Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = electric double-layer (EDL) capacitance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5422 KiB  
Article
Revealing the Impact of Gel Electrolytes on the Performance of Organic Electrochemical Transistors
by Mancheng Li, Xiaoci Liang, Chuan Liu and Songjia Han
Gels 2025, 11(3), 202; https://doi.org/10.3390/gels11030202 - 14 Mar 2025
Viewed by 1122
Abstract
Gel electrolyte-gated organic electrochemical transistors (OECTs) are promising bioelectronic devices known for their high transconductance, low operating voltage, and integration with biological systems. Despite extensive research on the performance of OECTs, a precise model defining the dependence of OECT performance on gel electrolytes [...] Read more.
Gel electrolyte-gated organic electrochemical transistors (OECTs) are promising bioelectronic devices known for their high transconductance, low operating voltage, and integration with biological systems. Despite extensive research on the performance of OECTs, a precise model defining the dependence of OECT performance on gel electrolytes is still lacking. In this work, we refine the device model to comprehensively account for the electrical double layer (EDL)’s capacitance of the gel electrolyte. Both experimental data and theoretical calculations indicate that the maximum transconductance of the OECT is contingent upon ion concentration, drain voltage, and scan rate, highlighting a strong correlation between the transconductance and the hydrogel electrolyte. Overall, this model serves as a theoretical tool for improving the performance of OECTs, enabling the further development of bioelectronic devices. Full article
(This article belongs to the Special Issue Research on the Applications of Conductive Hydrogels)
Show Figures

Graphical abstract

15 pages, 2878 KiB  
Article
Preparation of Ion Composite Photosensitive Resin and Its Application in 3D-Printing Highly Sensitive Pressure Sensor
by Tong Guan, Huayang Li, Jinyun Liu, Wuxu Zhang, Siying Wang, Wentao Ye, Baoru Bian, Xiaohui Yi, Yuanzhao Wu, Yiwei Liu, Juan Du, Jie Shang and Run-Wei Li
Sensors 2025, 25(5), 1348; https://doi.org/10.3390/s25051348 - 22 Feb 2025
Cited by 1 | Viewed by 826
Abstract
Flexible pressure sensors play an extremely important role in the fields of intelligent medical treatment, humanoid robots, and so on. However, the low sensitivity and the small initial capacitance still limit its application and development. At present, the method of constructing the microstructure [...] Read more.
Flexible pressure sensors play an extremely important role in the fields of intelligent medical treatment, humanoid robots, and so on. However, the low sensitivity and the small initial capacitance still limit its application and development. At present, the method of constructing the microstructure of the dielectric layer is commonly used to improve the sensitivity of the sensor, but there are some problems, such as the complex process and inaccurate control of the microstructure. In this work, an ion composite photosensitive resin based on polyurethane acrylate and ionic liquids (ILs) was prepared. The high compatibility of the photosensitive resin and ILs was achieved by adding a chitooligosaccharide (COS) chain extender. The microstructure of the dielectric layer was optimized by digital light processing (DLP) 3D-printing. Due to the introduction of ILs to construct an electric double layer (EDL), the flexible pressure sensor exhibits a high sensitivity of 32.62 kPa−1, which is 12.2 times higher than that without ILs. It also has a wide range of 100 kPa and a fast response time of 51 ms. It has a good pressure response under different pressures and can realize the demonstration application of human health. Full article
(This article belongs to the Special Issue Wearable Sensors for Continuous Health Monitoring and Analysis)
Show Figures

Figure 1

9 pages, 2073 KiB  
Article
Carbon Nanotube Sheets/Elastomer Bilayer Harvesting Electrode with Biaxially Generated Electrical Energy
by Seongjae Oh, Hyeon Ji Kim, Seon Lee, Keon Jung Kim and Shi Hyeong Kim
Polymers 2024, 16(17), 2477; https://doi.org/10.3390/polym16172477 - 30 Aug 2024
Cited by 2 | Viewed by 1107
Abstract
Mechanical energy harvesters made from soft and flexible materials can be employed as energy sources for wearable and implantable devices. However, considering how human organs and joints expand and bend in many directions, the energy generated in response to a mechanical stimulus in [...] Read more.
Mechanical energy harvesters made from soft and flexible materials can be employed as energy sources for wearable and implantable devices. However, considering how human organs and joints expand and bend in many directions, the energy generated in response to a mechanical stimulus in only one direction limits the applicability of mechanical energy harvesters. Here, we report carbon nanotube (CNT) sheets/an elastomer bilayer harvesting electrode (CBHE) that converts two-axis mechanical stimulation into electrical energy. The novel microwinkled structure of the CBHE successfully demonstrates an electrochemical double-layer (EDL) capacitance change from biaxial mechanical stimulation, thereby generating electrical power (0.11 W kg−1). Additionally, the low modulus (0.16 MPa) and high deformability due to the elastomeric substrate suggest that the CBHE can be applied to the human body. Full article
(This article belongs to the Special Issue Advances in Natural Fiber Polymer Composites)
Show Figures

