Enhancement of the Synaptic Performance of Phosphorus-Enriched, Electric Double-Layer, Thin-Film Transistors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Specifications
2.2. Synthesis of PSG and SOG Films
2.3. MOS Capacitor and Transistor Fabrication Using PSG and SOG Films
2.4. Characterization Method
3. Results and Discussion
3.1. Electrical Characteristics of PSG and SOG-Based MOS Capacitors
3.2. Comparison of EDL Operation between PSG and SOG-Based Transistors
3.3. Comparison of Synaptic Characteristics between PSG and SOG Transistors
3.4. Superiority of Phosphorus-Based PSG as an EDLT
3.5. Recognition Rate of PSG-EDLT in MNIST ANN Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94. [Google Scholar] [CrossRef]
- Chen, L.; Chen, P.; Lin, Z. Artificial intelligence in education: A review. IEEE Access 2020, 8, 75264–75278. [Google Scholar] [CrossRef]
- Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of artificial intelligence in transport: An overview. Sustainability 2019, 11, 189. [Google Scholar] [CrossRef]
- Ramos, C.; Augusto, J.C.; Shapiro, D. Ambient intelligence—The next step for artificial intelligence. IEEE Intell. Syst. 2008, 23, 15–18. [Google Scholar] [CrossRef]
- Huang, M.H.; Rust, R.; Maksimovic, V. The feeling economy: Managing in the next generation of artificial intelligence (AI). Calif. Manag. Rev. 2019, 61, 43–65. [Google Scholar] [CrossRef]
- Iannucci, R.A. Toward a dataflow/von Neumann hybrid architecture. Comput. Archit. News 1988, 16, 131–140. [Google Scholar] [CrossRef]
- Arikpo, I.I.; Ogban, F.U.; Eteng, I.E. Von neumann architecture and modern computers. Glob. J. Math. Sci. 2007, 6, 97–103. [Google Scholar] [CrossRef]
- Indiveri, G.; Liu, S.C. Memory and information processing in neuromorphic systems. Proc. IEEE 2015, 103, 1379–1397. [Google Scholar] [CrossRef]
- Nawrocki, R.A.; Voyles, R.M.; Shaheen, S.E. A mini review of neuromorphic architectures and implementations. IEEE Trans. Electron Devices 2016, 63, 3819–3829. [Google Scholar] [CrossRef]
- Fuller, E.J.; Keene, S.T.; Melianas, A.; Wang, Z.; Agarwal, S.; Li, Y.; Tuchman, Y.; James, C.D.; Marinella, M.J.; Yang, J.J.; et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 2019, 364, 570–574. [Google Scholar] [CrossRef]
- Burr, G.W.; Shelby, R.M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A.; et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124. [Google Scholar] [CrossRef]
- Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510. [Google Scholar] [CrossRef]
- Kotaleski, J.H.; Blackwell, K.T. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat. Rev. Neurosci. 2010, 11, 239–251. [Google Scholar] [CrossRef]
- Martin, E.A.; Lasseigne, A.M.; Miller, A.C. Understanding the molecular and cell biological mechanisms of electrical synapse formation. Front. Neuroanat. 2020, 14, 12. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Wang, Y.; Xu, X.; Fu, M.; Liu, Y.; Lin, Z.; Ling, H.; Gkoupidenis, P.; Yi, M.; et al. Thin-film transistors for emerging neuromorphic electronics: Fundamentals, materials, and pattern recognition. J. Mater. Chem. C. 2021, 9, 11464–11483. [Google Scholar] [CrossRef]
- Xiong, X.; Kang, J.; Hu, Q.; Gu, C.; Gao, T.; Li, X.; Wu, Y. Reconfigurable logic-in-memory and multilingual artificial synapses based on 2D heterostructures. Adv. Funct. Mater. 2020, 30, 1909645. [Google Scholar] [CrossRef]
