Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = economic jellyfish

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5432 KiB  
Article
Unveiling the Bioactive Potential of the Invasive Jellyfish Phyllorhiza punctata Through Integrative Transcriptomic and Proteomic Analyses
by Tomás Rodrigues, Ricardo Alexandre Barroso, Alexandre Campos, Daniela Almeida, Francisco A. Guardiola, Maria V. Turkina and Agostinho Antunes
Biomolecules 2025, 15(8), 1121; https://doi.org/10.3390/biom15081121 - 4 Aug 2025
Viewed by 224
Abstract
The white-spotted jellyfish, Phyllorhiza punctata, is an invasive species with significant ecological and economic relevance spreading across various regions. While its ecological impact is well-documented, its molecular and biochemical characteristics remain poorly understood. In this study, we integrate proteomic data generated by [...] Read more.
The white-spotted jellyfish, Phyllorhiza punctata, is an invasive species with significant ecological and economic relevance spreading across various regions. While its ecological impact is well-documented, its molecular and biochemical characteristics remain poorly understood. In this study, we integrate proteomic data generated by LC-MS/MS with publicly available transcriptomic information to characterize P. punctata, analyzing differential protein expression across three distinct tissues: oral arms, mantle, and gonads. A total of 2764 proteins and 25,045 peptides were identified, including several venom components such as jellyfish toxins (JFTs) and phospholipase A2 (PLA2), which were further investigated and compared to toxins from other species. Enrichment analyses revealed clear tissue-specific functions. Additionally, deep learning and machine learning tools identified 274 promising AMP candidates, including the α-helical, β-sheet, and αβ-motif peptides. This dataset provides new insights into the protein composition of P. punctata and highlights strong AMP candidates for further characterization, underscoring the biotechnological potential of underexplored cnidarian species. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Antimicrobial Peptides)
Show Figures

Figure 1

17 pages, 2472 KiB  
Article
First Record of a Cannonball Jellyfish Bloom (Stomolophus sp.) in Venezuelan Waters
by Ramón D. Morejón-Arrojo, Florian Lüskow, Alfredo Fernández-Alías, Humberto Ramírez and Aldo Cróquer
J. Mar. Sci. Eng. 2025, 13(4), 689; https://doi.org/10.3390/jmse13040689 - 28 Mar 2025
Viewed by 1218
Abstract
Jellyfish blooms are dynamic events driven by environmental and anthropogenic factors. This study reports the first documented bloom of the cannonball jellyfish (Stomolophus sp.) in Venezuelan waters, observed between March and April 2024 along approximately 120 km of coastline. Reports from anglers [...] Read more.
Jellyfish blooms are dynamic events driven by environmental and anthropogenic factors. This study reports the first documented bloom of the cannonball jellyfish (Stomolophus sp.) in Venezuelan waters, observed between March and April 2024 along approximately 120 km of coastline. Reports from anglers and divers confirmed high jellyfish abundances (~3 ind. m−3) across multiple sites. Environmental analyses suggest that fluctuations in sea surface temperature, increased chlorophyll a concentrations, and high precipitation in the preceding months may have triggered strobilation and subsequent bloom formation. However, the polyps have not yet been observed in the field, and advective movement from other locations cannot be ruled out. Given the commercial importance of Stomolophus spp. in neighboring regions, this record underscores the need for continued monitoring to assess potential range expansions and their ecological and socio-economic impacts. Additionally, the emergence of this bloom raises questions about the species’ distribution patterns, potential establishment in Venezuelan waters, and possible implications for local fisheries. Our findings contribute to the broader understanding of gelatinous zooplankton dynamics in the Caribbean Sea and provide baseline information for future ecological assessments and fisheries management strategies. Further studies, including genetic analyses, are needed to confirm species identity and investigate the drivers behind this unprecedented bloom. Full article
Show Figures

