Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = electric arc furnace (EAF) steel slag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3674 KiB  
Article
CFD Modelling of Refining Behaviour in EAF: Influence of Burner Arrangement and Oxygen Flow Rates
by Sathvika Kottapalli, Orlando Ugarte, Bikram Konar, Tyamo Okosun and Chenn Q. Zhou
Metals 2025, 15(7), 775; https://doi.org/10.3390/met15070775 - 9 Jul 2025
Viewed by 262
Abstract
The electric arc furnace (EAF) process includes key stages: charging scrap metal, melting using electric arcs, refining through oxygen injection and slag formation, and tapping molten steel. Recently, EAF steelmaking has become increasingly important due to its flexibility with recycled materials, lower environmental [...] Read more.
The electric arc furnace (EAF) process includes key stages: charging scrap metal, melting using electric arcs, refining through oxygen injection and slag formation, and tapping molten steel. Recently, EAF steelmaking has become increasingly important due to its flexibility with recycled materials, lower environmental impact, and reduced investment costs. This study focuses specifically on select aspects of the refining stage, analysing decarburization and the associated exothermic oxidation reactions following the removal of carbon with oxygen injection. Particular attention is given to FeO generation during refining, as it strongly affects slag chemistry, yield losses, and overall efficiency. Using a Computational Fluid Dynamics (CFD)-based refining simulator validated with industrial data from EVRAZ North America (showing an 8.57% deviation), this study investigated the impact of oxygen injection rate and burner configuration. The results in a three-burner EAF operation showed that increasing oxygen injection by 10% improved carbon removal by 5%, but with an associated increase of FeO generation of 22%. Conversely, reducing oxygen injection by 15% raised the residual carbon content by 43% but lowered FeO by 23%. Moreover, the impact of the number of burners was analysed by simulating a second scenario with 6 burners. The results show that by increasing the number of burners from three to six, the target carbon is reached 33% faster while increasing FeO by 42.5%. Moreover, by reducing the oxygen injection in the six-burner case, it is possible to reduce FeO generation from 42.5 to 28.5% without significantly impacting carbon removal. This set of results provides guidance for burner optimization and understanding the impact of oxygen injection on refining efficiency. Full article
Show Figures

Figure 1

37 pages, 2520 KiB  
Review
Sustainable Transition Pathways for Steel Manufacturing: Low-Carbon Steelmaking Technologies in Enterprises
by Jinghua Zhang, Haoyu Guo, Gaiyan Yang, Yan Wang and Wei Chen
Sustainability 2025, 17(12), 5329; https://doi.org/10.3390/su17125329 - 9 Jun 2025
Viewed by 1357
Abstract
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization [...] Read more.
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization technologies across three stages (source, process, and end-of-pipe) for two dominant steel production routes: the long process (BF-BOF) and the short process (EAF). For the BF-BOF route, carbon reduction at the source stage is achieved through high-proportion pellet charging in the blast furnace and high scrap ratio utilization; at the process stage, carbon control is optimized via bottom-blowing O2-CO2-CaO composite injection in the converter; and at the end-of-pipe stage, CO2 recycling and carbon capture are employed to achieve deep decarbonization. In contrast, the EAF route establishes a low-carbon production system by relying on green and efficient electric arc furnaces and hydrogen-based shaft furnaces. At the source stage, energy consumption is reduced through the use of green electricity and advanced equipment; during the process stage, precision smelting is realized through intelligent control systems; and at the end-of-pipe stage, a closed-loop is achieved by combining cascade waste heat recovery and steel slag resource utilization. Across both process routes, hydrogen-based direct reduction and green power-driven EAF technology demonstrate significant emission reduction potential, providing key technical support for the low-carbon transformation of the steel industry. Comparative analysis of industrial applications reveals varying emission reduction efficiencies, economic viability, and implementation challenges across different technical pathways. The study concludes that deep decarbonization of the steel industry requires coordinated policy incentives, technological innovation, and industrial chain collaboration. Accelerating large-scale adoption of low-carbon metallurgical technologies through these synergistic efforts will drive the global steel sector toward sustainable development goals. This study provides a systematic evaluation of current low-carbon steelmaking technologies and outlines practical implementation strategies, contributing to the industry’s decarbonization efforts. Full article
Show Figures

