Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,928)

Search Parameters:
Keywords = electronic conduction mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1905 KB  
Article
Flexible Copper Mesh Electrodes with One-Step Ball-Milled TiO2 for High-Performance Dye-Sensitized Solar Cells
by Adnan Alashkar, Taleb Ibrahim and Abdul Hai Alami
Sustainability 2025, 17(21), 9478; https://doi.org/10.3390/su17219478 (registering DOI) - 24 Oct 2025
Abstract
Advancements in flexible, low-cost, and recyclable alternatives to transparent conductive oxides (TCOs) are critical challenges in the sustainability of third-generation solar cells. This work introduces a copper mesh-based transparent electrode for dye-sensitized solar cells, replacing conventional fluorine doped-tin oxide (FTO)-coated glass to simultaneously [...] Read more.
Advancements in flexible, low-cost, and recyclable alternatives to transparent conductive oxides (TCOs) are critical challenges in the sustainability of third-generation solar cells. This work introduces a copper mesh-based transparent electrode for dye-sensitized solar cells, replacing conventional fluorine doped-tin oxide (FTO)-coated glass to simultaneously reduce spectral reflection losses, enhance mechanical flexibility, and enable material recyclability. Titanium dioxide (TiO2) photoanodes were synthesized and directly deposited onto the mesh via a single-step, low-energy ball milling process, which eliminates TiO2 paste preparation and high-temperature annealing while reducing fabrication time from over three hours to 30 min. Structural and surface analyses confirmed the deposition of high-purity anatase-phase TiO2 with strong adhesion to the mesh branches, enabling improved dye loading and electron injection pathways. Optical studies revealed higher visible light absorption for the copper mesh compared to FTO in the visible range, further enhanced upon TiO2 and Ru-based dye deposition. Electrochemical measurements showed that TiO2/Cu mesh electrodes exhibited significantly higher photocurrent densities and faster photo response rates than bare Cu mesh, with dye-sensitized Cu mesh achieving the lowest charge transfer resistance in impedance analysis. Techno–economic and sustainability assessments revealed a decrease of 7.8% in cost and 82% in CO2 emissions associated with the fabrication of electrodes as compared to conventional TCO electrodes. The synergy between high conductivity, transparency, mechanical durability, and a scalable, recyclable fabrication route positions this architecture as a strong candidate for next-generation dye-sensitized solar modules that are both flexible and sustainable. Full article
Show Figures

Figure 1

24 pages, 6158 KB  
Article
Multiscale Simulation of Crack Propagation in Impact-Welded Al4Cu9 Alloy Based on Cohesive Zone Model
by Rongqing Luo, Dingjun Xiao, Guangzhao Pei, Haixia Yan, Sen Han, Jiajie Jiang and Miaomiao Zhang
Materials 2025, 18(21), 4862; https://doi.org/10.3390/ma18214862 - 23 Oct 2025
Abstract
The fracture behavior of the Al4Cu9 intermetallic compound at the interface of impact-welded Cu/Al joints remains insufficiently explored through integrated multiscale modeling and experimental validation. In this study, molecular dynamic (MD) simulations, finite element (FE) analysis implemented in ABAQUS (version [...] Read more.
The fracture behavior of the Al4Cu9 intermetallic compound at the interface of impact-welded Cu/Al joints remains insufficiently explored through integrated multiscale modeling and experimental validation. In this study, molecular dynamic (MD) simulations, finite element (FE) analysis implemented in ABAQUS (version 2020) and a cohesive zone model (CZM) were combined with optical microscopy (OM) and scanning electron microscopy (SEM) observations of the interface and crack initiation zones in impact-welded Cu/Al specimens to investigate crack propagation mechanisms under different defect configurations. The experimental specimens consisted of 1060 aluminum (Al) and oxygen-free high-conductivity (OFHC) copper, fabricated via impact welding and subsequently annealed at 250 °C for 100 h. The interfacial morphology and crack initiation features obtained from OM and SEM provided direct validation for the traction–separation (T-S) parameters extracted from MD and mapped into the FE model. The results indicate that composite defects (blunt crack + void) cause a significantly greater reduction in fracture energy and stress intensity factor than single defects and that defect effects outweigh temperature effects within the range of 200–500 K. The experimentally observed crack initiation locations were in strong agreement with simulation predictions. This integrated simulation–experiment approach not only elucidates the multiscale fracture mechanisms of the Al4Cu9 interface but also provides a physically validated basis for the reliability assessment and optimization of aerospace Cu/Al welded structures. Full article
(This article belongs to the Special Issue Advances in Microstructure and Properties of Welded–Brazed Joints)
Show Figures