Figure 1

11 pages, 637 KiB  
Article
Blackfordia virginica in Non-Native Distribution Range: A Potential Food Source for Humans?
by Mariana Cruz, Ester Dias, Luísa Custódio, João Encarnação, Joana Cruz, Vânia Baptista and Maria Alexandra Teodósio
Diversity 2024, 16(12), 729; https://doi.org/10.3390/d16120729 - 28 Nov 2024
Viewed by 1311
Abstract
The seasonal occurrence of the Black Sea jellyfish Blackfordia virginica Mayer, 1910 blooms is a reason of concern in the Guadiana estuary in the South of Portugal (South-West Europe), causing considerable economic and ecological impacts to fisheries. Due to jellyfish biochemical properties, they [...] Read more.
The seasonal occurrence of the Black Sea jellyfish Blackfordia virginica Mayer, 1910 blooms is a reason of concern in the Guadiana estuary in the South of Portugal (South-West Europe), causing considerable economic and ecological impacts to fisheries. Due to jellyfish biochemical properties, they may represent an opportunity as an alternative food source for humans. In this context, this work evaluated the nutritional profile of B. virginica (proximate composition, amino acids, minerals, and fatty acids methyl ester content). Blackfordia virginica biomass may be adequate for human consumption, as it has nutritional properties resembling other edible jellyfish species, with relevant levels of minerals, moderate content in crude protein, low-fat content, and a low energetic value. The high Cd levels in the biomass of B. virginica from the Guadiana Estuary may compromise its safety as a food source. Moreover, if these jellyfishes are proven as an edible invasive species, their management through fisheries should evaluate the cost effectiveness of investments. Full article
(This article belongs to the Special Issue Marine Resources Dynamics Under Global Change)
Show Figures

Figure 1

20 pages, 991 KiB  
Review
Jellyfish as Food: A Narrative Review
by António Raposo, Ibrahim Alasqah, Hani A. Alfheeaid, Zayed D. Alsharari, Hmidan A. Alturki and Dele Raheem
Foods 2022, 11(18), 2773; https://doi.org/10.3390/foods11182773 - 8 Sep 2022
Cited by 26 | Viewed by 10784
Abstract
Studies toward a sustainable future conducted by international organizations uniformly agree about having to change some of our present consumer behaviors. Regarding food, suggestions include eating locally farmed, less industrialized and renewable food to promote health and circularity, and limiting waste. Jellyfish are [...] Read more.
Studies toward a sustainable future conducted by international organizations uniformly agree about having to change some of our present consumer behaviors. Regarding food, suggestions include eating locally farmed, less industrialized and renewable food to promote health and circularity, and limiting waste. Jellyfish are frequently sorted and discarded after being caught with fish in fishing nets and gear. In contrast, we propose utilizing this by-catch as food. This review discusses the economic value and sustainability of jellyfish, the technologies used to prepare them for human consumption, their nutritional profile and health impacts and, finally, consumer acceptability and sensory evaluation of jellyfish food products. This discussion is critical for promoting jellyfish as an important aquatic resource to support blue and circular economies. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

19 pages, 4539 KiB  
Article
Wind Power Prediction Method: Support Vector Regression Optimized by Improved Jellyfish Search Algorithm
by Dong-Dong Yuan, Ming Li, Heng-Yi Li, Cheng-Jian Lin and Bing-Xiang Ji
Energies 2022, 15(17), 6404; https://doi.org/10.3390/en15176404 - 1 Sep 2022
Cited by 17 | Viewed by 2161
Abstract
To address the problems of grid connection and power dispatching caused by non-stationary wind power output, an improved Jellyfish Search algorithm optimization support vector regression (IJS-SVR) model was proposed in this study to achieve high-precision wind power prediction. The random selection of internal [...] Read more.
To address the problems of grid connection and power dispatching caused by non-stationary wind power output, an improved Jellyfish Search algorithm optimization support vector regression (IJS-SVR) model was proposed in this study to achieve high-precision wind power prediction. The random selection of internal parameters of SVR model will affect its performance. In this study, the Jellyfish Search (JS) algorithm was selected and improved to propose an Improved Jellyfish Search (IJS) algorithm. Compared with the comparative algorithms, the optimized values of IJS algorithm are closer to 0. It exhibits good convergence ability, search stability, and optimization-seeking ability, as well as being more suitable for solving optimization problems. Therefore, IJS was used to optimize SVR, and the prediction model of IJS-SVR was established. Different weather and seasons affect wind power and model prediction accuracy. The wind power in spring and winter was selected for model prediction verification in this study. Compared with other methods, the IJS-SVR model proposed in this study could achieve better prediction results than other models in both seasons, and its prediction performance was better, which could improve the prediction accuracy of wind power. This study provides a more economical and effective method of wind power to solve its uncertainties and can be used as a reference for grid power generation planning and power system economic dispatch. Full article
(This article belongs to the Special Issue Novel Developments in Distribution Systems and Microgrids)
Show Figures