Graphical abstract

12 pages, 4013 KiB  
Article
Organic–Inorganic Hybrid Synaptic Transistors: Methyl-Silsesquioxanes-Based Electric Double Layer for Enhanced Synaptic Functionality and CMOS Compatibility
by Tae-Gyu Hwang, Hamin Park and Won-Ju Cho
Biomimetics 2024, 9(3), 157; https://doi.org/10.3390/biomimetics9030157 - 3 Mar 2024
Cited by 3 | Viewed by 2200
Abstract
Electrical double-layer (EDL) synaptic transistors based on organic materials exhibit low thermal and chemical stability and are thus incompatible with complementary metal oxide semiconductor (CMOS) processes involving high-temperature operations. This paper proposes organic–inorganic hybrid synaptic transistors using methyl silsesquioxane (MSQ) as the electrolyte. [...] Read more.
Electrical double-layer (EDL) synaptic transistors based on organic materials exhibit low thermal and chemical stability and are thus incompatible with complementary metal oxide semiconductor (CMOS) processes involving high-temperature operations. This paper proposes organic–inorganic hybrid synaptic transistors using methyl silsesquioxane (MSQ) as the electrolyte. MSQ, derived from the combination of inorganic silsesquioxanes and the organic methyl (−CH3) group, exhibits exceptional thermal and chemical stability, thus ensuring compatibility with CMOS processes. We fabricated Al/MSQ electrolyte/Pt capacitors, exhibiting a substantial capacitance of 1.89 µF/cm2 at 10 Hz. MSQ-based EDL synaptic transistors demonstrated various synaptic behaviors, such as excitatory post-synaptic current, paired-pulse facilitation, signal pass filtering, and spike-number-dependent plasticity. Additionally, we validated synaptic functions such as information storage and synapse weight adjustment, simulating brain synaptic operations through potentiation and depression. Notably, these synaptic operations demonstrated stability over five continuous operation cycles. Lastly, we trained a multi-layer artificial deep neural network (DNN) using a handwritten Modified National Institute of Standards and Technology image dataset. The DNN achieved an impressive recognition rate of 92.28%. The prepared MSQ-based EDL synaptic transistors, with excellent thermal/chemical stability, synaptic functionality, and compatibility with CMOS processes, harbor tremendous potential as materials for next-generation artificial synapse components. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration)
Show Figures

Figure 1

14 pages, 3756 KiB  
Article
Enhancement of the Synaptic Performance of Phosphorus-Enriched, Electric Double-Layer, Thin-Film Transistors
by Dong-Gyun Mah, Hamin Park and Won-Ju Cho
Electronics 2024, 13(4), 737; https://doi.org/10.3390/electronics13040737 - 11 Feb 2024
Cited by 2 | Viewed by 1888
Abstract
The primary objective of neuromorphic electronic devices is the implementation of neural networks that replicate the memory and learning functions of biological synapses. To exploit the advantages of electrolyte gate synaptic transistors operating like biological synapses, we engineered electric double-layer transistors (EDLTs) using [...] Read more.
The primary objective of neuromorphic electronic devices is the implementation of neural networks that replicate the memory and learning functions of biological synapses. To exploit the advantages of electrolyte gate synaptic transistors operating like biological synapses, we engineered electric double-layer transistors (EDLTs) using phosphorus-doped silicate glass (PSG). To investigate the effects of phosphorus on the EDL and synaptic behavior, undoped silicate spin-on-glass-based transistors were fabricated as a control group. Initially, we measured the frequency-dependent capacitance and double-sweep transfer curves for the metal-oxide-semiconductor (MOS) capacitors and MOS field-effect transistors. Subsequently, we analyzed the excitatory post-synaptic currents (EPSCs), including pre-synaptic single spikes, double spikes, and frequency variations. The capacitance and hysteresis window characteristics of the PSG for synaptic operations were verified. To assess the specific synaptic operational characteristics of PSG-EDLTs, we examined EPSCs based on the spike number and established synaptic weights in potentiation and depression (P/D) in relation to pre-synaptic variables. Normalizing the P/D results, we extracted the parameter values for the nonlinearity factor, asymmetric ratio, and dynamic range based on the pre-synaptic variables, revealing the trade-off relationships among them. Finally, based on artificial neural network simulations, we verified the high-recognition rate of PSG-EDLTs for handwritten digits. These results suggest that phosphorus-based EDLTs are beneficial for implementing high-performance artificial synaptic hardware. Full article
(This article belongs to the Special Issue Feature Papers in Semiconductor Devices)
Show Figures

