was analyzed using a custom-made dynamic pressure setup, under a constant load of 1.0 kgf and 1.0 Hz frequency. The neat PVDF/PU showed only 1.7 V, which further increased up to 7.5 V when increasing the CuO contents from 2 to 8 wt.-%. A decrease in output voltage to 3.9 V was observed for 10 wt.-% CuO. Based on the above results, further measurements were carried out using the optimal sample (8 wt.-% CuO). Its output voltage performance was evaluated as a function of varying load (1 to 3 kgf) and frequency (0.1 to 1.0 Hz) conditions. Finally, the optimized device was demonstrated in real-time wearable sensor applications, such as human motion and health-monitoring applications (respiration and heart rate). Full article
(This article belongs to the Special Issue Polymer-Based Composites for Biomedical Applications)
Show Figures

Figure 1

18 pages, 5303 KiB  
Article
Nano-Silica Bubbled Structure Based Durable and Flexible Superhydrophobic Electrospun Nanofibrous Membrane for Extensive Functional Applications
by Misbah Batool, Hasan B. Albargi, Adnan Ahmad, Zahid Sarwar, Zubair Khaliq, Muhammad Bilal Qadir, Salman Noshear Arshad, Rizwan Tahir, Sultan Ali, Mohammed Jalalah, Muhammad Irfan and Farid A. Harraz
Nanomaterials 2023, 13(7), 1146; https://doi.org/10.3390/nano13071146 - 23 Mar 2023
Cited by 4 | Viewed by 2632
Abstract
Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun [...] Read more.
Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications. Full article
(This article belongs to the Special Issue Next-Generation Nanomaterials: Preparation and Applications)
Show Figures

Figure 1

17 pages, 14577 KiB  
Article
5-Fluorouracil-Immobilized Hyaluronic Acid Hydrogel Arrays on an Electrospun Bilayer Membrane as a Drug Patch
by Ji-Eun Lee, Seung-Min Lee, Chang-Beom Kim and Kwang-Ho Lee
Bioengineering 2022, 9(12), 742; https://doi.org/10.3390/bioengineering9120742 - 30 Nov 2022
Cited by 5 | Viewed by 2566
Abstract
The hyaluronic acid (HA) hydrogel array was employed for immobilization of 5-fluorouracil (5-FU), and the electrospun bilayer (hydrophilic: polyurethane/pluronic F-127 and hydrophobic: polyurethane) membrane was used to support the HA hydrogel array as a patch. To visualize the drug propagating phenomenon into tissues, [...] Read more.
The hyaluronic acid (HA) hydrogel array was employed for immobilization of 5-fluorouracil (5-FU), and the electrospun bilayer (hydrophilic: polyurethane/pluronic F-127 and hydrophobic: polyurethane) membrane was used to support the HA hydrogel array as a patch. To visualize the drug propagating phenomenon into tissues, we experimentally investigated how FITC-BSA diffused into the tissue by applying hydrogel patches to porcine tissue samples. The diffusive phenomenon basically depends on the FITC-BSA diffusion coefficient in the hydrogel, and the degree of diffusion of FITC-BSA may be affected by the concentration of HA hydrogel, which demonstrates that the high density of HA hydrogel inhibits the diffusive FITC-BSA migration toward the low concentration region. YD-10B cells were employed to investigate the release of 5-FU from the HA array on the bilayer membrane. In the control group, YD-10B cell viability was over 98% after 3 days. However, in the 5-FU-immobilized HA hydrogel array, most of the YD-10B cells were not attached to the bilayer membrane used as a scaffold. These results suggest that 5-FU was locally released and initiated the death of the YD-10B cells. Our results show that 5-FU immobilized on HA arrays significantly reduces YD-10B cell adhesion and proliferation, affecting cells even early in the cell culture. Our results suggest that when 5-FU is immobilized in the HA hydrogel array on the bilayer membrane as a drug patch, it is possible to control the drug concentration, to release it continuously, and that the patch can be applied locally to the targeted tumor site and administer the drug in a time-stable manner. Therefore, the developed bilayer membrane-based HA hydrogel array patch can be considered for sustained release of the drug in biomedical applications. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Graphical abstract