- Jin, T.; Zheng, Y.; Gao, J.; Wang, Y.; Li, E.; Chen, H.; Pan, X.; Lin, M.; Chen, W. Controlling native oxidation of HfS2 for 2D materials based flash memory and artificial synapse. ACS Appl. Mater. Interfaces 2021, 13, 10639–10649. [Google Scholar] [CrossRef]
- Jang, S.; Jang, S.; Lee, E.H.; Kang, M.; Wang, G.; Kim, T.W. Ultrathin conformable organic artificial synapse for wearable intelligent device applications. ACS Appl. Mater. Interfaces 2018, 11, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yang, H.; Lv, D.; Yu, R.; Li, E.; He, L.; Chen, Q.; Chen, H.; Guo, T. High-performance organic synaptic transistors with an ultrathin active layer for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 8672–8681. [Google Scholar] [CrossRef]
- Du, H.; Lin, X.; Xu, Z.; Chu, D. Electric double-layer transistors: A review of recent progress. J. Mater. Sci. 2015, 50, 5641–5673. [Google Scholar] [CrossRef]
- Fu, Y.M.; Wan, C.J.; Zhu, L.Q.; Xiao, H.; Chen, X.D.; Wan, Q. Hodgkin–Huxley artificial synaptic membrane based on protonic/electronic hybrid neuromorphic transistors. Adv. Biosyst. 2018, 2, 1700198. [Google Scholar] [CrossRef]
- Onen, M.; Emond, N.; Li, J.; Yildiz, B.; Del Alamo, J.A. CMOS-compatible protonic programmable resistor based on phosphosilicate glass electrolyte for analog deep learning. Nano Lett. 2021, 21, 6111–6116. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Shimotani, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 2009, 19, 1046–1053. [Google Scholar] [CrossRef]
- Lu, K.; Li, X.; Sun, Q.; Pang, X.; Chen, J.; Minari, T.; Liu, X.; Song, Y. Solution-processed electronics for artificial synapses. Mater. Horiz. 2021, 8, 447–470. [Google Scholar] [CrossRef]
- Shao, F.; Yang, Y.; Zhu, L.Q.; Feng, P.; Wan, Q. Oxide-based synaptic transistors gated by sol–gel silica electrolytes. ACS Appl. Mater. Interfaces 2016, 8, 3050–3055. [Google Scholar] [CrossRef]
- Dominguez, M.A.; Pau, J.L.; Redondo-Cubero, A. Flexible zinc nitride thin-film transistors using spin-on glass as gate insulator. IEEE Trans. Electron Devices 2018, 65, 1014–1017. [Google Scholar] [CrossRef]
- Baek, Y.J.; Yun, E.J.; Bae, B.S. Effect of the spin-on-glass curing atmosphere on In–Ga–Zn–O thin-film transistors. J. Inf. Disp. 2020, 21, 229–234. [Google Scholar] [CrossRef]
- Xie, D.; Hu, W.; Jiang, J. Bidirectionally-trigged 2D MoS2 synapse through coplanar-gate electric-double-layer polymer coupling for neuromorphic complementary spatiotemporal learning. Org. Electron. 2018, 63, 120–128. [Google Scholar] [CrossRef]
- Chen, K.T.; Shih, L.C.; Mao, S.C.; Chen, J.S. Mimicking Pain-Perceptual Sensitization and Pattern Recognition Based on Capacitance-and Conductance-Regulated Neuroplasticity in Neural Network. ACS Appl. Mater. Interfaces 2023, 15, 9593–9603. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, J.; Yu, R.; Zhou, Y.; Yang, Q.; Li, E.; Chen, Q.; Chen, H.; Guo, T. Tuning the synaptic behaviors of biocompatible synaptic transistor through ion-doping. Org. Electron. 2021, 89, 106019. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, H.; Cho, W.J. Biocompatible casein electrolyte-based electric-double-layer for artificial synaptic transistors. Nanomaterials 2022, 12, 2596. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhu, L.Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 2015, 27, 5599–5604. [Google Scholar] [CrossRef] [PubMed]
