Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,143)

Search Parameters:
Keywords = efficiency of consumption of energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3172 KiB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 (registering DOI) - 1 Aug 2025
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 (registering DOI) - 1 Aug 2025
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

25 pages, 1105 KiB  
Review
Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation
by Shan Lin, Yu Zhang, Xuanjiang Chen, Chengzhi Pan, Xianjun Dong, Xiang Xie and Long Chen
Sustainability 2025, 17(15), 7016; https://doi.org/10.3390/su17157016 (registering DOI) - 1 Aug 2025
Abstract
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it [...] Read more.
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it challenging to identify the most suitable methods that simultaneously achieve both comfort and efficiency goals. Existing studies often lack a systematic framework that supports integrated decision-making under comfort constraints. This research aims to address this gap by proposing a decision-making tree for selecting energy conservation methods during building operation with an explicit consideration of indoor environmental comfort. A comprehensive literature review is conducted to identify four main energy-consuming components during building operation: the building envelope, HVAC systems, lighting systems, and plug loads and appliances. Three key comfort indicators—thermal comfort, lighting comfort, and air quality comfort—are defined, and energy conservation methods are categorized into three strategic groups: passive strategies, control optimization strategies, and behavioural intervention strategies. Each method is assessed using a defined set of evaluation criteria. Subsequently, a questionnaire survey is administered for the calibration of the decision tree, incorporating stakeholder preferences and expert judgement. The findings contribute to the advancement of understanding regarding the co-optimization of energy conservation and occupant comfort in building operations. Full article
(This article belongs to the Special Issue Novel Technologies and Digital Design in Smart Construction)
Show Figures

Figure 1

28 pages, 2448 KiB  
Article
ATENEA4SME: Industrial SME Self-Evaluation of Energy Efficiency
by Antonio Ferraro, Giacomo Bruni, Marcello Salvio, Milena Marroccoli, Antonio Telesca, Chiara Martini, Federico Alberto Tocchetti and Antonio D’Angola
Energies 2025, 18(15), 4094; https://doi.org/10.3390/en18154094 (registering DOI) - 1 Aug 2025
Abstract
Promoting energy efficiency in the Italian production sector is significantly hampered by the lack of knowledge, the scarcity and the limited distribution of tools for supporting energy audits in small and medium-sized enterprises (SMEs) in a wide range of Italian economic sectors (industry, [...] Read more.
Promoting energy efficiency in the Italian production sector is significantly hampered by the lack of knowledge, the scarcity and the limited distribution of tools for supporting energy audits in small and medium-sized enterprises (SMEs) in a wide range of Italian economic sectors (industry, tertiary sector, transport). The Advanced Tool for ENErgy Audit for SMEs, ATENEA4SME, is intended to help SMEs promote energy-efficiency projects, supports energy audits and self-evaluation of energy consumption. The tool uses an original mathematical model that takes into account the results of questionnaires and a multi-criteria analysis to generate recommendations for energy efficiency investments. This article will give a thorough explanation of the tool, emphasizing and outlining the sections as well as the procedures to get the ultimate summary of the energy usage of the enterprises under investigation and the potential for energy saving. From a technological and financial perspective, the tool helps to remove obstacles to the development of energy-efficiency measures. In this article, the IT and methodological structure of the tool will therefore be extensively described, and its operation for the context of SMEs will be illustrated, with application cases. Ample space will be allocated to the dissemination campaign and the replicability of the tool for all economic sectors of the industrial and tertiary sectors. Full article
Show Figures

Figure 1

28 pages, 2465 KiB  
Article
Latency-Aware and Energy-Efficient Task Offloading in IoT and Cloud Systems with DQN Learning
by Amina Benaboura, Rachid Bechar, Walid Kadri, Tu Dac Ho, Zhenni Pan and Shaaban Sahmoud
Electronics 2025, 14(15), 3090; https://doi.org/10.3390/electronics14153090 (registering DOI) - 1 Aug 2025
Abstract
The exponential proliferation of the Internet of Things (IoT) and optical IoT (O-IoT) has introduced substantial challenges concerning computational capacity and energy efficiency. IoT devices generate vast volumes of aggregated data and require intensive processing, often resulting in elevated latency and excessive energy [...] Read more.
The exponential proliferation of the Internet of Things (IoT) and optical IoT (O-IoT) has introduced substantial challenges concerning computational capacity and energy efficiency. IoT devices generate vast volumes of aggregated data and require intensive processing, often resulting in elevated latency and excessive energy consumption. Task offloading has emerged as a viable solution; however, many existing strategies fail to adequately optimize both latency and energy usage. This paper proposes a novel task-offloading approach based on deep Q-network (DQN) learning, designed to intelligently and dynamically balance these critical metrics. The proposed framework continuously refines real-time task offloading decisions by leveraging the adaptive learning capabilities of DQN, thereby substantially reducing latency and energy consumption. To further enhance system performance, the framework incorporates optical networks into the IoT–fog–cloud architecture, capitalizing on their high-bandwidth and low-latency characteristics. This integration facilitates more efficient distribution and processing of tasks, particularly in data-intensive IoT applications. Additionally, we present a comparative analysis between the proposed DQN algorithm and the optimal strategy. Through extensive simulations, we demonstrate the superior effectiveness of the proposed DQN framework across various IoT and O-IoT scenarios compared to the BAT and DJA approaches, achieving improvements in energy consumption and latency of 35%, 50%, 30%, and 40%, respectively. These findings underscore the significance of selecting an appropriate offloading strategy tailored to the specific requirements of IoT and O-IoT applications, particularly with regard to environmental stability and performance demands. Full article
Show Figures