Figure 1

24 pages, 38190 KB  
Article
Effect of Electrically Assisted Heat Treatment on Crack Arrest and Healing in Laser-Cladded Ni–Based Coatings
by Xuxiang Song, Xiao Li, Wenping Wang and Zhicheng Zhao
J. Manuf. Mater. Process. 2025, 9(11), 348; https://doi.org/10.3390/jmmp9110348 - 23 Oct 2025
Abstract
Cracks in laser-cladded coatings represent a critical challenge that severely limits their industrial deployment. In this study, high-frequency pulsed direct current-assisted electrically assisted heat treatment (EAHT) was applied to repair cracks in laser-cladded Ni60/WC coatings deposited on 45# medium carbon steel. The influence [...] Read more.
Cracks in laser-cladded coatings represent a critical challenge that severely limits their industrial deployment. In this study, high-frequency pulsed direct current-assisted electrically assisted heat treatment (EAHT) was applied to repair cracks in laser-cladded Ni60/WC coatings deposited on 45# medium carbon steel. The influence of current density and treatment duration on crack arrest and healing behavior was systematically investigated. Dye penetrant testing and scanning electron microscopy (SEM) were employed to characterize the morphology and evolution of cracks before and after EAHT, while hardness, fracture toughness, and wear resistance tests were conducted to evaluate the mechanical properties. The results revealed that the crack repair process proceeds through three distinct stages: internal filling, nucleation and growth of healing points, and complete crack closure. The combined effects of Joule heating and current crowding induced by EAHT significantly facilitated progressive crack healing from the bottom upward. Optimal crack arrest and healing were achieved at a current density of 6.25 A/mm2, resulting in a maximum fracture toughness of 10.74 MPa·m1/2 and a transition of the wear mechanism from spalling to abrasive wear. This study demonstrates that EAHT promotes selective crack-tip heating and microstructural regulation through thermo-electro-mechanical coupling, thereby markedly enhancing the comprehensive performance of Ni-based WC coatings. Full article
Show Figures

Figure 1

28 pages, 3546 KB  
Review
Polyoxometalates in Electrochemical Energy Storage: Recent Advances and Perspectives
by Wenjing Bao, Chao Feng, Chongze Wang, Dandan Liu, Xing Fan and Peng Liang
Int. J. Mol. Sci. 2025, 26(21), 10267; https://doi.org/10.3390/ijms262110267 - 22 Oct 2025
Abstract
Polyoxometalates (POMs) are nanoscale anionic clusters constructed from transition-metal oxide units with well-defined architectures and tunable electronic structures, offering abundant reversible redox sites and adjustable energy levels. Their diverse valence states and compositional flexibility of molecular architectures render them promising candidates for electrochemical [...] Read more.
Polyoxometalates (POMs) are nanoscale anionic clusters constructed from transition-metal oxide units with well-defined architectures and tunable electronic structures, offering abundant reversible redox sites and adjustable energy levels. Their diverse valence states and compositional flexibility of molecular architectures render them promising candidates for electrochemical energy storage. Rational molecular design and nano-structural engineering can significantly enhance the electrical conductivity, structural stability, and ion transport kinetics of POM-based materials, thus improving device performance. In solar cells, the tunable energy levels and light-harvesting capabilities contribute to enhanced photoconversion efficiency. In secondary batteries, the dense redox centers provide additional capacity. For supercapacitors, the rapid electron transfer supports high power density storage. This review systematically summarizes recent advances in POM-based functional nanomaterials, with an emphasis on material design strategies, energy storage mechanisms, performance optimization approaches, and structure–property relationships. Fundamental structures and properties of POMs are outlined, followed by synthesis and functionalization approaches. Key challenges such as dissolution, poor conductivity, and interfacial instability are discussed, together with progress in batteries and hybrid capacitors. Finally, future challenges and development directions are outlined to inspire further advancement in POM-based energy storage materials. Full article
(This article belongs to the Special Issue Molecular Insight into Catalysis of Nanomaterials)
Show Figures