Figure 1

15 pages, 3253 KiB  
Article
An Investigation on Li-Ion Battery Recycling via In Situ Alloying: Influence of Slag Composition on Li and F Evaporation
by Safoura Babanejad, Hesham Ahmed, Charlotte Andersson, Olga Rodríguez-Largo, Anton Andersson, Lorena Alcaraz and Félix A. López
Metals 2025, 15(2), 199; https://doi.org/10.3390/met15020199 - 14 Feb 2025
Viewed by 880
Abstract
The amount of waste Li-Ion Batteries (LIBs) is significantly growing. Therefore, scholars and industries are exploring efficient ways to recover their valuable elements. Meanwhile, steel production generates Fe-rich slag, which is often sold for construction purposes without fully utilizing its potential metal content. [...] Read more.
The amount of waste Li-Ion Batteries (LIBs) is significantly growing. Therefore, scholars and industries are exploring efficient ways to recover their valuable elements. Meanwhile, steel production generates Fe-rich slag, which is often sold for construction purposes without fully utilizing its potential metal content. Reusing this slag in LIB recycling allows simultaneous recovery of valuable elements from both waste LIBs and steel slag. This study investigates the pyrometallurgical recycling of Black Mass (BM) from a mixture of spent LIBs in the presence of Fe-rich slag (set based on Electric Arc Furnace (EAF) slag), with a focus on the evaporation of Li and F, the critical volatile elements in the BM, at 1500 °C. The effects of basicity (B2), MgO content, and flux amount on Li and F evaporation were studied using a central composite experimental design, showing that while the effects of MgO content and flux amount were insignificant, B2 had a linear effect on Li and a quadratic effect on F evaporation. Thermodynamic and viscosity calculations suggest that higher B2 improves ion mobility, facilitating the evaporation mechanism. However, for F, its dual role at different B2 levels leads to an evaporation trend different from that of Li. Keeping B2 within a midrange seems to balance Li evaporation efficiency while limiting F evaporation. Full article
(This article belongs to the Special Issue Recent Progress in Metal Extraction and Recycling)
Show Figures

Figure 1

14 pages, 2603 KiB  
Article
Feature Engineering to Embed Process Knowledge: Analyzing the Energy Efficiency of Electric Arc Furnace Steelmaking
by Quantum Zhuo, Mansour N. Al-Harbi and Petrus C. Pistorius
Metals 2025, 15(1), 13; https://doi.org/10.3390/met15010013 - 28 Dec 2024
Cited by 1 | Viewed by 1803
Abstract
The importance of electric arc furnace (EAF) steelmaking is expected to increase worldwide as parts of the industry transition to lower carbon dioxide emissions. This work analyzed one year’s operational data from an EAF plant that uses a large proportion of direct-reduced iron [...] Read more.
The importance of electric arc furnace (EAF) steelmaking is expected to increase worldwide as parts of the industry transition to lower carbon dioxide emissions. This work analyzed one year’s operational data from an EAF plant that uses a large proportion of direct-reduced iron (DRI) in the furnace feed. The data were used to test different approaches to quantifying the effects of process conditions on specific electricity consumption (kWh per ton of crude steel). In previous work, inputs such as the proportion of DRI, fluxes, natural gas, and oxygen were linearly correlated with the specific electricity consumption. The current work has confirmed that conventional multiple linear regression (MLR) reproduces electricity consumption trends in EAF steelmaking, but many model coefficients deviated significantly from expected values and appeared unphysical. The implementation of engineered features—the slag volume and total carbon input—in an MLR model resulted in coefficients that were closer to expectations, but did not improve prediction accuracy. Further improvement was obtained by applying the engineered features to a non-linear machine-learned model (based on XGBoost), yielding both physically reasonable trends and smaller prediction errors. Trends from Shapley dependence analysis (applied to the XGBoost model) are quantitatively consistent with theoretical trends. These include the energy needed to melt slag, and the endothermic effect of carbon additions. The fitted models demonstrate the potential to diagnose poor slag foaming by showing an increase in electricity consumption with increased oxygen use. This example demonstrates that practically important steelmaking process insights inferred via a linear regression approach can be improved by applying Shapley analysis to a machine-learned model based on engineered features. Full article
Show Figures