Figure 1

26 pages, 5263 KiB  
Article
A System Dynamics-Based Hybrid Digital Twin Model for Driving Green Manufacturing
by Sucheng Fan, Huagang Tong and Song Wang
Systems 2025, 13(8), 651; https://doi.org/10.3390/systems13080651 (registering DOI) - 1 Aug 2025
Abstract
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of [...] Read more.
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of soft systems, including human behavior, decision-making, and operational strategies. To address this limitation, the present study introduces an innovative hybrid digital twin model that integrates both physical and soft systems to support green manufacturing initiatives comprehensively. The primary contributions of this work are threefold. First, a novel hybrid architecture is developed by coupling real-time physical data with virtual soft system components that simulate factory operations. Second, lean production principles are systematically incorporated into the soft system, thereby facilitating reduced energy consumption and minimizing environmental impact. Third, a parameter-driven programming model is formulated to correlate critical variables with green performance metrics, and a genetic algorithm is utilized to optimize these variables, ultimately enhancing sustainability outcomes. This integrated approach not only expands the applicability of digital twin technology but also offers a data-driven decision-support tool for the advancement of green manufacturing practices. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

27 pages, 564 KiB  
Article
Investigating Supercomputer Performance with Sustainability in the Era of Artificial Intelligence
by Haruna Chiroma
Appl. Sci. 2025, 15(15), 8570; https://doi.org/10.3390/app15158570 (registering DOI) - 1 Aug 2025
Abstract
The demand for high-performance computing (HPC) continues to grow, driven by its critical role in advancing innovations in the rapidly evolving field of artificial intelligence. HPC has now entered the era of exascale supercomputers, introducing significant challenges related to sustainability. Balancing HPC performance [...] Read more.
The demand for high-performance computing (HPC) continues to grow, driven by its critical role in advancing innovations in the rapidly evolving field of artificial intelligence. HPC has now entered the era of exascale supercomputers, introducing significant challenges related to sustainability. Balancing HPC performance with environmental sustainability presents a complex, multi-objective optimization problem. To the best of the author’s knowledge, no recent comprehensive investigation has explored the interplay between supercomputer performance and sustainability over a five-year period. This paper addresses this gap by examining the balance between these two aspects over a five-year period. This study collects and analyzes multi-year data on supercomputer performance and energy efficiency. The findings indicate that supercomputers pursuing higher performance often face challenges in maintaining top sustainability, while those focusing on sustainability tend to face challenges in achieving top performance. The analysis reveals that both the performance and power consumption of supercomputers have been rapidly increasing over the last five years. The findings also reveal that the performance of the most computationally powerful supercomputers is directly proportional to power consumption. The energy efficiency gains achieved by some top-performing supercomputers become challenging to maintain in the pursuit of higher performance. The findings of this study highlight the ongoing race toward zettascale supercomputers. This study can provide policymakers, researchers, and technologists with foundational evidence for rethinking supercomputing in the era of artificial intelligence. Full article
21 pages, 3746 KiB  
Article
DCP: Learning Accelerator Dataflow for Neural Networks via Propagation
by Peng Xu, Wenqi Shao and Ping Luo
Electronics 2025, 14(15), 3085; https://doi.org/10.3390/electronics14153085 (registering DOI) - 1 Aug 2025
Abstract
Deep neural network (DNN) hardware (HW) accelerators have achieved great success in improving DNNs’ performance and efficiency. One key reason is the dataflow in executing a DNN layer, including on-chip data partitioning, computation parallelism, and scheduling policy, which have large impacts on latency [...] Read more.
Deep neural network (DNN) hardware (HW) accelerators have achieved great success in improving DNNs’ performance and efficiency. One key reason is the dataflow in executing a DNN layer, including on-chip data partitioning, computation parallelism, and scheduling policy, which have large impacts on latency and energy consumption. Unlike prior works that required considerable efforts from HW engineers to design suitable dataflows for different DNNs, this work proposes an efficient data-centric approach, named Dataflow Code Propagation (DCP), to automatically find the optimal dataflow for DNN layers in seconds without human effort. It has several attractive benefits that prior studies lack, including the following: (i) We translate the HW dataflow configuration into a code representation in a unified dataflow coding space, which can be optimized by back-propagating gradients given a DNN layer or network. (ii) DCP learns a neural predictor to efficiently update the dataflow codes towards the desired gradient directions to minimize various optimization objectives, e.g., latency and energy. (iii) It can be easily generalized to unseen HW configurations in a zero-shot or few-shot learning manner. For example, without using additional training data, Extensive experiments on several representative models such as MobileNet, ResNet, and ViT show that DCP outperforms its counterparts in various settings. Full article
(This article belongs to the Special Issue Applied Machine Learning in Data Science)
Show Figures