Graphical abstract

22 pages, 8704 KB  
Article
Cement-Based Grouting Materials Modified with GO/NS Hybrids
by Longfei Lu, Guoxiang Yang, Yan Ai, Jingkai Qu, Jinrui Duan, Kun Yang and Wenbin Sun
Materials 2025, 18(21), 4820; https://doi.org/10.3390/ma18214820 - 22 Oct 2025
Viewed by 128
Abstract
This study systematically investigates the effects of individual and combined incorporation of graphene oxide (GO) and nano-silica sol (NS) on the macroscopic properties and microstructure of cement-based grouting materials, with emphasis on their synergistic mechanisms. A series of macroscopic tests including setting time, [...] Read more.
This study systematically investigates the effects of individual and combined incorporation of graphene oxide (GO) and nano-silica sol (NS) on the macroscopic properties and microstructure of cement-based grouting materials, with emphasis on their synergistic mechanisms. A series of macroscopic tests including setting time, fluidity, bleeding rate, and mechanical strength were conducted, complemented by multi-scale microstructural characterization techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and Fourier-transform infrared spectroscopy (FTIR). The results demonstrate that both NS and GO effectively reduce setting time and bleeding rate while enhancing mechanical strength; however, NS exhibits a more pronounced adverse effect on fluidity compared to GO. The hybrid system displays a distinct transition from synergy to antagonism: under low-dosage co-incorporation (2 wt% NS + 0.01 wt% GO), the flexural and compressive strengths increased by 13.5% and 45.5%, respectively, relative to the reference group. Microscopic analysis revealed that the synergistic interaction between the pozzolanic effect of NS and the templating effect of GO under this condition optimizes hydrate morphology and pore structure, leading to enhanced performance. Conversely, excessive dosage of either component induces agglomeration, resulting in microstructural deterioration and performance degradation. This study establishes optimal dosage ranges and combination principles for NS and GO in cement-based materials, providing a theoretical foundation for designing high-workability and high-strength cementitious composites. Full article
Show Figures

Figure 1

16 pages, 2928 KB  
Article
Immunomodulatory Potential of a Composite Amniotic Membrane Hydrogel for Wound Healing: Effects on Macrophage Cytokine Secretion
by Tao Wang, Zhiyuan Zhu, Wei Hua and Siliang Xue
Biomedicines 2025, 13(10), 2574; https://doi.org/10.3390/biomedicines13102574 - 21 Oct 2025
Viewed by 100
Abstract
Background: The human acellular amniotic membrane (HAAM) is widely used as a decellularized bioscaffold in tissue engineering to promote wound healing, but its clinical application is limited by poor mechanical properties, rapid degradation, and handling difficulties. This study aimed to develop a modified [...] Read more.
Background: The human acellular amniotic membrane (HAAM) is widely used as a decellularized bioscaffold in tissue engineering to promote wound healing, but its clinical application is limited by poor mechanical properties, rapid degradation, and handling difficulties. This study aimed to develop a modified amniotic membrane-based composite material loaded with vascular endothelial growth factor (VEGF) and the Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-Lalanylhydrazide]-Sphenylglycine t-butyl ester (DAPT) to enhance wound healing by modulating macrophage polarization and cytokine secretion. Methods: VEGF-loaded gellan gum-hyaluronic acid (GG-HA) hydrogels (VEGF-GG-HA) and DAPT-loaded HAAM (DAPT-HAAM) were prepared and combined to form a novel composite material (VEGF-GG-HA & DAPT-HAAM). The morphology and microstructure of the materials were characterized using scanning electron microscopy. In vitro studies were conducted using the human monocytic cell line (Tohoku Hospital Pediatrics-1, THP-1) to evaluate the effects of the materials on cell viability, cytokine secretion, and protein expression. Assessments included CCK-8 assays, ELISA, quantitative real-time PCR, Western blot analysis, and immunohistochemical staining. Results: The composite material VEGF-GG-HA & DAPT-HAAM exhibited good biocompatibility and significantly promoted THP-1 cell proliferation compared to control and single-component groups. It enhanced the secretion of IL-10, TNF-α, TGF-β, MMP1, and MMP3, while suppressing excessive TGF-β overexpression. The material also modulated macrophage polarization, showing a trend toward anti-inflammatory M2 phenotypes while maintaining pro-inflammatory signals (e.g., TNF-α) for a balanced immune response. Conclusions: The modified amniotic membrane hydrogel composite promotes wound healing through a phased immune response: it modulates macrophage polarization (balancing M1 and M2 phenotypes), enhances cytokine and matrix metalloproteinase secretion, and controls TGF-β levels. These effects contribute to improved vascular remodeling, reduced fibrosis, and prevention of scar formation, demonstrating the potential for enhanced wound management. Full article
(This article belongs to the Special Issue New Advances in Wound Healing and Skin Regeneration)
Show Figures