Figure 1

13 pages, 1734 KiB  
Article
Effects of Temperature and Salinity on Podocyst Recycling of the Edible Jellyfish Rhopilema esculentum (Kishinouye, 1891)
by Ming Sun, Fudi Chen, Yan Duan and Jianming Sun
Sustainability 2022, 14(9), 5202; https://doi.org/10.3390/su14095202 - 26 Apr 2022
Cited by 1 | Viewed by 2191
Abstract
As one of the edible jellyfish species, Rhopilema esculentum (Kishinouye, 1891) is a traditional fishery resource and an important economic aquaculture species in China. However, facing the current situation of natural resources exhaustion and problems of breeding population frequent disease, quantity, and quality [...] Read more.
As one of the edible jellyfish species, Rhopilema esculentum (Kishinouye, 1891) is a traditional fishery resource and an important economic aquaculture species in China. However, facing the current situation of natural resources exhaustion and problems of breeding population frequent disease, quantity, and quality of seedlings in artificial breeding cannot satisfy the market demand. Temperature and salinity have been considered to play crucial roles in regulating R. esculentum asexual reproduction. This study examined the combined effects by exposing post-preserved R. esculentum podocysts (preserved at 2 ± 1 °C for more than 12 months) to three variable temperatures (simulated temperatures increasing from different starting dates of 14.5 °C on 1 April, 18 °C on 1 May, and 23.2 °C on 1 July, respective to natural levels) and three salinities (20, 25, and 30). Podocyst excystment, the start time of strobilation, duration of strobilation, and cumulative ephyra numbers were tested for 45 days and transfer rates from podocysts to ephyrae were analyzed to assess the most optimal combination of temperature and salinity. The results showed that podocyst excystment and ephyrae production occurred in all treatments. Higher temperature and lower salinity significantly facilitated the podocyst excystment and accelerated the start time of strobilation (p < 0.05). Significantly greater ephyra numbers were produced with lower salinity (20 and 25) and temperatures increasing from 18 °C on 1 May to natural levels (p < 0.05). There were significant interactions between temperature and salinity on the cumulative ephyra numbers and transfer rates from podocysts to ephyrae (p < 0.05). These results suggested that R. esculentum podocysts for long-term preservation at low temperature could be recycled. Temperature and salinity regulation can affect the number and time of R. esculentum seedlings to achieve high production and satisfy the market demand for real-time seedling supply. This conclusion would provide a scientific basis for the innovative methods of sustainable utilization of the edible jellyfish (R. esculentum) resources. Full article
(This article belongs to the Special Issue Seafood Sustainability − Series II)
Show Figures