Figure 1

14 pages, 3169 KiB  
Communication
Innovative Process for Strategic Metal Recovery from Electric Arc Furnace Slag by Alkaline Leaching
by Nour-Eddine Menad, Alain Seron and Sara Bensamdi
Metals 2024, 14(12), 1364; https://doi.org/10.3390/met14121364 - 29 Nov 2024
Viewed by 1725
Abstract
Currently, Electric Arc Furnace Slag (EAFS) is undervalued and is therefore only used in road construction, while blast furnace slag (BFS) is used as an interesting alternative in construction materials to replace natural aggregates in the manufacture of concrete. Steel slag (SS) represents [...] Read more.
Currently, Electric Arc Furnace Slag (EAFS) is undervalued and is therefore only used in road construction, while blast furnace slag (BFS) is used as an interesting alternative in construction materials to replace natural aggregates in the manufacture of concrete. Steel slag (SS) represents a promising secondary resource due to its high content of critical metals, such as chromium (Cr) and vanadium (V). These metals are essential for various strategic industries, making it crucial to consider slag as a resource rather than waste. However, the primary challenge lies in selectively recovering these valuable metals. In this work, we explore the development of a hydrometallurgical process aimed at efficiently extracting Cr and V from Electric Arc Furnace Slag (EAFS). The characterization of the investigated EAFS shows that the main crystalline phases contained in this heterogeneous material are srebrodolskite, larnite, hematite, and spinel such as probably magnesio-chromite. The targeted metals seem to be dispersed in various mineral species contained in the SS. An innovative hydrometallurgical method has been explored, involving physical preparation by co-grinding slag with alkaline reagents followed by treatment in a microwave furnace to modify the metal-bearing species to facilitate metal processing dissolution. The results obtained showed that the leaching rates of Cr and V were, respectively, 100% and 65% after 15 min of treatment in the microwave furnace, while, after 2 h of conventional heat treatment, as explored in a previous study, 98% and 63% of the Cr and V were, respectively, leached. Full article
(This article belongs to the Special Issue Advances in Mineral Processing and Hydrometallurgy—3rd Edition)
Show Figures

Figure 1

16 pages, 5602 KiB  
Article
Quality Assurance of Steel Slag Asphalt Mixtures for Sustainable Pavement Surface Courses
by Christina Plati, Maria Tsakoumaki and Andreas Loizos
Recycling 2024, 9(5), 91; https://doi.org/10.3390/recycling9050091 - 2 Oct 2024
Cited by 2 | Viewed by 2167
Abstract
The present study investigates the use of electric arc furnace (EAF) steel slag, a by-product of the steel industry, in asphalt pavement surface courses instead of virgin aggregates (VAs). Therefore, a general performance evaluation of such mixtures compared to conventional mixtures is carried [...] Read more.
The present study investigates the use of electric arc furnace (EAF) steel slag, a by-product of the steel industry, in asphalt pavement surface courses instead of virgin aggregates (VAs). Therefore, a general performance evaluation of such mixtures compared to conventional mixtures is carried out through laboratory and in situ tests, while both mixtures are environmentally assessed using the life cycle assessment (LCA) tool. The results of the laboratory and in situ tests show that asphalt mixtures containing granulated EAF slag aggregates perform as well as mixtures containing only VA. In addition, the LCA results show that the use of EAF slag aggregates in the asphalt surface course has a lower environmental impact than the exclusive use of VA when it comes to the impact categories of acidification, climate change, marine and terrestrial eutrophication, energy consumption and photochemical pollution. In summary, these results show that replacing virgin aggregates with a proportion of EAF slag aggregate is a viable and sustainable method for road pavement construction. Full article
Show Figures

Figure 1

19 pages, 7301 KiB  
Article
The Melting Behavior of Hydrogen Direct Reduced Iron in Molten Steel and Slag: An Integrated Computational and Experimental Study
by Fabian Andres Calderon Hurtado, Joseph Govro, Arezoo Emdadi and Ronald J. O’Malley
Metals 2024, 14(7), 821; https://doi.org/10.3390/met14070821 - 17 Jul 2024
Cited by 3 | Viewed by 3179
Abstract
Direct reduced iron (DRI) and hot briquetted iron (HBI) are essential feedstocks for tramp element control in the electric arc furnace (EAF). Due to greenhouse gas (GHG) concerns related to CO2 emissions, hydrogen as a substitute for natural gas and a reductant [...] Read more.
Direct reduced iron (DRI) and hot briquetted iron (HBI) are essential feedstocks for tramp element control in the electric arc furnace (EAF). Due to greenhouse gas (GHG) concerns related to CO2 emissions, hydrogen as a substitute for natural gas and a reductant in DRI production is being widely explored to reduce GHG emissions in ironmaking. This study examines the melting behavior of hydrogen DRI (H-DRI) pellets in the EAF containing low-carbon (0.1 wt.%) molten steel and molten slag. A computational heat transfer model was developed to predict the melting behavior of H-DRI pellets. To validate the model, a set of experimental laboratory simulations was conducted by immersing H-DRI in a molten steel bath and slag. The temperature history at the center of the pellet during melting and the shell thickness at different melting stages were utilized to validate the model. The simulation results agree with the experimental measurements of steel balls and H-DRI in different metallic molten steel and slag baths. Full article
Show Figures