Figure 1

28 pages, 1278 KB  
Review
Polymeric Frontiers in Next-Generation Energy Storage: Bridging Molecular Design, Multifunctionality, and Device Applications Across Batteries, Supercapacitors, Solid-State Systems, and Beyond
by Akhil Sharma, Sonu Sharma, Monu Sharma, Vikas Sharma, Shivika Sharma and Iyyakkannu Sivanesan
Polymers 2025, 17(20), 2800; https://doi.org/10.3390/polym17202800 - 20 Oct 2025
Viewed by 362
Abstract
Polymer materials have become promising candidates for next-generation energy storage, with structural tunability, multifunctionality, and compatibility with a variety of device platforms. They have a molecular design capable of customizing ion and electron transport routes, integrating redox-active species, and enhancing interfacial stability, surpassing [...] Read more.
Polymer materials have become promising candidates for next-generation energy storage, with structural tunability, multifunctionality, and compatibility with a variety of device platforms. They have a molecular design capable of customizing ion and electron transport routes, integrating redox-active species, and enhancing interfacial stability, surpassing the drawbacks of traditional inorganic systems. New developments have been made in multifunctional polymers that have the ability to combine conductivity, mechanical properties, thermal stability, and self-healing into a single scaffold system, which is useful in battery, supercapacitor, and solid-state applications. By incorporating polymers with carbon nanostructures, ceramics, or two-dimensional materials, hybrid polymer nanocomposites improve electrochemical performance, durability, and mechanical compliance, and the solid polymer electrolytes, as well as artificial solid electrolyte interphases, resolve dendrite growth and safety issues. The multifunctionality also extends to flexibility, stretchability, and miniaturization, which implies that polymers are suitable for use in wearable devices and biomedical devices. At the same time, sustainable polymer innovation focuses on bio-based feedstocks, which can be recycled, and green synthesis pathways. Polymer discovery using artificial intelligence and machine learning is faster than standard methods, predicts structure–property–performance relationships, and can be rationally engineered. Although there are difficulties in stability during long periods, scalability, and trade-offs between indeedness and mechanical endurance, polymers are a promising avenue with regard to dependable, safe, and sustainable power storage. This review presents the molecular strategies, multifunctional uses, and prospects, where polymers are at the center of the next-generation energy technologies. Full article
(This article belongs to the Special Issue Polymeric Materials for Next-Generation Energy Storage)
Show Figures

Figure 1

16 pages, 664 KB  
Systematic Review
Associated Factors and Predictors of Medication Errors in Saudi Arabia: A Systematic Review
by Mugapish Hussain Mushi, Ahmad Iqmer Nashriq Mohd Nazan, Mohd Ismail Ibrahim, Irniza Rasdi, Omar Zayyan Alsharqi and Majed Awad Albalawi
J. Mind Med. Sci. 2025, 12(2), 43; https://doi.org/10.3390/jmms12020043 - 20 Oct 2025
Viewed by 129
Abstract
Background: Medication errors pose significant health risks and economic burdens globally. In Saudi Arabia, the reported error rates range from 1.6% to 84.8%; yet, the contributing factors remain inadequately understood. This systematic review aims to identify the associated factors and predictors of medication [...] Read more.
Background: Medication errors pose significant health risks and economic burdens globally. In Saudi Arabia, the reported error rates range from 1.6% to 84.8%; yet, the contributing factors remain inadequately understood. This systematic review aims to identify the associated factors and predictors of medication errors across Saudi healthcare settings. Methods: Electronic databases (EMBASE, CINAHL, and PubMed) were searched for peer-reviewed articles published from January 2010 to January 2025. Studies reporting statistically significant factors associated with medication errors or error reporting in Saudi Arabia were included. A quality assessment was conducted using the Appraisal tool for Cross-Sectional Studies (AXIS). Results: Thirteen studies met the inclusion criteria. Healthcare-worker-related factors included age (workers < 35 years are more prone to errors), experience level (4–5 years optimal for reporting), negative attitudes toward errors (AOR = 14.08), and a lack of training (AOR = 7.29). Patient-related factors included advanced age (1.0–2.7-times increased risk), males, polypharmacy (1.1–5.3-times increased risk), and high-risk medications (hypoglycemic drugs, warfarin, and antibiotics). System-related factors included day shift timing (AOR = 1.1), oral medication route (AOR = 0.4), ICU setting (3.3-times increased risk), medical unit setting (1.7-times increased risk), confusing packaging, and look-alike/sound-alike medications. Conclusions: Our findings emphasize that medical errors arise from a complex interplay between healthcare-worker-related factors (age, experience, and attitudes) and hospital-administration-related factors (reporting mechanisms, documentation practices, shift timing, and workload). Full article
Show Figures