Figure 1

11 pages, 3433 KiB  
Article
Low-Voltage Solution-Processed Zinc-Doped CuI Thin Film Transistors with NOR Logic and Artificial Synaptic Function
by Xiaomin Gan, Wei Dou, Wei Hou, Xing Yuan, Liuhui Lei, Yulan Zhou, Jia Yang, Diandian Chen, Weichang Zhou and Dongsheng Tang
Nanomaterials 2023, 13(16), 2345; https://doi.org/10.3390/nano13162345 - 15 Aug 2023
Cited by 2 | Viewed by 1977
Abstract
Low-voltage Zn-doped CuI thin film transistors (TFTs) gated by chitosan dielectric were fabricated at a low temperature. The Zn-doped CuI TFT exhibited a more superior on/off current ratio than CuI TFT due to the substitution or supplementation of copper vacancies by Zn ions. [...] Read more.
Low-voltage Zn-doped CuI thin film transistors (TFTs) gated by chitosan dielectric were fabricated at a low temperature. The Zn-doped CuI TFT exhibited a more superior on/off current ratio than CuI TFT due to the substitution or supplementation of copper vacancies by Zn ions. The Zn-doped CuI films were characterized by scanning electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy. The Zn-doped CuI TFTs exhibited an on/off current ratio of 1.58 × 104, a subthreshold swing of 70 mV/decade, and a field effect mobility of 0.40 cm2V−1s−1, demonstrating good operational stability. Due to the electric-double-layer (EDL) effect and high specific capacitance (17.3 μF/cm2) of chitosan gate dielectric, Zn-doped CuI TFT operates at a voltage below −2 V. The threshold voltage is −0.2 V. In particular, we have prepared Zn-doped CuI TFTs with two in-plane gates and NOR logic operation is implemented on such TFTs. In addition, using the ion relaxation effect and EDL effect of chitosan film, a simple pain neuron simulation is realized on such a p-type TFTs for the first time through the bottom gate to regulate the carrier transport of the channel. This p-type device has promising applications in low-cost electronic devices, complementary electronic circuit, and biosensors. Full article
(This article belongs to the Special Issue Nanomaterial-Based Nano-Electronic and Photonic Devices)
Show Figures

Figure 1

29 pages, 14189 KiB  
Review
Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface
by Yuan Gao, Hanchu Zhang, Bowen Song, Chun Zhao and Qifeng Lu
Biosensors 2023, 13(8), 787; https://doi.org/10.3390/bios13080787 - 3 Aug 2023
Cited by 9 | Viewed by 3880
Abstract
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. [...] Read more.
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. Especially, Electric Double Layer (EDL)-based epidermal sensors show great potential in the application of wearable electronics to detect biological signals due to their high sensitivity, fast response, and excellent stability. The advantages can be attributed to the biocompatibility of the materials, the flexibility of the devices, and the large capacitance due to the EDL effect. Furthermore, we discuss the potential of EDL epidermal electronics as wearable sensors for health monitoring and wound healing. These devices can analyze various biofluids, offering real-time feedback on parameters like pH, temperature, glucose, lactate, and oxygen levels, which aids in accurate diagnosis and effective treatment. Beyond healthcare, we explore the role of EDL epidermal electronics in human-machine interaction, particularly their application in prosthetics and pressure-sensing robots. By mimicking the flexibility and sensitivity of human skin, these devices enhance the functionality and user experience of these systems. This review summarizes the latest advancements in EDL-based epidermal electronic devices, offering a perspective for future research in this rapidly evolving field. Full article
(This article belongs to the Special Issue Epidermal Electronics and Implantable Devices)
Show Figures