16 pages, 54429 KiB  
Article
Elastic Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19, and Anti-Colistin Resistant Bacteria Evaluation
by Latifah Abdullah Alshabanah, Nada Omran, Bassma H. Elwakil, Moaaz T. Hamed, Salwa M. Abdallah, Laila A. Al-Mutabagani, Dong Wang, Qiongzhen Liu, Nader Shehata, Ahmed H. Hassanin and Mohamed Hagar
Polymers 2021, 13(22), 3987; https://doi.org/10.3390/polym13223987 - 18 Nov 2021
Cited by 20 | Viewed by 3749
Abstract
Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% [...] Read more.
Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% of the nanoparticles were used. The morphological characterization of the electrospun TPU and TPU/NPs composites nanofibers were observed by using scanning electron microscopy to show the average fiber diameter and it was in the range of 90–150 nm with a significant impact of the nanoparticle type. Mechanical characterization showed that TPU nanofiber membranes exhibit excellent mechanical properties with ultra-high elastic properties. Elongation at break reached up to 92.5%. The assessment of the developed nanofiber membranes for medical and personal protection applications was done against various colistin resistant bacterial strains and the results showed an increment activity by increasing the metal oxide concentration up to 83% reduction rate by using TPU/ZnO 4% nanofibers against K. pneumoniae strain 10. The bacterial growth was completely eradicated after 8 and 16 h incubation with TPU/ZnO and TPU/CuO nanofibers, respectively. The nanofibers SEM study reveals the adsorption of the bacterial cells on the metal oxides nanofibers surface which led to cell lysis and releasing of their content. Finally, in vitro study against Spike S-protein from SARS-CoV-2 was also evaluated to investigate the potent effectiveness of the proposed nanofibers in the virus deactivation. The results showed that the metal oxide concentration is an effective factor in the antiviral activity due to the observed pattern of increasing the antibacterial and antiviral activity by increasing the metal oxide concentration; however, TPU/ZnO nanofibers showed a potent antiviral activity in relation to TPU/CuO. Full article
(This article belongs to the Special Issue Biobased Materials for Emerging Applications)
Show Figures

Figure 1

18 pages, 4409 KiB  
Article
Synthesis, Characterization, and Electrospinning of a Functionalizable, Polycaprolactone-Based Polyurethane for Soft Tissue Engineering
by Jin-Jia Hu, Chia-Chi Liu, Chih-Hsun Lin and Ho-Yi Tuan-Mu
Polymers 2021, 13(9), 1527; https://doi.org/10.3390/polym13091527 - 10 May 2021
Cited by 10 | Viewed by 4376
Abstract
We synthesized a biodegradable, elastomeric, and functionalizable polyurethane (PU) that can be electrospun for use as a scaffold in soft tissue engineering. The PU was synthesized from polycaprolactone diol, hexamethylene diisocyanate, and dimethylolpropionic acid (DMPA) chain extender using two-step polymerization and designated as [...] Read more.
We synthesized a biodegradable, elastomeric, and functionalizable polyurethane (PU) that can be electrospun for use as a scaffold in soft tissue engineering. The PU was synthesized from polycaprolactone diol, hexamethylene diisocyanate, and dimethylolpropionic acid (DMPA) chain extender using two-step polymerization and designated as PU-DMPA. A control PU using 1,4-butanediol (1,4-BDO) as a chain extender was synthesized similarly and designated as PU-BDO. The chemical structure of the two PUs was verified by FT-IR and 1H-NMR. The PU-DMPA had a lower molecular weight than the PU-BDO (~16,700 Da vs. ~78,600 Da). The melting enthalpy of the PU-DMPA was greater than that of the PU-BDO. Both the PUs exhibited elastomeric behaviors with a comparable elongation at break (λ=L/L0= 13.2). The PU-DMPA had a higher initial modulus (19.8 MPa vs. 8.7 MPa) and a lower linear modulus (0.7 MPa vs. 1.2 MPa) and ultimate strength (9.5 MPa vs. 13.8 MPa) than the PU-BDO. The PU-DMPA had better hydrophilicity than the PU-BDO. Both the PUs displayed no cytotoxicity, although the adhesion of human umbilical artery smooth muscle cells on the PU-DMPA surface was better. Bead free electrospun PU-DMPA membranes with a narrow fiber diameter distribution were successfully fabricated. As a demonstration of its functionalizability, gelatin was conjugated to the electrospun PU-DMPA membrane using carbodiimide chemistry. Moreover, hyaluronic acid was immobilized on the amino-functionalized PU-DMPA. In conclusion, the PU-DMPA has the potential to be used as a scaffold material for soft tissue engineering. Full article
(This article belongs to the Special Issue Electrospinning of Biodegradable Nanofibers)
Show Figures