Figure 1

20 pages, 11033 KB  
Article
Strength–Ductility Synergy in Biodegradable Mg-Rare Earth Alloy Processed via Multi-Directional Forging
by Faseeulla Khan Mohammad, Uzwalkiran Rokkala, Sohail M. A. K. Mohammed, Hussain Altammar, Syed Quadir Moinuddin and Raffi Mohammed
J. Funct. Biomater. 2025, 16(10), 391; https://doi.org/10.3390/jfb16100391 - 18 Oct 2025
Viewed by 364
Abstract
In this study, a biodegradable Mg-Zn-Nd-Gd alloy was processed via multi-directional forging (MDF) to evaluate its microstructural evolution, mechanical performance, and corrosion behavior. Electron backscattered diffraction (EBSD) analysis was conducted to evaluate the influence of grain size and texture on mechanical strength and [...] Read more.
In this study, a biodegradable Mg-Zn-Nd-Gd alloy was processed via multi-directional forging (MDF) to evaluate its microstructural evolution, mechanical performance, and corrosion behavior. Electron backscattered diffraction (EBSD) analysis was conducted to evaluate the influence of grain size and texture on mechanical strength and corrosion resistance. The average grain size decreased significantly from 118 ± 5 μm in the homogenized state to 30 ± 10 μm after six MDF passes, primarily driven by discontinuous dynamic recrystallization (DDRX). Remarkably, this magnesium (Mg) alloy exhibited a rare synergistic enhancement in both strength and ductility, with ultimate tensile strength (UTS) increasing by ~59%, yield strength (YS) by ~90%, while elongation improved by ~44% unlike conventional severe plastic deformation (SPD) techniques that often sacrifice ductility for strength. This improvement is attributed to grain refinement, dispersion strengthening from finely distributed Mg12Nd and Mg7Zn3 precipitates, and texture weakening, which facilitated the activation of non-basal slip systems. Despite the mechanical improvements, electrochemical corrosion testing in Hank’s balanced salt solution (HBSS) at 37 °C revealed an increased corrosion rate from 0.1165 mm/yr in homogenized condition to 0.2499 mm/yr (after six passes of MDF. This was due to the higher fraction of low-angle grain boundaries (LAGBs), weak basal texture, and the presence of electrochemically active fine Mg7Zn3 particles. However, the corrosion rate remained within the acceptable range for bioresorbable implant applications, indicating a favorable trade-off between mechanical performance and degradation behavior. These findings demonstrate that MDF processing effectively enhances the strength–ductility synergy of Mg-rare earth alloys while maintaining a clinically acceptable degradation rate, thereby presenting a promising route for next-generation biomedical implants. Full article
(This article belongs to the Special Issue Metals and Alloys for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

15 pages, 8189 KB  
Article
Effect of High Ni Content in Gas-Atomized Cu-Ni-Si Powders for Laser Powder Bed Fusion
by Mirko Trovato, Nicolò Arcieri, Diego Manfredi, Federico Simone Gobber, Bhaskaranand Bhatt, Alessandra Martucci, Sara Biamino, Laura Montanaro, Mariangela Lombardi and Paolo Fino
Materials 2025, 18(20), 4772; https://doi.org/10.3390/ma18204772 - 18 Oct 2025
Viewed by 180
Abstract
Cu-Ni-Si alloys are advanced materials for electronic applications combining high mechanical strength and electrical conductivity through precipitation of fine Ni silicides. Increasing the Ni content—and, thus, the Ni:Si ratio—enhances the volume fraction of strengthening precipitates. However, the conventional fabrication route is time-consuming and [...] Read more.
Cu-Ni-Si alloys are advanced materials for electronic applications combining high mechanical strength and electrical conductivity through precipitation of fine Ni silicides. Increasing the Ni content—and, thus, the Ni:Si ratio—enhances the volume fraction of strengthening precipitates. However, the conventional fabrication route is time-consuming and costly, as the slow cooling rates lead to a coarse microstructure and pronounced segregation, limiting Ni and Si content to 5 wt.%. Rapid solidification techniques offer a promising alternative, since the higher cooling rates refine the microstructure while suppressing the elemental segregation. This study presents a novel powder-based approach to overcome the compositional limitations of Cu-Ni-Si alloys, providing a pathway for faster alloy screening. Two gas-atomized powders with different Ni contents—CuNi3Si1.5 and CuNi10Si1.5 (wt.%)—were engineered as feedstock for laser powder bed fusion, produced, and characterized to assess the effect of the Ni level on the microstructure and properties. Gas-atomization yielded spherical powders with a fine dendritic structure and limited segregation. Increased Ni content enhanced strengthening mechanisms and hardness, as well as improved optical response, suggesting the potential of high-Ni Cu-Ni-Si compositions for use in laser powder bed fusion. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Properties of Metal Alloys)
Show Figures

