Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = electrohydrodynamic behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3759 KB  
Review
3D Bioprinted Neural Tissues: Emerging Strategies for Regeneration and Disease Modeling
by Taekyung Choi, Jinseok Park, Suvin Lee, Hee-Jae Jeon, Byeong Hee Kim, Hyun-Ouk Kim and Hyungseok Lee
Pharmaceutics 2025, 17(9), 1176; https://doi.org/10.3390/pharmaceutics17091176 - 10 Sep 2025
Viewed by 1107
Abstract
Three-dimensional (3D) bioprinting has emerged as a versatile platform in regenerative medicine, capable of replicating the structural and functional intricacies of the central and peripheral nervous systems (CNS and PNS). Beyond structural repair, it enables the construction of engineered tissues that closely recapitulate [...] Read more.
Three-dimensional (3D) bioprinting has emerged as a versatile platform in regenerative medicine, capable of replicating the structural and functional intricacies of the central and peripheral nervous systems (CNS and PNS). Beyond structural repair, it enables the construction of engineered tissues that closely recapitulate neural microenvironments. This review provides a comprehensive and critical synthesis of current bioprinting strategies for neural tissue engineering, with particular emphasis on comparing natural, synthetic, and hybrid polymer-based bioinks from mechanistic and translational perspectives. Distinctively, it highlights gradient-based modulation of Schwann cell behavior and axonal pathfinding using mechanically and chemically patterned constructs. Special attention is given to printing modalities such as extrusion, inkjet, and electrohydrodynamic jet printing, examining their respective capacities for controlling spatial organization and microenvironmental cues. Representative applications include brain development models, neurodegenerative disease platforms, and glioblastoma scaffolds with integrated functional properties. Furthermore, this review identifies key translational barriers—including host tissue integration and bioink standardization—and explores emerging directions such as artificial intelligence-guided biofabrication and organ-on-chip integration, to enhance the fidelity and therapeutic potential of neural bioprinted constructs. Full article
Show Figures

Figure 1

22 pages, 17668 KB  
Article
Enhancing the Aerodynamic Performance of Airfoils Using DBD Plasma Actuators: An Experimental Approach
by Eder Ricoy-Zárate, Horacio Martínez, Erik Rosado-Tamariz, Andrés Blanco-Ortega and Rafael Campos-Amezcua
Processes 2025, 13(9), 2725; https://doi.org/10.3390/pr13092725 - 26 Aug 2025
Viewed by 1309
Abstract
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes [...] Read more.
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes were configured asymmetrically, with a 2 mm gap and copper electrodes that are 0.20 mm in thickness. A high voltage of 6 kV was applied, resulting in a current of 0.071 mA and a power output of 0.426 W. Optical emission spectroscopy identified the excited components through the interaction of the high-voltage AC electric field with air molecules: N2, N2+, O2+, and O. The electrohydrodynamic force mainly results from the observed charged ions that, when accelerated by the electric field, transfer momentum to neutral molecules via collisions, leading to the formation of the observed jet plasma. The findings indicated a notable enhancement in aerodynamic performance attributable to the electrohydrodynamic (EHD) flow generated by the plasma. The estimated electrohydrodynamic force (8.712×104 N) is capable of maintaining the flow attached to the airfoil surface, thereby augmenting flow circulation and, consequently, enhancing the lift force. According to blade element theory, the lift and drag coefficients directly influence the torque and mechanical power generated by the wind turbine rotor. Schlieren imaging was utilized to observe alterations in air density and flow patterns. Lissajous curve analysis was used to examine the electrical discharge behavior, showing that only 7.04% of the input power was converted into heat. This indicates that nearly all input electric energy was transformed into EHD force by the atmospheric pressure plasma. Compared to traditional aerodynamic control methods, DBD actuators are a feasible alternative for small wind turbines due to their lightweight design, absence of moving parts, ability to be surface-embedded without altering blade geometry, and capacity to generate active, dynamic flow control with reduced energy consumption. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

