Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (672)

Search Parameters:
Keywords = elastic-strain energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1617 KiB  
Article
Mechanics of Interfacial Debonding in FRP Strengthening Systems: Energy Limits and Characteristic Bond Lengths
by Nefeli Mitsopoulou and Marinos Kattis
J. Compos. Sci. 2025, 9(8), 412; https://doi.org/10.3390/jcs9080412 - 4 Aug 2025
Abstract
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending [...] Read more.
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending branch. The investigation focuses on the interaction between the elastic energy stored in the FRP and the adhesive interface, as well as the characteristic lengths that control the debonding process. Analytical expressions for the strain energy stored in both the FRP plate and the adhesive interface are derived, enabling the identification and evaluation of two critical characteristic lengths as the bond stress at the loaded end approaches its maximum value lc, at which the elastic energies of the FRP and the adhesive interface converge, signaling energy saturation; and lmax, where the adhesive interface attains its peak energy absorption. Upon reaching the energy saturation state, the system undergoes failure through the sudden and complete debonding of the FRP from the substrate. The onset of unstable debonding is rigorously analyzed in terms of the first and second derivatives of the total potential energy with respect to the bond length. It is further demonstrated that abrupt debonding may also occur in cases where the length exceeds lc when the bond stress reaches its maximum, and the bond–slip law is characterized by a vertical branch. The findings provide significant insights into the energy balance and stability criteria governing the debonding failure mode in FRP-strengthened structures, highlighting the pivotal role of characteristic lengths in predicting both structural performance and failure mechanisms. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

23 pages, 6377 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 - 1 Aug 2025
Viewed by 118
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 2280 KiB  
Article
Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
by Changshen Du, Shuhong Dai and Qinglin Sun
Polymers 2025, 17(15), 2122; https://doi.org/10.3390/polym17152122 - 31 Jul 2025
Viewed by 211
Abstract
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of [...] Read more.
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of a bionic arm using an LCE fiber as artificial muscle is established, which exhibits periodic oscillation controlled by periodic illumination. Based on the assumption of linear damping and angular momentum theorem, the dynamics equation of the model oscillation is derived. Then, based on the assumption of linear elasticity model, the periodic spring force of the fiber is given. Subsequently, the evolution equations for the cis number fraction within the fiber are developed, and consequently, the analytical solution for the light-excited strain is derived. Following that, the dynamics equation is numerically solved, and the mechanism of the controllable oscillation is elucidated. Numerical calculations show that the stable oscillation period of the bionic arm depends on the illumination period. When the illumination period aligns with the natural period of the bionic arm, the resonance is formed and the amplitude is the largest. Additionally, the effects of various parameters on forced oscillation are analyzed. The results of numerical studies on the bionic arm can provide theoretical support for the design of micro-machines, bionic devices, soft robots, biomedical devices, and energy harvesters. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

21 pages, 3822 KiB  
Article
Mechanisms of Tunnel Rockburst Development Under Complex Geostress Conditions in Plateau Regions
by Can Yang, Jinfeng Li, Yuan Qian, Wu Bo, Gen Zhang, Cheng Zhao and Kunming Zhao
Appl. Sci. 2025, 15(15), 8517; https://doi.org/10.3390/app15158517 (registering DOI) - 31 Jul 2025
Viewed by 122
Abstract
The Qinghai–Xizang Plateau and its surrounding regions have experienced intense tectonic activity, resulting in complex geostress environments that cause frequent and distinctive rockburst disasters in plateau tunnel engineering. In this study, numerical simulations were conducted to investigate the distribution characteristics and patterns of [...] Read more.
The Qinghai–Xizang Plateau and its surrounding regions have experienced intense tectonic activity, resulting in complex geostress environments that cause frequent and distinctive rockburst disasters in plateau tunnel engineering. In this study, numerical simulations were conducted to investigate the distribution characteristics and patterns of tunnel rockbursts in high-altitude regions, using geostress orientation, lateral pressure coefficient, and tunnel depth as the primary independent variables. Secondary development of FLAC3D 7.00.126 was carried out using FISH language to enable the recording and visualization of tangential stress, the Russense rockburst criterion, and elastic strain energy. Based on this, the influence mechanisms of these key geostress parameters on the location, extent, and intensity of rockbursts within tunnel cross sections were analyzed. Results indicate that geostress orientation predominantly affects the location of rockbursts, with the surrounding rock in the direction of the minimum principal stress on the tunnel cross section being particularly prone to rockburst risks. The lateral pressure coefficient primarily influences the rockburst intensity and pit range within local stress concentration zones, with higher values leading to greater rockburst intensity. Notably, when structural stress is sufficiently large, rockbursts may occur even in tunnels with shallow burial depths. Tunnel depth determines the magnitude of geostress, mainly affecting the overall risk and potential extent of rockbursts within the cross section, with greater depths leading to higher rockburst intensities and a wider affected area. Full article
Show Figures