Figure 1

11 pages, 6138 KiB  
Article
Synthesis of Low-Crystalline MnO2/MXene Composites for Capacitive Deionization with Efficient Desalination Capacity
by Zhumei Sun, Jun Peng, Shu Yang, Riya Jin, Changcheng Liu and Que Huang
Metals 2023, 13(6), 1047; https://doi.org/10.3390/met13061047 - 30 May 2023
Cited by 9 | Viewed by 2511
Abstract
MXene has drawn widespread attention as a potential material for electrode use in capacitive deionization (CDI). However, the applications of MXene are limited by its property of low electrical capacity. Herein, a MnO2/MXene composite was firstly evaluated in a capacitive deionization [...] Read more.
MXene has drawn widespread attention as a potential material for electrode use in capacitive deionization (CDI). However, the applications of MXene are limited by its property of low electrical capacity. Herein, a MnO2/MXene composite was firstly evaluated in a capacitive deionization system, in which the MnO2 acts as intercalation-type pseudocapacitive electrodes to enhance the electrical capacity, and MXene provides an electron conduction highway network that improves the charge transfer of the MnO2. The result showed that the low-crystallinity MnO2 with irregular particles was well-distributed on the surface of the MXene. The desalination capacity of 30.5 mg·g−1 is achieved at a voltage window of 1.2 V, which was higher than that of the reported pure MXene and MnO2. The electrical double-layer (EDL) capacitive and the diffusion-controlled processes are the main charge storage mechanisms, and the EDL contribution provides 50.3% to the total capacitance. This result suggests a promising direction for further applying a MnO2/MXene composite in CDI. Full article
(This article belongs to the Special Issue Manufacturing and Characterization of Metallic Electrode Materials)
Show Figures

Figure 1

13 pages, 3246 KiB  
Article
Synaptic Transistors Based on PVA: Chitosan Biopolymer Blended Electric-Double-Layer with High Ionic Conductivity
by Dong-Hee Lee, Hamin Park and Won-Ju Cho
Polymers 2023, 15(4), 896; https://doi.org/10.3390/polym15040896 - 10 Feb 2023
Cited by 13 | Viewed by 3177
Abstract
This study proposed a biocompatible polymeric organic material-based synaptic transistor gated with a biopolymer electrolyte. A polyvinyl alcohol (PVA):chitosan (CS) biopolymer blended electrolyte with high ionic conductivity was used as an electrical double layer (EDL). It served as a gate insulator with a [...] Read more.
This study proposed a biocompatible polymeric organic material-based synaptic transistor gated with a biopolymer electrolyte. A polyvinyl alcohol (PVA):chitosan (CS) biopolymer blended electrolyte with high ionic conductivity was used as an electrical double layer (EDL). It served as a gate insulator with a key function as an artificial synaptic transistor. The frequency-dependent capacitance characteristics of PVA:CS-based biopolymer EDL were evaluated using an EDL capacitor (Al/PVA: CS blended electrolyte-based EDL/Pt configuration). Consequently, the PVA:CS blended electrolyte behaved as an EDL owing to high capacitance (1.53 µF/cm2) at 100 Hz and internal mobile protonic ions. Electronic synaptic transistors fabricated using the PVA:CS blended electrolyte-based EDL membrane demonstrated basic artificial synaptic behaviors such as excitatory post-synaptic current modulation, paired-pulse facilitation, and dynamic signal-filtering functions by pre-synaptic spikes. In addition, the spike-timing-dependent plasticity was evaluated using synaptic spikes. The synaptic weight modulation was stable during repetitive spike cycles for potentiation and depression. Pattern recognition was conducted through a learning simulation for artificial neural networks (ANNs) using Modified National Institute of Standards and Technology datasheets to examine the neuromorphic computing system capability (high recognition rate of 92%). Therefore, the proposed synaptic transistor is suitable for ANNs and shows potential for biological and eco-friendly neuromorphic systems. Full article
(This article belongs to the Special Issue Renewable and Biodegradable Polymer-Based Materials and Applications)
Show Figures