17 pages, 1560 KB  
Review
Revolutionizing Electrospinning: A Review of Alternating Current and Pulsed Voltage Techniques for Nanofiber Production
by Yasir Al Saif and Richárd Cselkó
Processes 2025, 13(7), 2048; https://doi.org/10.3390/pr13072048 - 27 Jun 2025
Viewed by 1496
Abstract
Electrospinning has evolved into a vital nanofiber production technique with broad applications across biomedical, environmental, and industrial sectors. Alternating current (AC) and pulsed voltage (PV) electrospinning offer transformative alternatives by utilizing time-varying electric fields to overcome the drawbacks of DC electrospinning by employing [...] Read more.
Electrospinning has evolved into a vital nanofiber production technique with broad applications across biomedical, environmental, and industrial sectors. Alternating current (AC) and pulsed voltage (PV) electrospinning offer transformative alternatives by utilizing time-varying electric fields to overcome the drawbacks of DC electrospinning by employing an oscillating electric field that facilitates balanced charge dynamics, improved jet stability, and collectorless operation, leading to enhanced fiber alignment and significantly higher production rates, with reports exceeding 20 g/h. Conversely, PV electrospinning applies intermittent high-voltage pulses, offering precise control over jet initiation and termination. This method enables the fabrication of ultrafine, bead-free, and structurally uniform fibers, making it particularly suitable for biomedical applications such as controlled drug delivery and tissue scaffolds. Both techniques support tunable fiber morphology, reduced diameter variability, and improved structural uniformity, contributing to the advancement of high-performance nanofiber materials. This review examines the underlying electrohydrodynamic mechanisms, charge transport behavior, equipment configurations, and performance metrics associated with AC and PV electrospinning. It further highlights key innovations, current limitations in scalability and standardization, and prospective research directions. Full article
(This article belongs to the Special Issue Advances in Properties and Applications of Electrospun Fibers)
Show Figures

Figure 1

19 pages, 6029 KB  
Article
Vitamin E Microencapsulation via Electrohydrodynamic Techniques for Potential Use in Skin Care and Dermatological Applications
by Daniela Dias and Berta Nogueiro Estevinho
Molecules 2025, 30(11), 2306; https://doi.org/10.3390/molecules30112306 - 24 May 2025
Viewed by 2023
Abstract
Vitamin E is widely used in cosmetics and dermatological applications for its antioxidant, anti-inflammatory, and healing properties, yet its industrial use is limited by poor stability and bioavailability. To address these challenges, this study developed zein-based microstructures encapsulating vitamin E using electrohydrodynamic (EHD) [...] Read more.
Vitamin E is widely used in cosmetics and dermatological applications for its antioxidant, anti-inflammatory, and healing properties, yet its industrial use is limited by poor stability and bioavailability. To address these challenges, this study developed zein-based microstructures encapsulating vitamin E using electrohydrodynamic (EHD) techniques and evaluated how zein concentration affects morphology and release behavior. The SEM analysis showed that biopolymer (zein) concentration significantly affects microstructure morphology. At low concentrations (1%, 5%, and 15% (w/v)), micro/nanoparticles are formed, and high concentrations (30% (w/v)) yielded only fibers. The average size of the structures produced with zein (1–15% w/v) ranged from 0.38 to 0.90 µm, as measured using the program ImageJ (v1.54d). Structures containing vitamin E were generally smaller than those without. For electrospun fibers made with 30% zein, diameters ranged from 0.49 to 0.74 µm, with vitamin E-containing fibers also being thinner. Conductivity also influenced morphology; higher conductivity developed fibers, while lower conductivity formed particles. The solution with 15% (w/v) zein + 1% (w/w) vitamin E showed a conductivity of 1276 μS, similar to the 15% zein solution (1280 μS), indicating that vitamin E addition had no significant effect on conductivity. Release assays revealed that structures produced with low zein concentrations led to immediate release, while structured made with higher concentrations, prolonged release. A preliminary cosmetic formulation test has been conducted. The vitamin E microstructures were successfully incorporated into aloe vera hydrogel and coconut oil to show their potential for cosmetic applications. Full article
Show Figures