Figure 1

23 pages, 5204 KiB  
Article
Evaluation of Polypropylene Reusability Using a Simple Mechanical Model Derived from Injection-Molded Products
by Tetsuo Takayama, Rikuto Takahashi, Nao Konno and Noriyuki Sato
Polymers 2025, 17(15), 2107; https://doi.org/10.3390/polym17152107 - 31 Jul 2025
Viewed by 267
Abstract
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, [...] Read more.
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, conventional mechanical property evaluations of injection-molded products typically require dedicated specimens, which involve additional material and energy costs. As described herein, we propose a simplified mechanical model to derive Poisson’s ratio and critical expansion stress directly from standard uniaxial tensile tests of molded thermoplastics. The method based on the true stress–true strain relationship in the small deformation region was validated using various thermoplastics (PP, POM, PC, and ABS), with results showing good agreement with those of the existing literature. The model was applied further to assess changes in mechanical properties of Homo-PP and Block-PP subjected to repeated extrusion. Both materials exhibited reductions in elastic modulus and critical expansion stress with increasing extrusion cycles, whereas Block-PP showed a slower degradation rate because of thermo-crosslinking in its ethylene–propylene rubber (EPR) phase. DSC and chemiluminescence analyses suggested changes in stereoregularity and radical formation as key factors. This method offers a practical approach for evaluating recycled PP and contributes to high-quality recycling and material design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 167
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 195
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

22 pages, 13284 KiB  
Article
Mechanical Properties of CuZr Amorphous Metallic Nanofoam at Various Temperatures Investigated by Molecular Dynamics Simulation
by Yuhang Zhang, Hongjian Zhou and Xiuming Liu
Materials 2025, 18(14), 3423; https://doi.org/10.3390/ma18143423 - 21 Jul 2025
Viewed by 434
Abstract
Metallic nanofoams with amorphous structures demonstrate exceptional properties and significant potential for diverse applications. However, their mechanical properties at different temperatures are still unclear. By using molecular dynamics simulation, this study investigates the mechanical responses of representative CuZr amorphous metallic nanofoam (AMNF) under [...] Read more.
Metallic nanofoams with amorphous structures demonstrate exceptional properties and significant potential for diverse applications. However, their mechanical properties at different temperatures are still unclear. By using molecular dynamics simulation, this study investigates the mechanical responses of representative CuZr amorphous metallic nanofoam (AMNF) under uniaxial tension and compression at various temperatures. Our results reveal that the mechanical properties, such as Young’s modulus, yield stress, and maximum stress, exhibit notable temperature sensitivity and tension–compression asymmetry. Under tensile loading, the Young’s modulus, yield strength, and peak stress exhibit significant reductions of approximately 30.5%, 33.3%, and 32.9%, respectively, as the temperature increases from 100 K to 600 K. Similarly, under compressive loading, these mechanical properties experience even greater declines, with the Young’s modulus, yield strength, and peak stress decreasing by about 34.5%, 38.0%, and 41.7% over the same temperature range. The tension–compression asymmetry in yield strength is temperature independent. Interestingly, the tension–compression asymmetry in elastic modulus becomes more pronounced at elevated temperatures, which is attributed to the influence of surface energy effects. This phenomenon is further amplified by the increased disparity in surface-area-to-volume ratio variations between tensile and compressive loading at higher temperatures. Additionally, as the temperature rises, despite material softening, the structural resistance under large tensile strains improves due to delayed ligament degradation and more uniform deformation distribution, delaying global failure. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