Graphical abstract

17 pages, 2309 KiB  
Article
Synthesis of Water Resistance and Moisture-Permeable Nanofiber Using Sodium Alginate–Functionalized Waterborne Polyurethane
by Wen-Chi Lu, Fu-Sheng Chuang, Manikandan Venkatesan, Chia-Jung Cho, Po-Yun Chen, Yung-Ru Tzeng, Yang-Yen Yu, Syang-Peng Rwei and Chi-Ching Kuo
Polymers 2020, 12(12), 2882; https://doi.org/10.3390/polym12122882 - 1 Dec 2020
Cited by 29 | Viewed by 4000
Abstract
The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne [...] Read more.
The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne polyurethane (WPU) were blended and crosslinked with calcium chloride; 30 wt % of SA exhibited good compatibility. Further addition of 10 wt % calcium chloride improved the water stability to an extremely humid region. Furthermore, the stress–strain curve revealed that the initial modulus and the elongation strength of the WPU/SA and WPU/CA blends increased with SA content, and the crosslinker concentration clearly indicated the dressing material hardness resulted from this simple blend strategy. The WPU/SA30 electrospun nanofibrous blend contained porous membranes; it exhibited good mechanical strength with water-stable, water-absorbable (37.5 wt %), and moisture-permeable (25.1 g/m2–24 h) characteristics, suggesting our cost-effective material could function as an effective wound dressing material. Full article
(This article belongs to the Special Issue Sustainable Synthesis of Bio-Based Polymers)
Show Figures

Figure 1

15 pages, 10103 KiB  
Article
Stretchable Strain Sensor for Human Motion Monitoring Based on an Intertwined-Coil Configuration
by Wei Pan, Wei Xia, Feng-Shuo Jiang, Xiao-Xiong Wang, Zhi-Guang Zhang, Xia-Gui Li, Peng Li, Yong-Chao Jiang, Yun-Ze Long and Gui-Feng Yu
Nanomaterials 2020, 10(10), 1980; https://doi.org/10.3390/nano10101980 - 7 Oct 2020
Cited by 15 | Viewed by 3772
Abstract
Wearable electronics, such as sensors, actuators, and supercapacitors, have attracted broad interest owing to their promising applications. Nevertheless, practical problems involving their sensitivity and stretchability remain as challenges. In this work, efforts were devoted to fabricating a highly stretchable and sensitive strain sensor [...] Read more.
Wearable electronics, such as sensors, actuators, and supercapacitors, have attracted broad interest owing to their promising applications. Nevertheless, practical problems involving their sensitivity and stretchability remain as challenges. In this work, efforts were devoted to fabricating a highly stretchable and sensitive strain sensor based on dip-coating of graphene onto an electrospun thermoplastic polyurethane (TPU) nanofibrous membrane, followed by spinning of the TPU/graphene nanomembrane into an intertwined-coil configuration. Owing to the intertwined-coil configuration and the synergy of the two structures (nanoscale fiber gap and microscale twisting of the fiber gap), the conductive strain sensor showed a stretchability of 1100%. The self-inter-locking of the sensor prevents the coils from uncoiling. Thanks to the intertwined-coil configuration, most of the fibers were wrapped into the coils in the configuration, thus avoiding the falling off of graphene. This special configuration also endowed our strain sensor with an ability of recovery under a strain of 400%, which is higher than the stretching limit of knees and elbows in human motion. The strain sensor detected not only subtle movements (such as perceiving a pulse and identifying spoken words), but also large movements (such as recognizing the motion of fingers, wrists, knees, etc.), showing promising application potential to perform as flexible strain sensors. Full article
Show Figures