Figure 1

16 pages, 4337 KB  
Article
Experimental Analysis of Electrohydrodynamic Jet Actuation Modes Based on the Phase Doppler Technique
by Gustavo Nunes, Miguel Moreira, Frederico Rodrigues and José Páscoa
Actuators 2025, 14(3), 141; https://doi.org/10.3390/act14030141 - 13 Mar 2025
Viewed by 842
Abstract
Electrosprays have garnered significant interest across various fields, from automotive painting to aerospace propulsion, due to their versatility and precision. This study aims to explore the formation and behavior of the Taylor cone in electrospray systems through the observation of the different characteristics [...] Read more.
Electrosprays have garnered significant interest across various fields, from automotive painting to aerospace propulsion, due to their versatility and precision. This study aims to explore the formation and behavior of the Taylor cone in electrospray systems through the observation of the different characteristics of the produced droplets, in a way to enhance the control of the electrohydrodynamic jet. To obtain these results, the SpraySpy equipment was used, based on the phase Doppler technique, obtaining several characteristics of the droplets, such as velocity, size and distribution for a single liquid, acetone. These characteristics were acquired by varying parameters, namely the distance between the emitter and the collector, the liquid flow rate and the diameter of the emitter. Additionally, a high-speed camera was used to capture the cone angle, in the same operating conditions. The findings revealed a considerable decrease in particle velocity with an increase in the flow rate, while droplet size exhibited a noticeable tendency to grow under the increase in the emitter diameter. These insights aim to provide a deeper understanding of the relationship between these operational parameters and droplet behavior, contributing to the improvement of electrospray applications. Full article
Show Figures

Figure 1

14 pages, 26007 KB  
Article
Study of Charged Nanodroplet Deposition into Microcavity Through Many-Body Dissipative Particle Dynamics
by Yiwei Jin, Jiankui Chen, Wei Chen and Zhouping Yin
Micromachines 2025, 16(3), 278; https://doi.org/10.3390/mi16030278 - 27 Feb 2025
Viewed by 667
Abstract
For a near-eye display, a resolution of over 10,000 pixels per inch (PPI) for the display device is needed to eliminate the “screen door effect” and have better display quality. Electrohydrodynamic (EHD) printing techniques, which have the advantages of a high resolution, wide [...] Read more.
For a near-eye display, a resolution of over 10,000 pixels per inch (PPI) for the display device is needed to eliminate the “screen door effect” and have better display quality. Electrohydrodynamic (EHD) printing techniques, which have the advantages of a high resolution, wide material applicability and flexibility in patterning, have been widely used in the printing of high-resolution structures. However, due to factors such as the extremely small size of the droplets, the electric charge, the electric field, and the unavoidable positioning error, various deposition defects can occur. For droplets at a nanoscale, the dynamic deposition process is hard to observe. The continuum hypothesis fails and the fluid cannot be described by the traditional Navier–Stokes equation. In this work, the behaviors of charged nanodroplet deposition into a microcavity in an electric field are studied. The many-body dissipative particle dynamics (MDPD) method is used to examine the deformation of the nanodroplet during the impact process at a mesoscale. The dynamic process of charged droplet deposition into a microcavity under an electric field is revealed. Strategies for failure-free printing are proposed by analyzing the influences of the impact speeds, positioning errors, charge levels and electric intensities on the out-of-pixel spread length. The relationship between the internal charge moves and the deformation of the charged droplet in the deposition process is first discussed. The spreading theory of charged droplet deposition into a microcavity with a positioning error is established by analyzing the Coulombic capillary number. Moreover, the printing parameter space that results in successful printing is acquired. Full article
Show Figures