Graphical abstract

11 pages, 1504 KiB  
Article
Application of an Artificial Neural Network for Efficient Computation of Chemical Activities within an EAF Process Model
by Alexander Reinicke, Til-Niklas Engbrecht, Lilly Schüttensack and Thomas Echterhof
Metals 2024, 14(6), 736; https://doi.org/10.3390/met14060736 - 20 Jun 2024
Cited by 2 | Viewed by 1602
Abstract
The electric arc furnace (EAF) is considered the second most important process for the production of crude steel and is usually used for the melting of scrap. With the current emphasis on defossilization, its share in global steelmaking is likely to further increase. [...] Read more.
The electric arc furnace (EAF) is considered the second most important process for the production of crude steel and is usually used for the melting of scrap. With the current emphasis on defossilization, its share in global steelmaking is likely to further increase. Due to the large production quantities, minor improvements to the EAF process can still accumulate into a significant reduction in overall energy and resource consumption. A major aspect in the efficient operation of the EAF is achieving beneficial slag properties, as the slag influences the composition of the steel and can reduce energy losses as well as the maintenance cost. In order to investigate the EAF operation, a dynamic process model is applied. Within the model, the chemical reactions of the metal–slag system are calculated based on the activities of the involved species. In this regard, multiple models for the calculation of the chemical activities have been implemented. However, depending on the chosen model, the computation of the slag activities can be computationally demanding. For this reason, the application of a neural network for the calculation of the chemical activities within the slag is investigated. The performance of the neural network is then compared to the results of the previously applied models by using the commercial software FactSage as a reference. The validation shows that the surrogate model achieves great accuracy while keeping the computation demand low. Full article
(This article belongs to the Special Issue Electric Arc Furnace and Converter Steelmaking)
Show Figures

Figure 1

12 pages, 4386 KiB  
Article
Effect of EAF Slag on the Performance of Wollastonite Mixes Inspired by CO2 Curing Technology
by Murugan Muthu, Sanjeev Kumar, Adrian Chajec and Łukasz Sadowski
Appl. Sci. 2024, 14(11), 4485; https://doi.org/10.3390/app14114485 - 24 May 2024
Cited by 3 | Viewed by 1257
Abstract
Replacement of cement with electric arc furnace (EAF) slag at higher volumes causes volumetric expansion; therefore, such blends are not recommended in concrete production. In this study, the effect of this slag on the performance and microstructure of mortar samples based on wollastonite [...] Read more.
Replacement of cement with electric arc furnace (EAF) slag at higher volumes causes volumetric expansion; therefore, such blends are not recommended in concrete production. In this study, the effect of this slag on the performance and microstructure of mortar samples based on wollastonite (CaSiO3) was examined. The samples were cured in a CO2-rich environment, resulting in the formation of non-expansive products, including aragonite, calcite, and traces of tobermorite in the microstructure. The addition of slag above 20% affected the workability and strength developments. However, the formation of pores above 100 nm reduced with increasing slag content to 60%, highlighting the beneficial effect of slag when used in higher volumes. EAF slag contains a higher amount of Fe2O3 which limits its disposal at landfills, but its increased use in the production of CO2 gas-cured wollastonite concrete can reduce the environmental burdens caused by the Portland cement and steel manufacturing industries. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