Figure 1

34 pages, 9378 KiB  
Article
Contribution of Glazed Additions as Passive Elements of the Reduction in Energy Consumption in Detached Houses
by Hristina Krstić, Dušan Ranđelović, Vladan Jovanović, Marko Mančić and Branislava Stoiljković
Buildings 2025, 15(15), 2715; https://doi.org/10.3390/buildings15152715 (registering DOI) - 1 Aug 2025
Abstract
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the [...] Read more.
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the same time, create appealing and pleasant building extensions. Through energy simulations performed using EnergyPlus software, this study aims to analyze the potential contribution of glazed additions to a detached house to reducing energy consumption and creating additional space for living. Research was performed as a case study at the following locations: Niš (Serbia), Berlin (Germany), and Tromsø (Norway). For the purposes of this study, five models (M0–M4) were developed and subjected to analysis across two different scenarios. The results of the conducted research showed that the integration of glazed elements can significantly contribute to energy savings: maximum total annual savings regarding heating and cooling go from 21% for Tromsø, up to 32% for Berlin and 40% for Niš, depending on whether the building to which the glazed element(s) is/are attached is insulated or not and the number and the position of glazed elements. Although glazed additions can create a pleasant microclimate around the house, the overheating observed in the study indicates that proper ventilation and shading are mandatory, especially in more southern locations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 5581 KiB  
Article
PruneEnergyAnalyzer: An Open-Source Toolkit for Evaluating Energy Consumption in Pruned Deep Learning Models
by Cesar Pachon, Cesar Pedraza and Dora Ballesteros
Big Data Cogn. Comput. 2025, 9(8), 200; https://doi.org/10.3390/bdcc9080200 - 1 Aug 2025
Abstract
Currently, various pruning strategies including different methods and distribution types are commonly used to reduce the number of FLOPs and parameters in deep learning models. However, their impact on actual energy savings remains insufficiently studied, particularly in resource-constrained settings. To address this, we [...] Read more.
Currently, various pruning strategies including different methods and distribution types are commonly used to reduce the number of FLOPs and parameters in deep learning models. However, their impact on actual energy savings remains insufficiently studied, particularly in resource-constrained settings. To address this, we introduce PruneEnergyAnalyzer, an open-source Python tool designed to evaluate the energy efficiency of pruned models. Starting from the unpruned model, the tool calculates the energy savings achieved by pruned versions provided by the user, and generates comparative visualizations based on previously applied pruning hyperparameters such as method, distribution type (PD), compression ratio (CR), and batch size. These visual outputs enable the identification of the most favorable pruning configurations in terms of FLOPs, parameter count, and energy consumption. As a demonstration, we evaluated the tool with 180 models generated from three architectures, five pruning distributions, three pruning methods, and four batch sizes, using another previous library (e.g. FlexiPrune). This experiment revealed the significant impact of the network architecture on Energy Reduction, the non-linearity between FLOPs savings and energy savings, as well as between parameter reduction and energy efficiency. It also showed that the batch size strongly influences the energy consumption of the pruned model. Therefore, this tool can support researchers in making pruning policy decisions that also take into account the energy efficiency of the pruned model. Full article
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 (registering DOI) - 1 Aug 2025
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 (registering DOI) - 1 Aug 2025
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

19 pages, 5031 KiB  
Article
Measurement, Differences, and Driving Factors of Land Use Environmental Efficiency in the Context of Energy Utilization
by Lingyao Wang, Huilin Liu, Xiaoyan Liu and Fangrong Ren
Land 2025, 14(8), 1573; https://doi.org/10.3390/land14081573 - 31 Jul 2025
Abstract
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to [...] Read more.
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to 2021 by using the EBM-DEA model in China. The geographical detector model is used to examine the driving factors of land use environmental efficiency. The results show the following: (1) China’s LUEE is high in general but shows a clear pattern of spatial differentiation internally, with the highest values in the eastern region represented by Beijing, Jiangsu, and Zhejiang, while the central and western regions show lower LUEE because of their irrational industrial structure and lagging green development. (2) Energy consumption, economic development, industrial upgrading, population size, and urban expansion are the driving factors. Their explanatory power for the spatial stratification heterogeneity of land use environmental impacts varies. (3) Urban expansion has the greatest impact on the spatial differentiation of land use environmental effects, while energy consumption also shows significant explanatory strength. In contrast, economic development and population size exhibit relatively weaker explanatory effects. (4) The interaction of the two driving factors has a greater impact on LUEE than their individual effects, and the interaction is a two-factor enhancement. Finally, we make targeted recommendations to help improve land use environmental efficiency. Full article
Show Figures

Figure 1

Back to TopTop