17 pages, 7633 KiB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 212
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

17 pages, 2783 KiB  
Article
Hydrostatic-Pressure Modulation of Band Structure and Elastic Anisotropy in Wurtzite BN, AlN, GaN and InN: A First-Principles DFT Study
by Ilyass Ez-zejjari, Haddou El Ghazi, Walid Belaid, Redouane En-nadir, Hassan Abboudi and Ahmed Sali
Crystals 2025, 15(7), 648; https://doi.org/10.3390/cryst15070648 - 15 Jul 2025
Viewed by 364
Abstract
III-Nitride semiconductors (BN, AlN, GaN, and InN) exhibit exceptional electronic and mechanical properties that render them indispensable for high-performance optoelectronic, power, and high-frequency device applications. This study implements first-principles Density Functional Theory (DFT) calculations to elucidate the influence of hydrostatic pressure on the [...] Read more.
III-Nitride semiconductors (BN, AlN, GaN, and InN) exhibit exceptional electronic and mechanical properties that render them indispensable for high-performance optoelectronic, power, and high-frequency device applications. This study implements first-principles Density Functional Theory (DFT) calculations to elucidate the influence of hydrostatic pressure on the electronic, elastic, and mechanical properties of these materials in the wurtzite crystallographic configuration. Our computational analysis demonstrates that the bandgap energy exhibits a positive pressure coefficient for GaN, AlN, and InN, while BN manifests a negative pressure coefficient consistent with its indirect-bandgap characteristics. The elastic constants and derived mechanical properties reveal material-specific responses to applied pressure, with BN maintaining superior stiffness across the pressure range investigated, while InN exhibits the highest ductility among the studied compounds. GaN and AlN demonstrate intermediate mechanical robustness, positioning them as optimal candidates for pressure-sensitive applications. Furthermore, the observed nonlinear trends in elastic moduli under pressure reveal anisotropic mechanical responses during compression, a phenomenon critical for the rational design of strain-engineered devices. The computational results provide quantitative insights into the pressure-dependent behavior of III-N semiconductors, facilitating their strategic implementation and optimization for high-performance applications in extreme environmental conditions, including high-power electronics, deep-space exploration systems, and high-pressure optoelectronic devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

17 pages, 5876 KiB  
Article
Optimization of Knitted Strain Sensor Structures for a Real-Time Korean Sign Language Translation Glove System
by Youn-Hee Kim and You-Kyung Oh
Sensors 2025, 25(14), 4270; https://doi.org/10.3390/s25144270 - 9 Jul 2025
Viewed by 296
Abstract
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the [...] Read more.
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the presence or absence of elastic yarn are set as experimental variables, and five distinct sensors are manufactured. A comprehensive analysis of the electrical and mechanical performance, including sensitivity, responsiveness, reliability, and repeatability, reveals that the sensor with a plain-plated-knit structure, no elastic yarn included, and the conductive yarn positioned uniformly on the back exhibits the best performance, with a gauge factor (GF) of 88. The sensor exhibited a response time of less than 0.1 s at 50 cycles per minute (cpm), demonstrating that it detects and responds promptly to finger joint bending movements. Moreover, it exhibits stable repeatability and reliability across various angles and speeds, confirming its optimization for sign language recognition applications. Based on this design, an integrated textile-based system is developed by incorporating the sensor, interconnections, snap connectors, and a microcontroller unit (MCU) with built-in Bluetooth Low Energy (BLE) technology into the knitted glove. The complete system successfully recognized 12 Korean Sign Language (KSL) gestures in real time and output them as both text and audio through a dedicated application, achieving a high recognition accuracy of 98.67%. Thus, the present study quantitatively elucidates the structure–performance relationship of a knitted sensor and proposes a wearable system that accounts for real-world usage environments, thereby demonstrating the commercialization potential of the technology. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