Figure 1

13 pages, 4209 KiB  
Article
Molecular Dynamics Simulation of the Interfacial Structure and Differential Capacitance of [BMI+][PF6] Ionic Liquids on MoS2 Electrode
by Chenxuan Xu, Zhanpeng Xu, Yihai Wang, Junjie Yang, Honghui Chen, Qiuhua Liu, Gang Chen and Huachao Yang
Processes 2023, 11(2), 380; https://doi.org/10.3390/pr11020380 - 25 Jan 2023
Cited by 6 | Viewed by 2618
Abstract
MoS2 nanomaterials and ionic liquids (ILs) have attracted tremendous interest as the prime electrodes and electrolytes of supercapacitors. However, the corresponding charge storage mechanisms have not yet been clearly understood. Herein, we study the molecular-level energy storage mechanisms of the MoS2 [...] Read more.
MoS2 nanomaterials and ionic liquids (ILs) have attracted tremendous interest as the prime electrodes and electrolytes of supercapacitors. However, the corresponding charge storage mechanisms have not yet been clearly understood. Herein, we study the molecular-level energy storage mechanisms of the MoS2 electrode in imidazolium ionic liquid ([BMI+][PF6]) using molecular dynamics (MD) simulation. The electric double-layer (EDL) structures of MoS2 electrodes in [BMI+][PF6] electrolytes are comprehensively studied in terms of number density, MD snapshots, separation coefficient, and ion-electrode interaction energy. Based on this, the electric potential and electric field distributions are calculated by integrating Poisson equations. Importantly, a bell-shaped differential capacitance profile is proposed, different from the U-shaped curve from the conventional Gouy–Chapman theory. Especially, it can be well reproduced by the differential charge density curve in the Helmholtz layer. This indicates that the capacitive behaviors of the MoS2 electrode are primarily determined by the counterion population/structure in the EDL region 5.0 Å from the electrode surface. In the end, ion diffusion coefficients within different interfacial EDL regions are evaluated, revealing that dynamics are significantly suppressed by ~50% in the Helmholtz region. However, the dynamics can be recovered to a bulk state with the ion position 10 Å away from the electrode surface. The as-obtained insights reveal the charge storage mechanisms of MoS2 in ILs, which can provide useful guidance on improving the energy density of MoS2 supercapacitors. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability)
Show Figures

Figure 1

13 pages, 3512 KiB  
Article
Enhanced Synaptic Properties in Biocompatible Casein Electrolyte via Microwave-Assisted Efficient Solution Synthesis
by Hwi-Su Kim, Hamin Park and Won-Ju Cho
Polymers 2023, 15(2), 293; https://doi.org/10.3390/polym15020293 - 6 Jan 2023
Cited by 7 | Viewed by 2112
Abstract
In this study, we fabricated an electric double-layer transistor (EDLT), a synaptic device, by preparing a casein biopolymer electrolyte solution using an efficient microwave-assisted synthesis to replace the conventional heating (heat stirrer) synthesis. Microwave irradiation (MWI) is more efficient in transferring energy to [...] Read more.
In this study, we fabricated an electric double-layer transistor (EDLT), a synaptic device, by preparing a casein biopolymer electrolyte solution using an efficient microwave-assisted synthesis to replace the conventional heating (heat stirrer) synthesis. Microwave irradiation (MWI) is more efficient in transferring energy to materials than heat stirrer, which significantly reduces the preparation time for casein electrolytes. The capacitance–frequency characteristics of metal–insulator–metal configurations applying the casein electrolyte prepared through MWI or a heat stirrer were measured. The capacitance of the MWI synthetic casein was 3.58 μF/cm2 at 1 Hz, which was higher than that of the heat stirrer (1.78 μF/cm2), confirming a stronger EDL gating effect. Electrolyte-gated EDLTs using two different casein electrolytes as gate-insulating films were fabricated. The MWI synthetic casein exhibited superior EDLT electrical characteristics compared to the heat stirrer. Meanwhile, essential synaptic functions, including excitatory post-synaptic current, paired-pulse facilitation, signal filtering, and potentiation/depression, were successfully demonstrated in both EDLTs. However, MWI synthetic casein electrolyte-gated EDLT showed higher synaptic facilitation than the heat stirrer. Furthermore, we performed an MNIST handwritten-digit-recognition task using a multilayer artificial neural network and MWI synthetic casein EDLT achieved a higher recognition rate of 91.24%. The results suggest that microwave-assisted casein solution synthesis is an effective method for realizing biocompatible neuromorphic systems. Full article
(This article belongs to the Special Issue Advances in Biocompatible and Biodegradable Polymers II)
Show Figures