27 pages, 13043 KiB  
Article
Impact of Injection Rate on Flow Mixing during the Refining Stage in an Electric Arc Furnace
by Orlando Ugarte, Neel Busa, Bikram Konar, Tyamo Okosun and Chenn Q. Zhou
Metals 2024, 14(2), 134; https://doi.org/10.3390/met14020134 - 23 Jan 2024
Cited by 3 | Viewed by 2401
Abstract
During the refining stage of electric arc furnace (EAF) operation, molten steel is stirred to facilitate gas/steel/slag reactions and the removal of impurities, which determines the quality of the steel. The stirring process can be driven by the injection of oxygen, which is [...] Read more.
During the refining stage of electric arc furnace (EAF) operation, molten steel is stirred to facilitate gas/steel/slag reactions and the removal of impurities, which determines the quality of the steel. The stirring process can be driven by the injection of oxygen, which is carried out by burners operating in lance mode. In this study, a computational fluid dynamics (CFD) platform is used to simulate the liquid steel flow dynamics in an industrial-scale scrap-based EAF. The CFD platform simulates the three-dimensional, transient, non-reacting flow of the liquid steel bath stirred by oxygen injection to analyze the mixing process. In particular, the CFD study simulates liquid steel flow in an industrial-scale EAF with three asymmetric coherent jets, which impacts the liquid steel mixing under different injection conditions. The liquid steel mixing is quantified by defining two variables: the mixing time and the standard deviation of the flow velocity. The results indicate that the mixing rate of the bath is determined by flow dynamics near the injection cavities and that the formation of very low-velocity regions or ‘dead zones’ at the center of the furnace and the balcony regions prevents flow mixing. This study includes a baseline case, where oxygen is injected at 1000 SCFM in all the burners. Two sets of cases are also included: The first set considers cases where oxygen is injected at a reduced and at an increased uniform flow rate, 750 and 1250 SCFM, respectively. The second set considers cases with non-uniform injection rates in each burner, which keep the same total flow rate of the baseline case, 3000 SCFM. Comparison between the two sets of simulations against the baseline case shows that by increasing the uniform flow rate from 1000 to 1250 SCFM, the mixing time is reduced by 10.9%. Moreover, all the non-uniform injection cases reduce the mixing time obtained in the baseline case. However, the reduction in mixing times in these cases is accompanied by an increase in the standard deviations of the flow field. Among the non-uniform injection cases, the largest reduction in mixing time compared to the baseline case is 10.2%, which is obtained when the largest flow rates are assigned to coherent jets located opposite each other across the furnace. Full article
(This article belongs to the Special Issue Electric Arc Furnace and Converter Steelmaking)
Show Figures

Figure 1

15 pages, 54235 KiB  
Technical Note
Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration
by Shadman Monir Anto, Asif Ali and Rafael M. Santos
Minerals 2024, 14(1), 97; https://doi.org/10.3390/min14010097 - 16 Jan 2024
Cited by 3 | Viewed by 2862
Abstract
In the pursuit of sustainable solutions for carbon dioxide CO2 sequestration and emission reduction in the steel industry, this study presents an innovative integration of steelmaking slag with the modified Solvay process for sodium bicarbonate (NaHCO3) synthesis from saline brines. [...] Read more.
In the pursuit of sustainable solutions for carbon dioxide CO2 sequestration and emission reduction in the steel industry, this study presents an innovative integration of steelmaking slag with the modified Solvay process for sodium bicarbonate (NaHCO3) synthesis from saline brines. Utilizing diverse minerals, including electric arc furnace (EAF) slag, olivine, and kimberlite, the study explored their reactivity under varied pH conditions and examined their potential in ammonium regeneration. SEM and WDXRF analyses were utilized to acquire morphological and chemical compositions of the minerals. Advanced techniques such as XRD and ICP-OES were employed to meticulously analyze mineralogical transformations and elemental concentrations. The findings demonstrate that steelmaking slag, owing to its superior reactivity and pH buffering capabilities, outperforms natural minerals. The integration of finer slag particles significantly elevated pH levels, facilitating efficient ammonium regeneration. Geochemical modeling provided valuable insights into mineral stability and reactivity, which aligned with the ICP-OES results. This synergistic approach not only aids in CO2 capture through mineral carbonation but also minimizes waste, showcasing its potential as a sustainable and environmentally responsible solution for CO2 mitigation in the steel industry. Full article
(This article belongs to the Special Issue CO2 Mineralization and Utilization)
Show Figures