Figure 1

16 pages, 3430 KiB  
Article
Combined Effects of Temperature and Salinity on Polyps and Ephyrae of Aurelia solida (Cnidaria: Scyphozoa)
by Susanne Schäfer, Sonia K. M. Gueroun, Carlos Andrade and João Canning-Clode
Diversity 2021, 13(11), 573; https://doi.org/10.3390/d13110573 - 10 Nov 2021
Cited by 19 | Viewed by 4868
Abstract
Jellyfish outbreaks are conspicuous natural events in marine ecosystems that have a substantial impact on the structure and dynamics of marine ecosystems and different economic sectors of human activities. Understanding the life cycle strategies of jellyfish species is therefore critical to mitigate the [...] Read more.
Jellyfish outbreaks are conspicuous natural events in marine ecosystems that have a substantial impact on the structure and dynamics of marine ecosystems and different economic sectors of human activities. Understanding the life cycle strategies of jellyfish species is therefore critical to mitigate the impacts these organisms may have. In this context, the present study investigated the effect of different temperature and salinity regimes on the rearing success of the jellyfish Aurelia solida in microcosm experiments on two different life stages: polyps and ephyrae. Polyps showed high survival rates across the different conditions (except at 28 °C/20 psu) and reproduced asexually in all combinations, with the highest budding activity at 20 °C and 30 psu. Strobilation occurred mainly at 16 °C and 35 psu. Although ephyra survival was highest at low salinities (20 psu) and lower temperatures (10 and 15 °C), the highest growth rates were reached at intermediate temperatures (20 °C). The comparison to other Aurelia species underlines the differences between even closely related species. Given the high tolerance capacity that A. solida presented in the experiments, the species has the potential to cope well under current climate change scenarios and possibly adapt successfully to other regions and ecosystems. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

25 pages, 2162 KiB  
Article
An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids
by Ahmed Ginidi, Abdallah Elsayed, Abdullah Shaheen, Ehab Elattar and Ragab El-Sehiemy
Mathematics 2021, 9(17), 2053; https://doi.org/10.3390/math9172053 - 26 Aug 2021
Cited by 47 | Viewed by 3194
Abstract
This paper proposes a hybrid algorithm that combines two prominent nature-inspired meta-heuristic strategies to solve the combined heat and power (CHP) economic dispatch. In this line, an innovative hybrid heap-based and jellyfish search algorithm (HBJSA) is developed to enhance the performance of two [...] Read more.
This paper proposes a hybrid algorithm that combines two prominent nature-inspired meta-heuristic strategies to solve the combined heat and power (CHP) economic dispatch. In this line, an innovative hybrid heap-based and jellyfish search algorithm (HBJSA) is developed to enhance the performance of two recent algorithms: heap-based algorithm (HBA) and jellyfish search algorithm (JSA). The proposed hybrid HBJSA seeks to make use of the explorative features of HBA and the exploitative features of the JSA to overcome some of the problems found in their standard forms. The proposed hybrid HBJSA, HBA, and JSA are validated and statistically compared by attempting to solve a real-world optimization issue of the CHP economic dispatch. It aims to satisfy the power and heat demands and minimize the whole fuel cost (WFC) of the power and heat generation units. Additionally, a series of operational and electrical constraints such as non-convex feasible operating regions of CHP and valve-point effects of power-only plants, respectively, are considered in solving such a problem. The proposed hybrid HBJSA, HBA, and JSA are employed on two medium systems, which are 24-unit and 48-unit systems, and two large systems, which are 84- and 96-unit systems. The experimental results demonstrate that the proposed hybrid HBJSA outperforms the standard HBA and JSA and other reported techniques when handling the CHP economic dispatch. Otherwise, comparative analyses are carried out to demonstrate the suggested HBJSA’s strong stability and robustness in determining the lowest minimum, average, and maximum WFC values compared to the HBA and JSA. Full article
(This article belongs to the Topic Multi-Energy Systems)
Show Figures