Figure 1

13 pages, 2636 KiB  
Article
Unveiling the Effects of Solvent Polarity within Graphene Based Electric Double-Layer Capacitors
by Chenxuan Xu, Jingdong Zhu, Dedi Li, Xu Qian, Gang Chen and Huachao Yang
Energies 2022, 15(24), 9487; https://doi.org/10.3390/en15249487 - 14 Dec 2022
Cited by 5 | Viewed by 2201
Abstract
Solvents have been considered to show a profound influence on the charge storage of electric double-layer capacitors (EDLCs). However, the corresponding mechanisms remain elusive and controversial. In this work, the influences of solvent dipole moment on the EDL structures, kinetic properties, and charging [...] Read more.
Solvents have been considered to show a profound influence on the charge storage of electric double-layer capacitors (EDLCs). However, the corresponding mechanisms remain elusive and controversial. In this work, the influences of solvent dipole moment on the EDL structures, kinetic properties, and charging mechanisms of graphene-based EDLCs are investigated with atomistic simulations. Specifically, electrolyte structuring is conspicuously modulated by solvents, where a sharp increment of capacitance (~325.6%) and kinetics (~10-fold) is documented upon the slight descent of polarity by ~33.0%. Unusually, such an impressive enhancement is primarily attributed to the suppressed interfacial electric fields stimulated by strong-polarity solvents in the proximity of electrodes, which goes beyond the previously observed issues that stemmed from the competitive interplays between ions and solvents. Moreover, a distinctive polarity-dependent charging mechanism (i.e., from pure counterion adsorption to coion desorption) is identified, which for the first time delineates the pivotal role of solvent polarity in manipulating the charge storage evolutions. The as-obtained findings highlight that exploiting the solvent effects could be a promising avenue to further advance the performances of EDLCs. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

11 pages, 2268 KiB  
Article
Biocompatible Potato-Starch Electrolyte-Based Coplanar Gate-Type Artificial Synaptic Transistors on Paper Substrates
by Hyun-Sik Choi, Young-Jun Lee, Hamin Park and Won-Ju Cho
Int. J. Mol. Sci. 2022, 23(24), 15901; https://doi.org/10.3390/ijms232415901 - 14 Dec 2022
Cited by 10 | Viewed by 2646
Abstract
In this study, we propose the use of artificial synaptic transistors with coplanar-gate structures fabricated on paper substrates comprising biocompatible and low-cost potato-starch electrolyte and indium–gallium–zinc oxide (IGZO) channels. The electrical double layer (EDL) gating effect of potato-starch electrolytes enabled the emulation of [...] Read more.
In this study, we propose the use of artificial synaptic transistors with coplanar-gate structures fabricated on paper substrates comprising biocompatible and low-cost potato-starch electrolyte and indium–gallium–zinc oxide (IGZO) channels. The electrical double layer (EDL) gating effect of potato-starch electrolytes enabled the emulation of biological synaptic plasticity. Frequency dependence measurements of capacitance using a metal-insulator-metal capacitor configuration showed a 1.27 μF/cm2 at a frequency of 10 Hz. Therefore, strong capacitive coupling was confirmed within the potato-starch electrolyte/IGZO channel interface owing to EDL formation because of internal proton migration. An electrical characteristics evaluation of the potato-starch EDL transistors through transfer and output curve resulted in counterclockwise hysteresis caused by proton migration in the electrolyte; the hysteresis window linearly increased with maximum gate voltage. A synaptic functionality evaluation with single-spike excitatory post-synaptic current (EPSC), paired-pulse facilitation (PPF), and multi-spike EPSC resulted in mimicking short-term synaptic plasticity and signal transmission in the biological neural network. Further, channel conductance modulation by repetitive presynaptic stimuli, comprising potentiation and depression pulses, enabled stable modulation of synaptic weights, thereby validating the long-term plasticity. Finally, recognition simulations on the Modified National Institute of Standards and Technology (MNIST) handwritten digit database yielded a 92% recognition rate, thereby demonstrating the applicability of the proposed synaptic device to the neuromorphic system. Full article
(This article belongs to the Special Issue Biopolymer Composites 2022)
Show Figures