Figure 1

20 pages, 2520 KiB  
Article
Research Progress on Iron- and Steelmaking Iste Slag-Based Glass-Ceramics: Preparation and GHG Emission Reduction Potentials
by Zichao Wei, Xiaomin Liu, Guangwen Hu, Kai Xue and Yufeng Wu
Sustainability 2023, 15(24), 16925; https://doi.org/10.3390/su152416925 - 18 Dec 2023
Cited by 2 | Viewed by 1722
Abstract
Promoted by carbon neutrality and solid iste policies, iron- and steelmaking iste slag (ISWS)-based glass-ceramics have drawn attention because of their contribution to achieving the net-zero carbon emissions goal for the iron- and steelmaking industry. However, a holistic estimation of the preparation, property [...] Read more.
Promoted by carbon neutrality and solid iste policies, iron- and steelmaking iste slag (ISWS)-based glass-ceramics have drawn attention because of their contribution to achieving the net-zero carbon emissions goal for the iron- and steelmaking industry. However, a holistic estimation of the preparation, property and GHG (greenhouse gas) emission abatement of ISWS-based glass-ceramics is still under exploration. In this paper, research progress on preparing glass-ceramics from ISWS discharged from the traditional iron- and steelmaking industry is reviewed. Then, the influence of ISWS’s chemical characteristics on the preparation of glass-ceramics and the products’ performance are discussed. In addition, the potential of GHG emission reduction related to the promotion of ISWS-based glass-ceramics is measured. It is found that ISWS-based glass-ceramics can avoid 0.87–0.91 tons of CO2 emissions compared to primary resource routes. A scenario simulation is also conducted. If the technology could be fully applied in the ironmaking and steelmaking industries, the results suggest that 2.07 and 0.67 tons of indirect CO2 reductions can be achieved for each ton of crude steel production from blast furnace–basic oxygen furnace (BF-BOF) and electric arc furnace (EAF) routes, respectively. Finally, a “dual promotion” economic mode based on national policy orientation and the high demands on metallurgical iste slag (MWS)-based glass-ceramics is proposed, and the application prospects of MWS-based glass-ceramics are examined. These application prospects will deepen the fundamental understanding of glass-ceramic properties and enable them to be compounded with other functional materials in various new technologies. Full article
Show Figures

Figure 1

24 pages, 7482 KiB  
Article
Application of Biomineralization Technology in the Stabilization of Electric Arc Furnace Reducing Slag
by How-Ji Chen, You-Ren Lin, Chao-Wei Tang and Yi-Chun Hung
Appl. Sci. 2023, 13(18), 10435; https://doi.org/10.3390/app131810435 - 18 Sep 2023
Cited by 2 | Viewed by 1562
Abstract
The unstable substances in steel slag are the main substances that affect its stability, which limits the large-scale resource utilization of steel slag. Most of the current methods for stabilizing electric arc furnace (EAF) slag are time-consuming and cannot be completely stabilized. In [...] Read more.
The unstable substances in steel slag are the main substances that affect its stability, which limits the large-scale resource utilization of steel slag. Most of the current methods for stabilizing electric arc furnace (EAF) slag are time-consuming and cannot be completely stabilized. In view of this, this study aimed to explore the feasibility of microbial-induced calcium carbonate precipitation (MICP) technology for stabilizing EAF reducing slag, and this was to be achieved by using the reaction between carbonate ions and free calcium oxide (f-CaO) in reducing slag to form a more stable calcium carbonate to achieve the purpose of stabilization. The test results showed that, when the EAF reducing slag aggregates (ERSAs) were immersed in a Sporosarcina pasteurii bacteria solution or water, the f-CaO contained in it would react such that stabilization was achieved. The titration test results showed that the f-CaO content of the ERSAs immersed in the bacterial solution and water decreased. The expansion test results of the ERSAs that were subjected to hydration showed that the seven-day expansion of ERSAs after biomineralization could meet the Taiwan regulation requirement of an expansion rate less than 0.5%. The thermogravimetric analysis showed that both the experimental group and the control group might contain calcium carbonate compounds. The results of the X-ray diffraction analysis showed that the CaCO3 content in the ERSAs that were immersed in the bacterial solution was significantly higher than those that were immersed in water. Moreover, the compressive strength test results of concrete prepared with ERSAs showed that the compressive strength of the control group concrete began to decline after 28 days. In contrast, the experimental group concrete had a good stabilization effect, and there was no decline in compressive strength until 180 days. At 240 days, the surface cracks of the experimental group were particularly small, while the surface of the control group showed obvious cracks. These results confirmed that a mineralization reaction with S. pasteurii bacteria could be used as a stabilization technology for ERSAs. Full article
Show Figures