Figure 1

22 pages, 5312 KiB  
Review
Diversity and Physiological Tolerance of Native and Invasive Jellyfish/Ctenophores along the Extreme Salinity Gradient of the Baltic Sea
by Cornelia Jaspers, Nicholas Bezio and Hans-Harald Hinrichsen
Diversity 2021, 13(2), 57; https://doi.org/10.3390/d13020057 - 2 Feb 2021
Cited by 17 | Viewed by 8773
Abstract
Global change has led to manifold changes of marine ecosystems and biodiversity world-wide. While it has been shown that certain jellyfish and comb jelly species have increased regionally, it remains to be investigated if this is a general trend or localized phenomenon. Especially [...] Read more.
Global change has led to manifold changes of marine ecosystems and biodiversity world-wide. While it has been shown that certain jellyfish and comb jelly species have increased regionally, it remains to be investigated if this is a general trend or localized phenomenon. Especially for the economically important Baltic Sea, which is characterized by an extreme physical environmental gradient, this question has not been addressed to date. Here we present a detailed account of the gelatinous macro-zooplankton community including their physiological tolerance towards abiotic conditions and resulting distribution ranges in the Baltic. We show that the arrival and establishment of non-indigenous species has led to a rising importance of jellyfish and comb jellies in the Baltic. This accounts for the comb jelly Mnemiopsis leidyi, which was first observed in Northern Europe in 2005, as well as for the hydromedusae Blackfordia virginica, first sighted in 2014. Both species have been shown to attain high population densities with pronounced grazing impact in other invasive regions. Given the current and anticipated changes of the physical environment of the Baltic Sea, especially ongoing warming, amplification of their impact can be expected. Full article
(This article belongs to the Special Issue Patterns and Ecology of Jellyfish in Marine Environment)
Show Figures

Figure 1

18 pages, 3011 KiB  
Article
Proteomic Analysis of the Venom of Jellyfishes Rhopilema esculentum and Sanderia malayensis
by Thomas C. N. Leung, Zhe Qu, Wenyan Nong, Jerome H. L. Hui and Sai Ming Ngai
Mar. Drugs 2020, 18(12), 655; https://doi.org/10.3390/md18120655 - 21 Dec 2020
Cited by 18 | Viewed by 4995
Abstract
Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish—edible [...] Read more.
Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish—edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC–MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%). The present study demonstrates the first proteomes of nematocysts from two jellyfish species with economic and environmental importance, and expands the foundation and understanding of cnidarian toxins. Full article
Show Figures

Figure 1

25 pages, 1883 KiB  
Article
The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health
by Loredana Stabili, Lucia Rizzo, Lorena Basso, Marinella Marzano, Bruno Fosso, Graziano Pesole and Stefano Piraino
Mar. Drugs 2020, 18(9), 437; https://doi.org/10.3390/md18090437 - 21 Aug 2020
Cited by 21 | Viewed by 5177
Abstract
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across [...] Read more.
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome. Full article
Show Figures

Figure 1

23 pages, 2518 KiB  
Review
Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications
by Daniela Coppola, Maria Oliviero, Giovanni Andrea Vitale, Chiara Lauritano, Isabella D’Ambra, Salvatore Iannace and Donatella de Pascale
Mar. Drugs 2020, 18(4), 214; https://doi.org/10.3390/md18040214 - 15 Apr 2020
Cited by 253 | Viewed by 28194
Abstract
Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in [...] Read more.
Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment. Full article
(This article belongs to the Special Issue Papers from MarPipe and Ocean Medicines)
Show Figures