Figure 1

42 pages, 4891 KB  
Article
Numerical Study on the Effects of Surface Shape and Rotation on the Flow Characteristics and Heat Transfer Behavior of Tandem Cylinders in Laminar Flow Regime
by Yafei Li, Fan Shi, Changfa Wang, Jianjian Xin and Jiawang Li
Modelling 2025, 6(4), 132; https://doi.org/10.3390/modelling6040132 - 17 Oct 2025
Viewed by 194
Abstract
Tandem cylinders, widely used in heat exchangers, water storage units, and electronic cooling, require optimized flow and heat transfer to enhance engineering performance. However, the combined effects of various factors in tandem configurations remain insufficiently explored. This study proposes an innovative approach that [...] Read more.
Tandem cylinders, widely used in heat exchangers, water storage units, and electronic cooling, require optimized flow and heat transfer to enhance engineering performance. However, the combined effects of various factors in tandem configurations remain insufficiently explored. This study proposes an innovative approach that integrates multiple parameters to systematically investigate the influence of surface pattern characteristics and rotational speed on the fluid dynamics and heat transfer performance of tandem cylinders. Numerical simulations are conducted to evaluate the effects of various pattern dimensions (w/D = 0.12–0.18), surface shapes (square, triangular, and dimpled grooves), rotational speeds (|Ω| ≤ 1), and frequencies (N = 2–10) on fluid flow and heat transfer efficiency at Re = 200. The study aims to establish the relationship between the complexity of the coupling effects of the considered parameters and the heat transfer behavior as well as fluid dynamic variations. The results demonstrate that, under stationary conditions, triangular grooves exhibit larger vortex structures compared to square grooves. When a positive rotation is applied, coupled with increases in w/D and N, square grooves develop a separation vortex at the front. Furthermore, the square and dimpled grooves exhibit significant phase control capabilities in the time evolution of lift and drag forces. Under conditions of w/D = 0.12 and w/D = 0.18, the CL of the upstream cylinder decreases by 17.2% and 20.8%, respectively, compared to the standard smooth cylinder. Moreover, the drag coefficient CD of the downstream cylinder is reduced to half of the initial value of the upstream cylinder. As the surface amplitude increases, the CD of the smooth cylinder surpasses that of the other groove types, with an approximate increase of 8.8%. Notably, at Ω = −1, the downstream square-grooved cylinder’s CL is approximately 12.9% lower than that of other groove types, with an additional 6.86% reduction in amplitude during counterclockwise rotation. When N increases to 10, the of the upstream square-grooved cylinder at w/D = 0.18 decreases sharply by 20.9%. Conversely, the upstream dimpled-groove cylinder significantly enhances at w/D = 0.14 and N = 4. However, the upstream triangular-groove cylinder achieves optimal stability at w/D ≥ 0.16. Moreover, at w/D = 0.18 and N = 6, square grooves show the most significant enhancement in vortex mixing, with an increase of approximately 42.7%. Simultaneously, the local recirculation zones in dimpled grooves at w/D = 0.14 and N = 6 induce complex and geometry-dependent heat transfer behaviors. Under rotational conditions, triangular and dimpled grooves exhibit superior heat transfer performance at N = 6 and w/D = 0.18, with TPI values exceeding those of square grooves by 33.8% and 28.4%, respectively. A potential underlying mechanism is revealed, where groove geometry enhances vortex effects and heat transfer. Interestingly, this study proposes a correlation that reveals the relationship between the averaged Nusselt number and groove area, rotational speed, and frequency. These findings provide theoretical insights for designing high-efficiency heat exchangers and open up new avenues for optimizing the performance of fluid dynamic systems. Full article
19 pages, 9540 KB  
Article
Enhancing Strength-Ductility Synergy in Rolled High-Thermal-Conductivity Mg-Mn-Ce Alloys via Accumulated Strain
by Xu Zhang, Taiki Nakata, Enyu Guo, Wenzhuo Xie, Wenke Wang, Chao Xu, Jing Zuo, Zelin Wu, Kaibo Nie, Xiaojun Wang, Shigeharu Kamado and Lin Geng
Materials 2025, 18(20), 4747; https://doi.org/10.3390/ma18204747 - 16 Oct 2025
Viewed by 216
Abstract
Magnesium (Mg) alloys are prized as the lightest structural materials but often suffer from a strength–ductility trade-off that is particularly challenging for applications demanding high thermal conductivity. Aiming to resolve this issue, rolled ternary Mg-0.9Mn-1.9Ce (wt.%) alloy sheets were designed and fabricated, and [...] Read more.
Magnesium (Mg) alloys are prized as the lightest structural materials but often suffer from a strength–ductility trade-off that is particularly challenging for applications demanding high thermal conductivity. Aiming to resolve this issue, rolled ternary Mg-0.9Mn-1.9Ce (wt.%) alloy sheets were designed and fabricated, and the influence of rolling strain on optimizing the property balance was systematically investigated. The cast alloy was homogenized and rolled to two accumulated strains to obtain S10 (90%) and S20 (95%), followed by microstructure characterization and mechanical/thermal evaluation. Compared with S10, S20 developed finer, more equiaxed grains and a weaker basal texture via enhanced dynamic recrystallization; concurrent fragmentation and uniform dispersion of second-phase particles further contributed to strengthening. Consequently, S20 achieved 14.2% and 13.7% increases in yield and tensile strengths, respectively, with a slight improvement in elongation, while retaining high thermal conductivity (134.4 W·m−1·K−1 vs. 138.1 W·m−1·K−1 for S10). The minimal conductivity penalty is attributed to the low solute level in the α-Mg matrix, which limits electron scattering. These results provide experimental and mechanistic guidance for developing rolling Mg alloys that combine high mechanical performance with excellent thermal efficiency. Full article
(This article belongs to the Special Issue Processing of Metals and Alloys)
Show Figures