- Xi, F.; Han, Y.; Liu, M.; Bae, J.H.; Tiedemann, A.; Grützmacher, D.; Zhao, Q.T. Artificial synapses based on ferroelectric Schottky barrier field-effect transistors for neuromorphic applications. ACS Appl. Mater. Interfaces 2021, 13, 32005–32012. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yu, S. Impact of non-ideal characteristics of resistive synaptic devices on implementing convolutional neural networks. IEEE J. Emerg. Sel. 2019, 9, 570–579. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Bándy, E.; Rencz, M. The effect of heat treatment on spin-on oxide glasses in solar cell application. In Proceedings of the 19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Berlin, Germany, 25–27 September 2013. [Google Scholar]
- Bhusari, D.; Li, J.; Jayachandran, P.J.; Moore, C.; Kohl, P.A. Development of P-doped SiO2 as proton exchange membrane for microfuel cells. Electrochem. Solid-State Lett. 2005, 8, A588. [Google Scholar] [CrossRef]
- Lim, B.W.; Suh, M.C. Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes. Nanoscale 2014, 6, 14446–14452. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.; Altındal, Ş.; Asar, Y.Ş.; Sönmez, Z. On the voltage and frequency distribution of dielectric properties and ac electrical conductivity in Al/SiO2/p-Si (MOS) capacitors. Chin. Phys. Lett. 2013, 30, 017301. [Google Scholar] [CrossRef]
- Murarka, S.P.; Li, S.C.; Guo, X.S.; Lanford, W.A. The capacitance-voltage characteristics and hydrogen concentration in phospho-silicate glass films: Relation to phosphorus concentration and annealing effects. J. Appl. Phys. 1992, 72, 4208–4213. [Google Scholar] [CrossRef]
- Li, H.; Jin, D.; Kong, X.; Tu, H.; Yu, Q.; Jiang, F. High proton-conducting monolithic phosphosilicate glass membranes. Micropor. Mesopor. Mater. 2011, 138, 63–67. [Google Scholar] [CrossRef]
- Matsuda, A.; Kanzaki, T.; Kotani, Y.; Tatsumisago, M.; Minami, T. Proton conductivity and structure of phosphosilicate gels derived from tetraethoxysilane and phosphoric acid or triethylphosphate. Solid State Ion. 2001, 139, 113–119. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, W.J. Artificial synapses based on bovine milk biopolymer electric-double-layer transistors. Polymers 2022, 14, 1372. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Shi, Y.; Wan, Q. Solution-processed chitosan-gated IZO-based transistors for mimicking synaptic plasticity. IEEE Electron Device Lett. 2014, 35, 280–282. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Pei, Y. Planar multi-gate artificial synaptic transistor with solution-processed AlOx solid electric double layer dielectric and InOx channel. Coatings 2023, 13, 719. [Google Scholar] [CrossRef]
- Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef]
- Hu, W.; Jiang, J.; Xie, D.; Liu, B.; Yang, J.; He, J. Proton–electron-coupled MoS2 synaptic transistors with a natural renewable biopolymer neurotransmitter for brain-inspired neuromorphic learning. J. Mater. Chem. C 2019, 7, 682–691. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Zhu, L.Q.; Guo, Y.B.; Long, T.Y.; Yu, F.; Xiao, H.; Lu, H.L. Threshold-tunable, spike-rate-dependent plasticity originating from interfacial proton gating for pattern learning and memory. ACS. Appl. Mater. Interfaces 2020, 12, 7833–7839. [Google Scholar] [CrossRef]