Graphical abstract

18 pages, 1063 KiB  
Review
Advances in DNA Barcoding of Toxic Marine Organisms
by Shaohua Gong, Yanfei Ding, Yi Wang, Guangze Jiang and Cheng Zhu
Int. J. Mol. Sci. 2018, 19(10), 2931; https://doi.org/10.3390/ijms19102931 - 26 Sep 2018
Cited by 24 | Viewed by 7175
Abstract
There are more than 200,000 marine species worldwide. These include many important economic species, such as large yellow croaker, ribbonfish, tuna, and salmon, but also many potentially toxic species, such as blue-green algae, diatoms, cnidarians, ctenophores, Nassarius spp., and pufferfish. However, some edible [...] Read more.
There are more than 200,000 marine species worldwide. These include many important economic species, such as large yellow croaker, ribbonfish, tuna, and salmon, but also many potentially toxic species, such as blue-green algae, diatoms, cnidarians, ctenophores, Nassarius spp., and pufferfish. However, some edible and toxic species may look similar, and the correct identification of marine species is thus a major issue. The failure of traditional classification methods in certain species has promoted the use of DNA barcoding, which uses short, standard DNA fragments to assist with species identification. In this review, we summarize recent advances in DNA barcoding of toxic marine species such as jellyfish and pufferfish, using genes including cytochrome oxidase I gene (COI), cytochrome b gene (cytb), 16S rDNA, internal transcribed spacer (ITS), and Ribulose-1,5-bisphosphate carboxylase oxygenase gene (rbcL). We also discuss the application of this technique for improving the identification of marine species. The use of DNA barcoding can benefit the studies of biological diversity, biogeography, food safety, and the detection of both invasive and new species. However, the technique has limitations, particularly for the analysis of complex objects and the selection of standard DNA barcodes. The development of high-throughput methods may offer solutions to some of these issues. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

35 pages, 2058 KiB  
Article
Extract from the Zooxanthellate Jellyfish Cotylorhiza tuberculata Modulates Gap Junction Intercellular Communication in Human Cell Cultures
by Antonella Leone, Raffaella Marina Lecci, Miriana Durante and Stefano Piraino
Mar. Drugs 2013, 11(5), 1728-1762; https://doi.org/10.3390/md11051728 - 22 May 2013
Cited by 67 | Viewed by 19616
Abstract
On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number [...] Read more.
On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Plankton)
Show Figures

Figure 1

17 pages, 873 KiB  
Article
Isolation, Characterization and Biological Evaluation of Jellyfish Collagen for Use in Biomedical Applications
by Sourour Addad, Jean-Yves Exposito, Clément Faye, Sylvie Ricard-Blum and Claire Lethias
Mar. Drugs 2011, 9(6), 967-983; https://doi.org/10.3390/md9060967 - 7 Jun 2011
Cited by 206 | Viewed by 21486
Abstract
Fibrillar collagens are the more abundant extracellular proteins. They form a metazoan-specific family, and are highly conserved from sponge to human. Their structural and physiological properties have been successfully used in the food, cosmetic, and pharmaceutical industries. On the other hand, the increase [...] Read more.
Fibrillar collagens are the more abundant extracellular proteins. They form a metazoan-specific family, and are highly conserved from sponge to human. Their structural and physiological properties have been successfully used in the food, cosmetic, and pharmaceutical industries. On the other hand, the increase of jellyfish has led us to consider this marine animal as a natural product for food and medicine. Here, we have tested different Mediterranean jellyfish species in order to investigate the economic potential of their collagens. We have studied different methods of collagen purification (tissues and experimental procedures). The best collagen yield was obtained using Rhizostoma pulmo oral arms and the pepsin extraction method (2–10 mg collagen/g of wet tissue). Although a significant yield was obtained with Cotylorhiza tuberculata (0.45 mg/g), R. pulmo was used for further experiments, this jellyfish being considered as harmless to humans and being an abundant source of material. Then, we compared the biological properties of R. pulmo collagen with mammalian fibrillar collagens in cell cytotoxicity assays and cell adhesion. There was no statistical difference in cytotoxicity (p > 0.05) between R. pulmo collagen and rat type I collagen. However, since heparin inhibits cell adhesion to jellyfish-native collagen by 55%, the main difference is that heparan sulfate proteoglycans could be preferentially involved in fibroblast and osteoblast adhesion to jellyfish collagens. Our data confirm the broad harmlessness of jellyfish collagens, and their biological effect on human cells that are similar to that of mammalian type I collagen. Given the bioavailability of jellyfish collagen and its biological properties, this marine material is thus a good candidate for replacing bovine or human collagens in selected biomedical applications. Full article
(This article belongs to the Special Issue Marine Biomaterials)
Show Figures

Graphical abstract

Back to TopTop