Figure 1

23 pages, 2355 KB  
Review
Environmentally Friendly PLA-Based Conductive Composites: Electrical and Mechanical Performance
by Nassima Naboulsi, Fatima Majid and Mohamed Louzazni
J. Compos. Sci. 2025, 9(10), 571; https://doi.org/10.3390/jcs9100571 - 16 Oct 2025
Viewed by 363
Abstract
This review investigates recent progress in the field of PLA-based conductive composites for 3D printing. First, it introduces PLA as a biodegradable thermoplastic polymer, describing its processing and recycling methods and highlighting its environmental advantages over conventional polymers. In order to evaluate its [...] Read more.
This review investigates recent progress in the field of PLA-based conductive composites for 3D printing. First, it introduces PLA as a biodegradable thermoplastic polymer, describing its processing and recycling methods and highlighting its environmental advantages over conventional polymers. In order to evaluate its printability, PLA is briefly compared to other commonly used thermoplastics in additive manufacturing. The review then examines the incorporation of conductive fillers such as carbon black, carbon nanotubes, graphene, and metal particles into the PLA matrix, with a particular focus on the percolation threshold and its effect on conductivity. Critical challenges such as filler dispersion, agglomeration, and conductivity anisotropy are also highlighted. Recent results are summarized to identify promising formulations that combine improved electrical performance with acceptable mechanical integrity, while also emphasizing the structural and morphological characteristics that govern these properties. Finally, potential applications in the fields of electronics, biomedicine, energy, and electromagnetic shielding are discussed. From an overall perspective, the review highlights that while PLA-based conductive composites show great potential for sustainable functional materials, further progress is needed to improve reproducibility, optimize processing parameters, and ensure reliable large-scale applications. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