- Li, M.; An, H.; Kim, Y.; An, J.S.; Li, M.; Kim, T.W. Directional Formation of Conductive Filaments for a Reliable Organic-Based Artificial Synapse by Doping Molybdenum Disulfide Quantum Dots into a Polymer Matrix. ACS Appl. Mater. Interfaces 2022, 14, 44724–44734. [Google Scholar] [CrossRef]
- Ielmini, D. Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks. Microelectron. Eng. 2018, 190, 44–53. [Google Scholar] [CrossRef]
- Jang, J.W.; Park, S.; Burr, G.W.; Hwang, H.; Jeong, Y.H. Optimization of conductance change in Pr1–xCaxMnO3 -Based synaptic devices for neuromorphic systems. IEEE Electron Device Lett. 2015, 36, 457–459. [Google Scholar] [CrossRef]
- Yang, C.S.; Shang, D.S.; Liu, N.; Fuller, E.J.; Agrawal, S.; Talin, A.A.; Li, Y.Q.; Shen, B.G.; Sun, Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Jiang, H.; Wang, Z.; Asapu, S.; Xia, Q.; Joshua Yang, J. Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 2019, 4, 1800589. [Google Scholar] [CrossRef]
- Lee, Y.; Park, H.L.; Kim, Y.; Lee, T.W. Organic electronic synapses with low energy consumption. Joule 2021, 5, 794–810. [Google Scholar] [CrossRef]
- Jiang, J.; Wan, Q.; Sun, J.; Lu, A. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Appl. Phys. Lett. 2009, 95, 15. [Google Scholar] [CrossRef]
- Cai, W.; Ma, X.; Zhang, J.; Song, A. Transparent thin-film transistors based on sputtered electric double layer. Materials 2017, 10, 429. [Google Scholar] [CrossRef]
- Zhu, L.; He, Y.; Chen, C.; Zhu, Y.; Shi, Y.; Wan, Q. Synergistic modulation of synaptic plasticity in IGZO-based photoelectric neuromorphic TFTs. IEEE Trans. Electron Devices 2021, 68, 1659–1663. [Google Scholar] [CrossRef]
- Shao, F.; Hu, S.; Huang, W.Q.; Sang, X.; Liu, S.; Wan, X.; Gu, X. On the Capacitive-to-Resistive Humidity Response of Polyelectrolyte-Gated Metal Oxide Transistors. J. Electrochem. Soc. 2024, 171, 027509. [Google Scholar] [CrossRef]
Channel Layer | Electrolyte | SS (mV/dec) | On/Off Ratio | Year | Ref. |
---|---|---|---|---|---|
IGZO | Mesoporous SiO2 | 110 | 1.1 × 106 | 2009 | [45] |
IGZO | Porous SiO2 | 130 | 105 | 2017 | [46] |
IGZO | Chitosan | 162 | 2.7 × 106 | 2021 | [47] |
IGZO | PSSNa | 157 | 1.5 × 104 | 2024 | [48] |
IGZO | P-doped silicate glass | 106 | 3.5 × 106 | 2024 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mah, D.-G.; Park, H.; Cho, W.-J. Enhancement of the Synaptic Performance of Phosphorus-Enriched, Electric Double-Layer, Thin-Film Transistors. Electronics 2024, 13, 737. https://doi.org/10.3390/electronics13040737
Mah D-G, Park H, Cho W-J. Enhancement of the Synaptic Performance of Phosphorus-Enriched, Electric Double-Layer, Thin-Film Transistors. Electronics. 2024; 13(4):737. https://doi.org/10.3390/electronics13040737
Chicago/Turabian StyleMah, Dong-Gyun, Hamin Park, and Won-Ju Cho. 2024. "Enhancement of the Synaptic Performance of Phosphorus-Enriched, Electric Double-Layer, Thin-Film Transistors" Electronics 13, no. 4: 737. https://doi.org/10.3390/electronics13040737
APA StyleMah, D.-G., Park, H., & Cho, W.-J. (2024). Enhancement of the Synaptic Performance of Phosphorus-Enriched, Electric Double-Layer, Thin-Film Transistors. Electronics, 13(4), 737. https://doi.org/10.3390/electronics13040737