Figure 1

15 pages, 4294 KiB  
Article
Hot-melt Adhesive Bonding of Polyurethane/Fluorinated Polyurethane/Alkylsilane-Functionalized Graphene Nanofibrous Fabrics with Enhanced Waterproofness, Breathability, and Mechanical Properties
by Chunhui Liu, Xi Liao, Weili Shao, Fan Liu, Bin Ding, Gaihuan Ren, Yanyan Chu and Jianxin He
Polymers 2020, 12(4), 836; https://doi.org/10.3390/polym12040836 - 6 Apr 2020
Cited by 20 | Viewed by 5081
Abstract
Waterproof-breathable (WB) materials with outstanding waterproofness, breathability, and mechanical performance are critical in diverse consumer applications. Electrospun nanofibrous membranes with thin fiber diameters, small pore sizes, and high porosity have attracted significant attention in the WB fabric field. Hot-press treatment technology can induce [...] Read more.
Waterproof-breathable (WB) materials with outstanding waterproofness, breathability, and mechanical performance are critical in diverse consumer applications. Electrospun nanofibrous membranes with thin fiber diameters, small pore sizes, and high porosity have attracted significant attention in the WB fabric field. Hot-press treatment technology can induce the formation of inter-fiber fusion structures and hence improve the waterproofness and mechanical performance. By combining electrospinning and hot-press treatment technology, polyurethane/fluorinated polyurethane/thermoplastic polyurethane/alkylsilane-functionalized graphene (PU/FPU/TPU/FG) nanofiber WB fabric was fabricated. Subsequently, the morphologies, porous structure, hydrostatic pressure, water vapor transmission rate (WVTR), and stress–strain behavior of the nanofiber WB fabric were systematically investigated. The introduction of the hydrophobic FG sheet structure and the formation of the inter-fiber fusion structure greatly improved not only the waterproofness but also the mechanical performance of the nanofiber WB fabric. The optimized PU/FPU/TPU-50/FG-1.5 WB fabric exhibited an excellent comprehensive performance: a high hydrostatic pressure of 80.4 kPa, a modest WVTR of 7.6 kg m−2 d−1, and a robust tensile stress of 127.59 MPa, which could be used to achieve various applications. This work not only highlights the preparation of materials, but also provides a high-performance nanofiber WB fabric with huge potential application prospects in various fields. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

8 pages, 3073 KiB  
Communication
Analysis of Drug Release Behavior Utilizing the Swelling Characteristics of Cellulosic Nanofibers
by Sung Won Ko, Ji Yeon Lee, Joshua Lee, Byeong Cheol Son, Se Rim Jang, Ludwig Erik Aguilar, Young Min Oh, Chan Hee Park and Cheol Sang Kim
Polymers 2019, 11(9), 1376; https://doi.org/10.3390/polym11091376 - 21 Aug 2019
Cited by 31 | Viewed by 4792
Abstract
It is known that the behavior of a drug released from a supporting carrier is influenced by the surrounding environment and the carrier. In this study, we investigated the drug behavior of a swellable electrospun nanofibrous membrane. Nanofibrous mats with different swelling ratios [...] Read more.
It is known that the behavior of a drug released from a supporting carrier is influenced by the surrounding environment and the carrier. In this study, we investigated the drug behavior of a swellable electrospun nanofibrous membrane. Nanofibrous mats with different swelling ratios were prepared by mixing cellulose acetate (CA) and polyurethane (PU). CA has excellent biocompatibility and is capable of high water uptake, while PU has excellent mechanical properties. Paclitaxel (PTX) was the drug of choice for observing drug release behavior, which was characterized by UV-spectroscopy. FE-SEM was used to confirm the morphology of the nanofibrous mats and to measure the average fiber diameters. We observed a noticeable increase in the total volume of the nanofibrous membrane when it was immersed in water. Also, the drug release behavior increased proportionally with increasing swelling rate of the composite nanofibrous mat. Biocompatibility testing of nanofiber materials was confirmed by CCK-8 assay and cell morphology was observed. Based on these results, we propose nanofibrous mats as promising candidates in wound dressing and other drug carrier applications. Full article
Show Figures