Figure 1

23 pages, 4816 KB  
Article
Eco-Friendly Alternatives to Toluene-Based 2D Inks for Inkjet and Electrohydrodynamic Jet Printing Processes: A Rheological Study
by Pedro C. Rijo, Ilaria Tocci and Francisco J. Galindo-Rosales
Micromachines 2025, 16(2), 130; https://doi.org/10.3390/mi16020130 - 23 Jan 2025
Viewed by 1255
Abstract
Green sustainable solvents have emerged as promising alternatives to petroleum-derived options, such as toluene. This study demonstrates the use of cyrene as an effective exfoliation medium for graphene nanoplatelets (GNPs) and hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) particles. The [...] Read more.
Green sustainable solvents have emerged as promising alternatives to petroleum-derived options, such as toluene. This study demonstrates the use of cyrene as an effective exfoliation medium for graphene nanoplatelets (GNPs) and hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) particles. The incorporation of polyvinylpyrrolidone (PVP) attenuates the shear-thinning behavior of GNP and hBN suspensions, maintaining a constant shear viscosity over a wide range of shear rates regardless of PVP molecular weight. Despite the presence of polymer, elasticity is hindered by inertia effects, making it impossible to accurately measure the extensional relaxation time in the capillary breakup extensional rheometer (CaBER). Assuming the weak elasticity of the formulations has a negligible impact on the breakup mechanism, we estimated droplet sizes for drop-on-demand (DoD) inkjet printing and electrohydrodynamic (EHD) jet printing based on fluid properties, i.e., viscosity, surface tension and density, and nozzle inner diameter (Dnozzle). Results indicate that the droplet size ratio (Ddrop/Dnozzle) in DoD printing can be up to two orders of magnitude higher than the one predicted for EHD jet printing at the same flow rate. This work highlights the potential of cyrene-based 2D inks as eco-friendly alternatives for advanced printing technologies. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Emerging Applications)
Show Figures

Figure 1

21 pages, 4819 KB  
Article
Methane/Air Flame Control in Non-Premixed Bluff Body Burners Using Ring-Type Plasma Actuators
by Fatemeh Bagherighajari, Mohammadmahdi Abdollahzadehsangroudi and José C. Páscoa
Actuators 2025, 14(2), 47; https://doi.org/10.3390/act14020047 - 22 Jan 2025
Viewed by 1066
Abstract
Enhancing the combustion efficiency and flame stability in conventional systems is essential for reducing carbon emissions and advancing sustainable energy solutions. In this context, electrohydrodynamic plasma actuators offer a promising active control method for modifying and regulating flame characteristics. This study presents a [...] Read more.
Enhancing the combustion efficiency and flame stability in conventional systems is essential for reducing carbon emissions and advancing sustainable energy solutions. In this context, electrohydrodynamic plasma actuators offer a promising active control method for modifying and regulating flame characteristics. This study presents a numerical investigation into the effects of a ring-type plasma actuator positioned on the co-flow air side of a non-premixed turbulent methane/air combustion system—an approach not previously reported in the literature. The ring-type plasma actuator was designed by placing electrodes along the perimeter of the small diameter wall of the air duct. The impact of the plasma actuator on the reacting flow field within the burner was analyzed, with a focus on its influence on the flow dynamics and flame structure. The results, visualized through velocity and temperature contours, as well as flow streamlines, provide insight into the actuator’s effect on flame behavior. Two operating modes of the plasma actuators were evaluated: co-flow mode, where the aerodynamic effect of the plasma actuators was directed downstream; and counter-flow mode, where the effects were directed upstream. The findings indicate that the co-flow actuation positively reduces the flame height and enhances the flame anchoring at the root, whereas counter-flow actuation slightly weakens the flame root. Numerical simulations further revealed that co-flow actuation marginally increases the energy release by approximately 0.13%, while counter-flow actuation reduces the energy release by around 7.8%. Full article
Show Figures