18 pages, 1749 KB  
Article
Effect of Nitric Oxide on Adventitious Root Development from Cuttings of Sweetpotato and Associated Biochemical Changes
by Meng Wang, Jianghui Li, Yuhao Wu, Hongxing Zhang, Hui Wang and Lingyun Wang
Plants 2025, 14(20), 3183; https://doi.org/10.3390/plants14203183 - 16 Oct 2025
Viewed by 275
Abstract
Adventitious rooting is a key step for the clonal propagation of many economically important horticultural and woody species. Accumulating evidence suggests that nitric oxide (NO) serves as a key signaling molecule with key roles in root organogenesis. However, the role of NO in [...] Read more.
Adventitious rooting is a key step for the clonal propagation of many economically important horticultural and woody species. Accumulating evidence suggests that nitric oxide (NO) serves as a key signaling molecule with key roles in root organogenesis. However, the role of NO in adventitious root development and its underlying mechanism in sweetpotato cuttings remain to be clarified. In this study, a pot experiment was conducted using hydroponically cultured sweetpotato cuttings (Ipomoea batatas cv. ‘Jin Ganshu No. 9’) treated with different concentrations of sodium nitroprusside (SNP, an NO donor) solution (0, 10, 50, 100, 200, and 500 μmol·L−1). Three treatments were established: Control, SNP (the optimal concentration of SNP), and SNP + 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, an NO scavenger). The results showed that NO promoted adventitious rooting in a dose-dependent manner, with the maximal biological response observed at 100 μM SNP. At this concentration, the root number and length of adventitious roots increased by 1.22 and 2.36 times, respectively, compared to the control. SNP treatment increased fresh root weight, dry root weight, the content of soluble sugar, soluble protein, chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (a + b) [Chl(a + b)], as well as the activities of peroxidase (POD), polyphenol oxidase (PPO), and indole acetic acid oxidase (IAAO). It also enhanced the levels of maximum fluorescence (Fm), maximum photochemical efficiency of photosystem II (Fv/Fm), absorbed light energy (ABS/RC), trapped energy flux (TRo/RC), and electron transport flux (ETo/RC), while decreasing starch content and initial fluorescence (Fo). On the 7th day, the SNP treatment significantly enhanced several biochemical parameters compared to the control. We observed an increase in many of the parameters: POD activity by 1.35 times, PPO activity by 0.55 times, chlorophyll content (Chl a by 0.66 times, Chl b by 0.22 times, and Chl a + b by 0.57 times), and photosynthesis parameters by 28–98%. Meanwhile, starch content and Fo in the SNP treatment decreased by 10.77% and 23.86%, respectively, compared to the control. Furthermore, the positive effects of NO on adventitious root development and associated biochemical parameters were reversed by the NO scavenger cPTIO. Additionally, significant and positive correlations were observed between morphological characteristics and most physiological indicators. Collectively, these results demonstrate that NO promotes adventitious root formation, which may be by enhancing rooting-related enzyme activities, improving photosynthetic performance in leaves, and accelerating the metabolism of soluble sugar, soluble protein, and starch. Full article
Show Figures

Figure 1

16 pages, 4007 KB  
Article
Investigation of Mechanical, Thermal and Microstructural Properties of Waste Micro-Nano Nichrome (NiCr 80/20) Powder-Reinforced Composites with Polyamide 66 (PA66) Matrix
by Mehmet Ceviz
Polymers 2025, 17(20), 2753; https://doi.org/10.3390/polym17202753 - 15 Oct 2025
Viewed by 232
Abstract
This study investigates the mechanical, thermal, electrical, and microstructural properties of polyamide 66 (PA66) composites reinforced with waste-derived micro–nano NiCr (80/20) powders. Composites containing 2, 5, and 8 wt% NiCr were prepared using thermokinetic mixing and compression molding, followed by characterization via tensile [...] Read more.
This study investigates the mechanical, thermal, electrical, and microstructural properties of polyamide 66 (PA66) composites reinforced with waste-derived micro–nano NiCr (80/20) powders. Composites containing 2, 5, and 8 wt% NiCr were prepared using thermokinetic mixing and compression molding, followed by characterization via tensile testing, Shore D hardness, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), and thermal/electrical conductivity measurements. Results showed a progressive increase in tensile modulus, tensile strength, hardness, and thermal conductivity with increasing NiCr content, reaching maximum values at 8 wt% filler. However, elongation at break decreased, indicating reduced ductility due to restricted polymer chain mobility. DSC and FTIR analyses revealed that low NiCr loadings promoted nucleation and crystallinity, while higher contents disrupted crystalline domains. Electrical conductivity exhibited a slight upward trend, remaining sub-percolative up to 8 wt% NiCr; conductivity modulation is modest at high filler loadings. SEM–EDS confirmed uniform dispersion at low–moderate contents and agglomeration at higher levels. The use of industrial waste NiCr powder not only enhanced material performance but also contributed to sustainable materials engineering by valorizing by-products from the coatings industry. These findings suggest that NiCr/PA66 composites have potential applications in automotive, electronics, and thermal management systems requiring improved mechanical rigidity and heat dissipation. Full article
(This article belongs to the Special Issue Smart Polymers and Composites in Multifunctional Systems)
Show Figures

Graphical abstract

Back to TopTop