Graphical abstract

20 pages, 6786 KiB  
Article
Polyhexamethylene Biguanide:Polyurethane Blend Nanofibrous Membranes for Wound Infection Control
by Anna Worsley, Kristin Vassileva, Janice Tsui, Wenhui Song and Liam Good
Polymers 2019, 11(5), 915; https://doi.org/10.3390/polym11050915 - 22 May 2019
Cited by 32 | Viewed by 7350
Abstract
Polyhexamethylene biguanide (PHMB) is a broad-spectrum antiseptic which avoids many efficacy and toxicity problems associated with antimicrobials, in particular, it has a low risk of loss of susceptibility due to acquired antimicrobial resistance. Despite such advantages, PHMB is not widely used in wound [...] Read more.
Polyhexamethylene biguanide (PHMB) is a broad-spectrum antiseptic which avoids many efficacy and toxicity problems associated with antimicrobials, in particular, it has a low risk of loss of susceptibility due to acquired antimicrobial resistance. Despite such advantages, PHMB is not widely used in wound care, suggesting more research is required to take full advantage of PHMB’s properties. We hypothesised that a nanofibre morphology would provide a gradual release of PHMB, prolonging the antimicrobial effects within the therapeutic window. PHMB:polyurethane (PU) electrospun nanofibre membranes were prepared with increasing PHMB concentrations, and the effects on antimicrobial activities, mechanical properties and host cell toxicity were compared. Overall, PHMB:PU membranes displayed a burst release of PHMB during the first hour following PBS immersion (50.5–95.9% of total released), followed by a gradual release over 120 h (≤25 wt % PHMB). The membranes were hydrophilic (83.7–53.3°), gradually gaining hydrophobicity as PHMB was released. They displayed superior antimicrobial activity, which extended past the initial release period, retained PU hyperelasticity regardless of PHMB concentration (collective tensile modulus of 5–35% PHMB:PU membranes, 3.56 ± 0.97 MPa; ultimate strain, >200%) and displayed minimal human cell toxicity (<25 wt % PHMB). With further development, PHMB:PU electrospun membranes may provide improved wound dressings. Full article
(This article belongs to the Special Issue Functional Polyurethanes – In Memory of Prof. József Karger-Kocsis)
Show Figures

Graphical abstract

13 pages, 3952 KiB  
Article
Development of Highly pH-Sensitive Hybrid Membranes by Simultaneous Electrospinning of Amphiphilic Nanofibers Reinforced with Graphene Oxide
by Mohsen Gorji, Ali Sadeghianmaryan, Hossein Rajabinejad, Saman Nasherolahkam and Xiongbiao Chen
J. Funct. Biomater. 2019, 10(2), 23; https://doi.org/10.3390/jfb10020023 - 21 May 2019
Cited by 26 | Viewed by 7543
Abstract
Nanofibrous-based pH sensors have shown promise in a wide range of industrial and medical applications due to their fast response time and good mechanical properties. In the present study, we fabricated pH-sensitive sensors of nanofibrous membranes by electrospinning polyurethane (PU)/poly 2-acrylamido-2-methylpropanesulfonic acid (PAMPS)/graphene [...] Read more.
Nanofibrous-based pH sensors have shown promise in a wide range of industrial and medical applications due to their fast response time and good mechanical properties. In the present study, we fabricated pH-sensitive sensors of nanofibrous membranes by electrospinning polyurethane (PU)/poly 2-acrylamido-2-methylpropanesulfonic acid (PAMPS)/graphene oxide (GO) with indicator dyes. The morphology of the electrospun nanofibers was examined using scanning electron microscopy (SEM). The effect of hydrophilic polymer ratio and concentration of GO on the sensing response time was investigated. The sensitivity of the membranes was studied over a wide pH range (1–8) in solution tests, with color change measured by calculating total color difference using UV-vis spectroscopy. The membranes were also subjected to vapor tests at three different pH values (1, 4, 8). SEM results show the successful fabrication of bimodal fiber diameter distributions of PU (mean fiber diameter 519 nm) and PAMPS (mean fiber diameter 78 nm). Sensing response time decreased dramatically with increasing concentrations of PAMPS and GO. The hybrid hydrophobic/hydrophilic/GO nanofibrous membranes are capable of instantly responding to changes in solution pH as well as detecting pH changes in chemical vapor solution in as little as 7 s. Full article
Show Figures

Graphical abstract

Back to TopTop