Figure 1

26 pages, 5832 KB  
Article
Three-Dimensional-Printed GelMA-KerMA Composite Patches as an Innovative Platform for Potential Tissue Engineering of Tympanic Membrane Perforations
by Tuba Bedir, Dilruba Baykara, Ridvan Yildirim, Ayse Ceren Calikoglu Koyuncu, Ali Sahin, Elif Kaya, Gulgun Bosgelmez Tinaz, Mert Akin Insel, Murat Topuzogulları, Oguzhan Gunduz, Cem Bulent Ustundag and Roger Narayan
Nanomaterials 2024, 14(7), 563; https://doi.org/10.3390/nano14070563 - 23 Mar 2024
Cited by 12 | Viewed by 4379
Abstract
Tympanic membrane (TM) perforations, primarily induced by middle ear infections, the introduction of foreign objects into the ear, and acoustic trauma, lead to hearing abnormalities and ear infections. We describe the design and fabrication of a novel composite patch containing photocrosslinkable gelatin methacryloyl [...] Read more.
Tympanic membrane (TM) perforations, primarily induced by middle ear infections, the introduction of foreign objects into the ear, and acoustic trauma, lead to hearing abnormalities and ear infections. We describe the design and fabrication of a novel composite patch containing photocrosslinkable gelatin methacryloyl (GelMA) and keratin methacryloyl (KerMA) hydrogels. GelMA-KerMA patches containing conical microneedles in their design were developed using the digital light processing (DLP) 3D printing approach. Following this, the patches were biofunctionalized by applying a coaxial coating with PVA nanoparticles loaded with gentamicin (GEN) and fibroblast growth factor (FGF-2) with the Electrohydrodynamic Atomization (EHDA) method. The developed nanoparticle-coated 3D-printed patches were evaluated in terms of their chemical, morphological, mechanical, swelling, and degradation behavior. In addition, the GEN and FGF-2 release profiles, antimicrobial properties, and biocompatibility of the patches were examined in vitro. The morphological assessment verified the successful fabrication and nanoparticle coating of the 3D-printed GelMA-KerMA patches. The outcomes of antibacterial tests demonstrated that GEN@PVA/GelMA-KerMA patches exhibited substantial antibacterial efficacy against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Furthermore, cell culture studies revealed that GelMA-KerMA patches were biocompatible with human adipose-derived mesenchymal stem cells (hADMSC) and supported cell attachment and proliferation without any cytotoxicity. These findings indicated that biofunctional 3D-printed GelMA-KerMA patches have the potential to be a promising therapeutic approach for addressing TM perforations. Full article
(This article belongs to the Special Issue Advances in Nanomedicine Biotechnologies)
Show Figures

Figure 1

14 pages, 27135 KB  
Article
A Simple Non-Embedded Single Capillary Device for On-Demand Complex Emulsion Formation
by Mohammad Mahdi Karim Khani, Mehrnaz Oveysi, Vahid Bazargan and Marco Marengo
Micromachines 2024, 15(2), 239; https://doi.org/10.3390/mi15020239 - 4 Feb 2024
Viewed by 1669
Abstract
This study includes an examination of the design, fabrication, and experimentation of a rudimentary droplet generator. The device has potential applications in on-demand double and higher-order emulsions as well as tailored emulsions with numerous cores. The phenomenon of a pendant double droplet creation [...] Read more.
This study includes an examination of the design, fabrication, and experimentation of a rudimentary droplet generator. The device has potential applications in on-demand double and higher-order emulsions as well as tailored emulsions with numerous cores. The phenomenon of a pendant double droplet creation is observed when an inner phase is transported through a capillary, while a middle phase envelops the external surface of the capillary. This leads to the occurrence of a pinching-off process at the tip of the pulled capillary. Following this, the double droplet is introduced into a container that is filled with the outer phase. The present study examines the force equilibrium throughout the droplet break-up process and aims to forecast the final morphology of the droplets within the container by considering the impact of interfacial tension ratios. The shell thickness in a core–shell formation can be calculated based on the inner and middle phase flow rates as well as the middle droplet formation period. The present platform, which enables the simple production of double and higher emulsions, exhibits promising prospects for the controlled manufacturing of complex emulsions. This technology holds potential for various applications, including the experimental exploration of collision behavior or electro-hydrodynamics in emulsions as well as millimeter-size engineered microparticle fabrication. Full article
(This article belongs to the Special Issue Droplet Microfluidics: Fundamentals and Its Advanced Applications)
Show Figures