Figure 1

14 pages, 2362 KiB  
Article
Ranking of Injection Biochar for Slag Foaming Applications in Steelmaking
by Christopher DiGiovanni, Delin Li, Ka Wing Ng and Xianai Huang
Metals 2023, 13(6), 1003; https://doi.org/10.3390/met13061003 - 23 May 2023
Cited by 20 | Viewed by 5351
Abstract
The electric arc furnace (EAF) has the potential to significantly contribute to the decarbonization of the iron and steel industry. However, during EAF steelmaking, carbon still needs to be injected into the molten slag to initiate slag foaming, which is beneficial to the [...] Read more.
The electric arc furnace (EAF) has the potential to significantly contribute to the decarbonization of the iron and steel industry. However, during EAF steelmaking, carbon still needs to be injected into the molten slag to initiate slag foaming, which is beneficial to the energy efficiency and protection of the furnace. To move away from fossil carbon, biocarbon has gained attention as an injection carbon agent. In this study, two biochar candidates were added to the molten slag layer of an induction furnace for steel melting, to simulate EAF steelmaking conditions. The resultant slag foaming height was measured, and a ranking in comparison to two fossil carbon candidates was developed. The results indicate that the injection biochar sample, in the form of a bio-briquette, has a considerable degree of slag foaming capacity. More work is ongoing to develop a standardized testing methodology of ranking various injection biochar candidates for their suitability and qualification for use on a larger scale. Full article
(This article belongs to the Special Issue Low-Carbon Metallurgy Technology towards Carbon Neutrality)
Show Figures

Figure 1

17 pages, 3514 KiB  
Article
A Study on Fire Retardant and Soundproof Properties of Stainless Steel EAF Reducing Slag Applied to Fiber Reinforced Cement Boards
by Chuan-Wen Chou, Hung-Ming Lin, Guan-Bang Chen, Fang-Hsien Wu and Chen-Yu Chen
Materials 2023, 16(10), 3841; https://doi.org/10.3390/ma16103841 - 19 May 2023
Cited by 2 | Viewed by 2055
Abstract
In recent years, cases of the improper utilization of steel furnace slag have been widely reported, resulting in a crisis of nowhere for recycled resources such as inorganic slag. The misplacement of resource materials that originally had sustainable-use value not only has a [...] Read more.
In recent years, cases of the improper utilization of steel furnace slag have been widely reported, resulting in a crisis of nowhere for recycled resources such as inorganic slag. The misplacement of resource materials that originally had sustainable-use value not only has a great impact on society and the environment but also greatly reduces industrial competitiveness. To solve the dilemma of steel furnace-slag reuse, it is critical to find solutions to the stabilization of steelmaking slag under the innovative thinking of the circular economy. In addition to enhancing the reuse value of recycled resources, the balance between economic development and environmental impact is also crucial. The high-performance building material could provide a solution based on a high-value market. With the development of society and the increasing requirements for quality of life, the requirements for the soundproof and fireproof performance of lightweight decorative panels common in cities have gradually become popular. Therefore, the high performance of fire retardant and soundproofing could be the main development focus of high-value building materials to ensure circular economic feasibility. This study continues the research results of the application of inorganic re-cycled engineering materials in recent years, and the application of electric-arc furnace (EAF)-reducing slag to the development of base materials for reinforced cement boards, in order to complete the development of high-value panels with fireproof and sound-insulation properties in line with the engineering characteristics of the boards. The research results showed the optimization of the proportions of the cement boards with EAF-reducing slag as a raw material. The proportions of EAF-reducing slag to fly ash at ratios of 70:30 and 60:40 all met the requirements of ISO 5660-1 Class I flame resistance; the sound transmission loss in the overall frequency band can reach more than 30 dB, which is higher by 3–8 dB or more than the same board with similar specifications (such as 12 mm gypsum board) in the present building-materials market The products could be developed into building partitions and ceiling decoration boards with high performance in terms of fire retardant and soundproofing values, and also reduce the use of natural raw materials by more than 35%. The results of this study could meet environmental compatibility targets and contribute towards greener buildings. This model of circular economics would achieve energy reduction, emissions reductions, and be environmentally friendly. Full article
Show Figures

Figure 1

Back to TopTop