31 pages, 49059 KiB  
Article
On the Mechanics of a Fiber Network-Reinforced Elastic Sheet Subjected to Uniaxial Extension and Bilateral Flexure
by Wenhao Yao, Heung Soo Kim and Chun Il Kim
Mathematics 2025, 13(13), 2201; https://doi.org/10.3390/math13132201 - 5 Jul 2025
Viewed by 217
Abstract
The mechanics of an elastic sheet reinforced with fiber mesh is investigated when undergoing bilateral in-plane bending and stretching. The strain energy of FRC is formulated by accounting for the matrix strain energy contribution and the fiber network deformations of extension, flexure, and [...] Read more.
The mechanics of an elastic sheet reinforced with fiber mesh is investigated when undergoing bilateral in-plane bending and stretching. The strain energy of FRC is formulated by accounting for the matrix strain energy contribution and the fiber network deformations of extension, flexure, and torsion, where the strain energy potential of the matrix material is characterized via the Mooney–Rivlin strain energy model and the fiber kinematics is computed via the first and second gradient of deformations. By applying the variational principle on the strain energy of FRC, the Euler–Lagrange equilibrium equations are derived and then solved numerically. The theoretical results highlight the matrix and meshwork deformations of FRC subjected to bilateral bending and stretching simultaneously, and it is found that the interaction between bilateral extension and bending manipulates the matrix and network deformation. It is theoretically observed that the transverse Lagrange strain peaks near the bilateral boundary while the longitudinal strain is intensified inside the FRC domain. The continuum model further demonstrates the bidirectional mesh network deformations in the case of plain woven, from which the extension and flexure kinematics of fiber units are illustrated to examine the effects of fiber unit deformations on the overall deformations of the fiber network. To reduce the observed matrix-network dislocation in the case of plain network reinforcement, the pantographic network reinforcement is investigated, suggesting that the bilateral stretch results in the reduced intersection angle at the mesh joints in the FRC domain. For validation of the continuum model, the obtained results are cross-examined with the existing experimental results depicting the failure mode of conventional fiber-reinforced composites to demonstrate the practical utility of the proposed model. Full article
(This article belongs to the Special Issue Progress in Computational and Applied Mechanics)
Show Figures

Figure 1

38 pages, 8354 KiB  
Article
A Comparative Study of the Tensile Behavior of Wrought 44W Steel, Monel 400, 304L Stainless Steel, and Arc-Directed Energy Deposited 308L Stainless Steel in Simulated Hydrogen Environments
by Emmanuel Sey, Zoheir N. Farhat and Ali Nasiri
Corros. Mater. Degrad. 2025, 6(3), 28; https://doi.org/10.3390/cmd6030028 - 2 Jul 2025
Viewed by 514
Abstract
This study investigates the tensile behaviors of wrought 44W steel, Monel 400, 304L austenitic stainless steel, and arc-directed energy deposited (arc-DED) 308L austenitic stainless steel under simulated hydrogen environments to evaluate their endurance to hydrogen embrittlement (HE). The specimens were subjected to cathodic [...] Read more.
This study investigates the tensile behaviors of wrought 44W steel, Monel 400, 304L austenitic stainless steel, and arc-directed energy deposited (arc-DED) 308L austenitic stainless steel under simulated hydrogen environments to evaluate their endurance to hydrogen embrittlement (HE). The specimens were subjected to cathodic hydrogen charging in an alkaline solution, followed by uniaxial tensile testing at a strain rate of 0.2 min−1. Based on measurements of elongation and toughness, the resistance to HE was ranked as follows: 304L stainless steel > Monel 400 > arc-DED 308L stainless steel > 44W steel. Notably, no significant changes were observed in the yield strengths, ultimate tensile strengths, or elastic modulus of 304L austenitic stainless steel, Monel 400, and 44W steel across all the levels of hydrogenation. However, the arc-DED 308L stainless steel exhibited a slight increase in these properties, attributed to its unique microstructural characteristics and strengthening mechanisms inherent to additive manufacturing processes. These outcomes contribute to a better understanding of the mechanical performance and suitability of these structural alloys in hydrogen-rich environments, highlighting the superior HE resistance of 304L stainless steel and Monel 400 for such applications. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Graphical abstract