Figure 1

24 pages, 13168 KB  
Article
Large Eddy Simulation of Pulsed Film Cooling with a Dielectric Barrier Discharge Plasma Actuator
by Zhou Shen, Beimeng Hu, Guozhan Li and Hongjun Zhang
Aerospace 2024, 11(1), 28; https://doi.org/10.3390/aerospace11010028 - 28 Dec 2023
Cited by 3 | Viewed by 1604
Abstract
The effects of the coolant pulsation and the plasma aerodynamic actuation (PAA) on the film cooling are herein explored via large eddy simulations. The electrohydrodynamic force derived from the PAA was solved through the phenomenological plasma model. The Strouhal number of the sinusoidal [...] Read more.
The effects of the coolant pulsation and the plasma aerodynamic actuation (PAA) on the film cooling are herein explored via large eddy simulations. The electrohydrodynamic force derived from the PAA was solved through the phenomenological plasma model. The Strouhal number of the sinusoidal coolant pulsation and the averaged pulsation blowing ratio were 0.25 and 1.0, respectively. Comprehensive analyses were carried out on the time-averaged flow fields, and the results reveal that the pulsed cooling jet might cause a deeper penetration into the crossflow, and this phenomenon could be remarkably mitigated by the downward force of the PAA. Comparing steady film cooling to pulsed film cooling revealed a modest 15.1% reduction in efficiency, while the application of the dielectric barrier discharge plasma actuator (DBDPA) substantially enhanced the pulsed film cooling efficiency by 42.1%. Moreover, the counter-rotating vortex pair (CRVP) was enlarged and lifted off from the wall more poorly due to the coolant pulsation, and the PAA weakened the detrimental lift-off effect and entrainment of the CRVP. Then, the spatial–temporal development of the coherent structures was figured out by the alterations in the centerline temperature, reflecting the formation of the intermittent coherent structures rather than hairpin vortices due to the coolant pulsation, and their size and upcast behaviors were reduced by the PAA; thus, the turbulent integration of the coolant with the crossflow was suppressed fundamentally. Finally, the three-dimensional streamlines confirmed that the coherent structure dynamic behaviors were significantly regulated by the PAA for alleviating the adverse influences of the coolant pulsation. In summary, the PAA can effectively improve the pulsed film cooling efficiency by controlling the spatial–temporal development of the dominant coherent structures. Full article
Show Figures

Figure 1

26 pages, 5246 KB  
Review
Microfluidic Mixing: A Physics-Oriented Review
by Sri Manikandan Saravanakumar and Paul-Vahe Cicek
Micromachines 2023, 14(10), 1827; https://doi.org/10.3390/mi14101827 - 25 Sep 2023
Cited by 32 | Viewed by 8334
Abstract
This comprehensive review paper focuses on the intricate physics of microfluidics and their application in micromixing techniques. Various methods for enhancing mixing in microchannels are explored, with a keen emphasis on the underlying fluid dynamics principles. Geometrical micromixers employ complex channel designs to [...] Read more.
This comprehensive review paper focuses on the intricate physics of microfluidics and their application in micromixing techniques. Various methods for enhancing mixing in microchannels are explored, with a keen emphasis on the underlying fluid dynamics principles. Geometrical micromixers employ complex channel designs to induce fluid–fluid interface distortions, yielding efficient mixing while retaining manufacturing simplicity. These methods synergize effectively with external techniques, showcasing promising potential. Electrohydrodynamics harnesses electrokinetic phenomena like electroosmosis, electrophoresis, and electrothermal effects. These methods offer dynamic control over mixing parameters via applied voltage, frequency, and electrode positioning, although power consumption and heating can be drawbacks. Acoustofluidics leverages acoustic waves to drive microstreaming, offering localized yet far-reaching effects. Magnetohydrodynamics, though limited in applicability to certain fluids, showcases potential by utilizing magnetic fields to propel mixing. Selecting an approach hinges on trade-offs among complexity, efficiency, and compatibility with fluid properties. Understanding the physics of fluid behavior and rationalizing these techniques aids in tailoring the most suitable micromixing solution. In a rapidly advancing field, this paper provides a consolidated understanding of these techniques, facilitating the informed choice of approach for specific microfluidic mixing needs. Full article
(This article belongs to the Special Issue Feature Papers from Micromachines Reviewers 2023)
Show Figures