Figure 1

13 pages, 3433 KiB  
Article
Effective Capacitance from Equivalent Electrical Circuit as a Tool for Monitoring Non-Adherent Cell Suspensions at Low Frequencies
by Alma De León-Hernández, Luisa Romero-Ornelas, Roberto G. Ramírez-Chavarría, Eva Ramón-Gallegos and Celia Sánchez-Pérez
Bioengineering 2022, 9(11), 697; https://doi.org/10.3390/bioengineering9110697 - 16 Nov 2022
Cited by 1 | Viewed by 2570
Abstract
Analyzing the electrical double layer (EDL) in electrical impedance spectroscopy (EIS) measurement at low frequencies remains a challenging task for sensing purposes. In this work, we propose two approaches to deal with the EDL in measuring impedance for particles and non-adherent cells in [...] Read more.
Analyzing the electrical double layer (EDL) in electrical impedance spectroscopy (EIS) measurement at low frequencies remains a challenging task for sensing purposes. In this work, we propose two approaches to deal with the EDL in measuring impedance for particles and non-adherent cells in an electrolytic suspension. The first approach is a simple procedure to compute a normalized electrical impedance spectrum named dispersed medium index (DMi). The second is the EIS modeling through an equivalent electric circuit based on the so-called effective capacitance (Cef), which unifies the EDL phenomena. Firstly, as an experiment under controlled conditions, we examine polymer particles of 6, 15, and 48 μm in diameter suspended in a 0.9% sodium chloride solution. Subsequently, we used K-562 cells and leukocytes suspended in a culture medium (RPMI-1640 supplemented) for a biological assay. As the main result, the DMi is a function of the particle concentration. In addition, it shows a tendency with the particle size; regardless, it is limited to a volume fraction of 0.03 × 10−4 to 58 × 10−4. The DMi is not significantly different between K-562 cells and leukocytes for most concentrations. On the other hand, the Cef exhibits high applicability to retrieve a function that describes the concentration for each particle size, the K-562 cells, and leukocytes. The Cef also shows a tendency with the particle size without limitation within the range tested, and it allows distinction between the K-562 and leukocytes in the 25 cells/µL to 400 cells/µL range. We achieved a simple method for determining an Cef by unifying the parameters of an equivalent electrical circuit from data obtained with a conventional potentiostat. This simple approach is affordable for characterizing the population of non-adherent cells suspended in a cell culture medium. Full article
(This article belongs to the Special Issue Women's Special Issue Series: Biosensors)
Show Figures

Figure 1

41 pages, 9412 KiB  
Review
Recent Advances in Capacitive Deionization: Research Progress and Application Prospects
by Meijun Liu, Mengyao He, Jinglong Han, Yueyang Sun, Hong Jiang, Zheng Li, Yuna Li and Haifeng Zhang
Sustainability 2022, 14(21), 14429; https://doi.org/10.3390/su142114429 - 3 Nov 2022
Cited by 27 | Viewed by 9260
Abstract
With the increasing global water shortage issue, the development of water desalination and wastewater recycling technology is particularly urgent. Capacitive deionization (CDI), as an emerging approach for water desalination and ion separation, has received extensive attention due to its high ion selectivity, high [...] Read more.
With the increasing global water shortage issue, the development of water desalination and wastewater recycling technology is particularly urgent. Capacitive deionization (CDI), as an emerging approach for water desalination and ion separation, has received extensive attention due to its high ion selectivity, high water recovery, and low energy consumption. To promote the further application of CDI technology, it is necessary to understand the latest research progress and application prospects. Here, considering electric double layers (EDLs) and two typical models, we conduct an in-depth discussion on the ion adsorption mechanism of CDI technology. Furthermore, we provide a comprehensive overview of recent advances in CDI technology optimization research, including optimization of cell architecture, electrode material design, and operating mode exploration. In addition, we summarize the development of CDI in past decades in novel application fields other than seawater desalination, mainly including ionic pollutant removal, recovery of resource-based substances such as lithium and nutrients, and development of coupling systems between CDI and other technologies. We then highlight the most serious challenges faced in the process of large-scale application of CDI. In the conclusion and outlook section, we focus on summarizing the overall development prospects of CDI technology, and we discuss the points that require special attention in future development. Full article
(This article belongs to the Special Issue Sustainable Advanced Water Treatment Technologies)
Show Figures

Figure 1

Back to TopTop