28 pages, 10940 KiB  
Article
Torsional Strengthening of RC Beams with Openings Using Hybrid SHCC–Glass Fiber Mesh Composites
by Ahmed Hamoda, Saad A. Yehia, Mizan Ahmed, Aref A. Abadel, Khaled Sennah, Vipulkumar Ishvarbhai Patel and Hussam Alghamdi
Buildings 2025, 15(13), 2237; https://doi.org/10.3390/buildings15132237 - 26 Jun 2025
Viewed by 401
Abstract
This study investigates the effectiveness of strain-hardening cementitious composites (SHCC) reinforced with glass fiber (GF) mesh in enhancing the torsional behavior of reinforced concrete (RC) beams with circular openings. Eight full-scale RC beams were tested under pure torsion, including two control beams and [...] Read more.
This study investigates the effectiveness of strain-hardening cementitious composites (SHCC) reinforced with glass fiber (GF) mesh in enhancing the torsional behavior of reinforced concrete (RC) beams with circular openings. Eight full-scale RC beams were tested under pure torsion, including two control beams and six strengthened beams with varying configurations of horizontal, vertical, and combined SHCC-GF mesh retrofitting. The experimental program evaluated the influence of single- and double-layer GF mesh reinforcement on torsional capacity, crack propagation, stiffness, and energy absorption. The results demonstrated that the presence of an opening reduced the ultimate torsional capacity by 29%, elastic stiffness by 48%, and energy absorption by 64% compared to the solid control beam. Strengthening with horizontal SHCC strips restored 21–35% of the lost capacity, while vertical strips performed even better, achieving 44–61% improvement. The combined horizontal–vertical configuration with a double-layer GF mesh proved the most effective, increasing ultimate load by 91% compared to the unstrengthened beam with an opening. Finite element models (FEM) are developed using ABAQUS to simulate the performance of the tested beams. Full article
(This article belongs to the Special Issue Research on Concrete Filled Steel Materials in Building Engineering)
Show Figures

Figure 1

40 pages, 4122 KiB  
Article
Stress–Strain Relationship of Rubberized Geopolymer Concrete with Slag and Fly Ash
by Sunday U. Azunna, Farah N. A. A. Aziz, Raizal S. M. Rashid and Ernaleza B. Mahsum
Constr. Mater. 2025, 5(3), 42; https://doi.org/10.3390/constrmater5030042 - 25 Jun 2025
Cited by 1 | Viewed by 325
Abstract
Rubberized concrete is a more environmentally friendly material than natural concrete as it helps to reduce rubber disposal issues and has superior impact resistance. Geopolymer concrete, on the other hand, is an economical concrete with higher mechanical properties than nominal concrete that uses [...] Read more.
Rubberized concrete is a more environmentally friendly material than natural concrete as it helps to reduce rubber disposal issues and has superior impact resistance. Geopolymer concrete, on the other hand, is an economical concrete with higher mechanical properties than nominal concrete that uses fly ash and slag, among other industrial solid wastes, to lower carbon footprints. Rubberized geopolymer concrete (RuGPC) combines the advantages of both concrete types, and a thorough grasp of its dynamic compressive characteristics is necessary for its use in components linked to impact resistance. Despite the advantages of RuGPC, predicting its mechanical characteristics is sometimes difficult because of variations in binder type and combination. This research investigated the combined effect of ground granulated blast furnace slag (GGBFS) and fly ash (FA) on the workability, compressive strength, and stress–strain characteristics of RuGPC with rubber at 0%, 10%, and 20% fine aggregate replacement. Thereafter, energy absorption and ductile characteristics were evaluated through the concrete toughness and ductility index. Numerical models were proposed for the cube compressive strength, modulus of elasticity, and peak strain of RuGPC at different percentages of crumb rubber. It was found that RuGPC made with GGBFS/FA had similar stress–strain characteristics to FA- and MK-based RuGPC. At 20% of crumb rubber aggregate replacement, the workability, compressive strength, modulus of elasticity, and peak stress of RuGPC reduced by 8.33%, 34.67%, 43.42%, and 44.97%, while Poisson’s ratio, peak, and ultimate strain increased by 30.34%, 8.56%, and 55.84%, respectively. The concrete toughness and ductility index increased by 22.4% and 156.67%. The proposed model’s calculated results, with R2 values of 0.9508, 0.9935, and 0.9762, show high consistency with the experimental data. RuGPC demonstrates high energy absorption capacity, making it a suitable construction material for structures requiring high-impact resistance. Full article
Show Figures

Figure 1

Back to TopTop