Figure 1

21 pages, 9480 KB  
Article
Study of Discharge Inception and Propagation in Liquid–Solid Insulation System under DC–LI Superimposed Constraints
by Younes Moufakkir, Ayyoub Zouaghi and Christian Vollaire
Energies 2023, 16(1), 172; https://doi.org/10.3390/en16010172 - 23 Dec 2022
Cited by 1 | Viewed by 1725
Abstract
High-voltage direct current (HVDC) links are starting to become widely implemented thanks to their interesting advantages such as reduced operation losses, the absence of reactive power, which allows energy transport via underground cables over long distances, and improved power control. The latter advantage [...] Read more.
High-voltage direct current (HVDC) links are starting to become widely implemented thanks to their interesting advantages such as reduced operation losses, the absence of reactive power, which allows energy transport via underground cables over long distances, and improved power control. The latter advantage is very essential for renewable energy resource integration into power grids. However, a thorough understanding of the behavior of insulation systems for HVDC components is critical so as to ensure a more reliable service. Indeed, the existence of the direct current (DC) voltage in HVDC components may induce surface and space charge accumulation that can stress insulation further or even promote discharge inception and propagation. As such, this work focuses on showcasing the effect of surface charge on streamers that develop on the interface of liquid–solid insulation due to the advent of lightning impulse (LI) voltage in the HVDC link. This study was performed using finite-element-based numerical simulations that include a quasi-electrostatic model for surface charge accumulation and an electrohydrodynamic fluid model for streamer initiation and propagation. The geometry used was point–plane configuration where the high voltage is applied to the needle electrode located above the liquid–solid interface. The obtained results suggest that streamer initiation is affected by both the accumulated surface charge density and polarity. For a positive streamer, an accumulation of positive surface charge increases the discharge inception voltage as a result of a weakening in the electric field, while an accumulation of negative surface charge decreases the discharge inception voltage due to an intensification in the electric field. Moreover, streamer travel distance and velocity are also both shown to be affected by surface charge accumulation. Full article
(This article belongs to the Topic High Voltage Engineering)
Show Figures

Figure 1

8 pages, 3079 KB  
Article
Oscillatory Motion of Water Droplets Both in Oil and on Superhydrophobic Surface under Corona Discharge
by Qiang Tang, Zongtang Zhang, Jia-Han Zhang, Feiran Tang, Chengjun Wang and Xiaxia Cui
Micromachines 2022, 13(12), 2229; https://doi.org/10.3390/mi13122229 - 15 Dec 2022
Cited by 7 | Viewed by 2202
Abstract
Charged droplets driven by Coulomb force are an important part of a droplet-based micro reactor. In this study, we realized the rapid oscillatory motion of droplets both in oil and on superhydrophobic surface by injecting charges through corona discharge. Distinct from the oscillatory [...] Read more.
Charged droplets driven by Coulomb force are an important part of a droplet-based micro reactor. In this study, we realized the rapid oscillatory motion of droplets both in oil and on superhydrophobic surface by injecting charges through corona discharge. Distinct from the oscillatory motion of water droplets under a DC electric field, charge injection can make the motion of water droplets more flexible. A droplet in the oil layer can move up and down regularly under the action of corona discharge, and the discharge voltage can control the movement period and height of the droplet. In addition, the left–right translation of droplets on a superhydrophobic surface can be achieved by injecting charges into the hydrophobic film surface through corona discharge. Two kinds of droplet motion behaviors are systematically analyzed, and the mechanism of droplet motion is explained. The present results could help establish new approaches to designing efficient machines in microfluidics and micromechanical equipment. Full article
(This article belongs to the Special Issue AC Electrokinetics in Microfluidic Devices, Volume II)
Show Figures

Figure 1

39 pages, 13383 KB  
Review
Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review
by Sakchi Bhushan, Sandhya Singh, Tushar Kanti Maiti, Chhavi Sharma, Dharm Dutt, Shubham Sharma, Changhe Li and Elsayed Mohamed Tag Eldin
Bioengineering 2022, 9(12), 728; https://doi.org/10.3390/bioengineering9120728 - 24 Nov 2022
Cited by 51 | Viewed by 11760
Abstract
Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone [...] Read more.
Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials. Full article
(This article belongs to the Special Issue Current Developments and Applications in Bone Tissue Engineering)
Show Figures

Figure 1

Back to TopTop