Combined Effects of Temperature and Salinity on Polyps and Ephyrae of Aurelia solida (Cnidaria: Scyphozoa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polyp Culture
2.2. Temperature–Salinity Experiment on Polyps
2.3. Temperature–Salinity Experiment on Ephyrae
2.4. Statistical Analysis
3. Results
3.1. Polyp Survival and Asexual Reproduction
3.2. Ephyra Survival and Somatic Growth
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graham, W.M.; Gelcich, S.; Robinson, K.L.; Duarte, C.M.; Brotz, L.; Purcell, J.E.; Madin, L.P.; Mianzan, H.; Sutherland, K.R.; Uye, S.; et al. Linking human well-being and jellyfish: Ecosystem services, impacts, and societal responses. Front. Ecol. Environ. 2014, 12, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Tilves, U.; Purcell, J.E.; Fuentes, V.L.; Torrents, A.; Pascual, M.; Raya, V.; Gili, J.-M.; Sabates, A. Natural diet and predation impacts of Pelagia noctiluca on fish eggs and larvae in the NW Mediterranean. J. Plankton Res. 2016, 38, 1243–1254. [Google Scholar] [CrossRef] [Green Version]
- Milisenda, G.; Rosa, S.; Fuentes, V.L.; Boero, F.; Guglielmo, L.; Purcell, J.E.; Piraino, S. Jellyfish as prey: Frequency of predation and selective foraging of Boops boops (Vertebrata, Actinopterygii) on the mauve stinger Pelagia noctiluca (Cnidaria, Scyphozoa). PLoS ONE 2014, 9, e94600. [Google Scholar] [CrossRef] [Green Version]
- Sweetman, A.K.; Smith, C.R.; Dale, T.; Jones, D.O.B. Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proc. R. Soc. B 2014, 281, 20142210. [Google Scholar] [CrossRef] [PubMed]
- Chelsky, A.; Pitt, K.A.; Ferguson, A.J.P.; Bennett, W.W.; Teasdale, P.R.; Welsh, D.T. Decomposition of jellyfish carrion in situ: Short-term impacts on infauna, benthic nutrient fluxes and sediment redox conditions. Sci. Total Environ. 2016, 566–567, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Ruzicka, J.J.; Daly, E.A.; Brodeur, R.D. Evidence that summer jellyfish blooms impact Pacific Northwest salmon production. Ecosphere 2016, 7, 7. [Google Scholar] [CrossRef]
- Pitt, K.A.; Lucas, C.H.; Condon, R.H.; Duarte, C.M.; Stewart-Koster, B. Claims That Anthropogenic Stressors Facilitate Jellyfish Blooms Have Been Amplified Beyond the Available Evidence: A Systematic Review. Front. Mar. Sci. 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Purcell, J.E.; Uye, S.; Lo, W.-T. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Mar. Ecol. Prog. Ser. 2007, 350, 153–174. [Google Scholar] [CrossRef]
- Bosch-Belmar, M.; Milisenda, G.; Basso, L.; Doyle, T.K.; Leone, A.; Piraino, S. Jellyfish Impacts on Marine Aquaculture and Fisheries. Rev. Fish. Sci. Aquac. 2020, 29, 242–259. [Google Scholar] [CrossRef]
- Ghermandi, A.; Galil, B.; Gowdy, J.; Nunes, P.A.L.D. Jellyfish outbreak impacts on recreation in the Mediterranean Sea: Welfare estimates from a socioeconomic pilot survey in Israel. Ecosyst. Serv. 2015, 11, 140–147. [Google Scholar] [CrossRef]
- Lucas, C.H.; Gelcich, S.; Uye, S.-I. Living with jellyfish: Management and adaptation strategies. In Jellyfish Blooms; Springer: Cham, Switzerland, 2014; pp. 129–150. [Google Scholar] [CrossRef]
- Masilamoni, J.G.; Jesudoss, K.S.; Nandakumar, K.; Satpathy, K.K.; Nair, K.V.K.; Azariah, J. Jellyfish ingress: A threat to the smooth operation of coastal power plants. Curr. Sci. 2000, 79, 567–569. [Google Scholar]
- Dong, Z. Blooms of the Moon Jellyfish Aurelia: Causes, Consequences and Controls. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–171. [Google Scholar] [CrossRef]
- Miyajima-Taga, Y.; Masuda, R.; Kurihara, A.; Yamashita, Y.; Takeuchi, T. Feeding moon jellyfish improves the tilting behavior of hatchery-reared red sea bream juveniles. Nippon. Suisan Gakkaishi 2014, 80, 934–945. [Google Scholar] [CrossRef] [Green Version]
- Khong, N.M.H.; Yusoff, F.M.; Jamilah, B.; Basri, M.; Maznah, I.; Chan, K.W.; Nishikawa, J. Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chem. 2016, 196, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Marina, R.; Giacomo, L.; Piraino, S. Mediterranean jellyfish as novel food: Effects of thermal processing on antioxidant, phenolic, and protein contents. Eur. Food Res. Technol. 2019, 245, 1611–1627. [Google Scholar] [CrossRef] [Green Version]
- Arai, M.N. A Functional Biology of Scyphozoa; Springer Science and Business Media: Cham, Switzerland, 1997. [Google Scholar]
- Kienberger, K.; Riera-Buch, M.; Schönemann, A.M.; Bartsch, V.; Halbauer, R.; Prieto, L. First description of the life cycle of the jellyfish Rhizostoma luteum (Scyphozoa: Rhizostomeae). PLoS ONE 2018, 13, e0202093. [Google Scholar] [CrossRef] [PubMed]
- Schiariti, A.; Morandini, A.C.; Jarms, G.; Paes, R.V.G.; Franke, S.; Mianzan, H. Asexual reproduction strategies and blooming potential in Scyphozoa. Mar. Ecol. Prog. Ser. 2014, 510, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Yongze, X.; Qian, L.; Mei, Z.; Yu, Z.; Tiezhu, M.; Zhigang, Y. Effects of temperature and salinity on the asexual reproduction of Aurelia coerulea polyps. J. Oceanol. Limnol. 2020, 38, 133–142. [Google Scholar] [CrossRef]
- Pitt, K.A.; Kingsford, M.J. Reproductive biology of the edible jellyfish Catostylus mosaicus (Rhizostomeae). Mar. Biol. 2000, 137, 791–799. [Google Scholar] [CrossRef]
- Widmer, C.L.; Fox, C.J.; Brierley, A.S. Effects of temperature and salinity on four species of north-eastern Atlantic scyphistomae (Cnidaria: Scyphozoa). Mar. Ecol. Prog. Ser. 2016, 559, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Purcell, J.E. Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Mar. Ecol. Prog. Ser. 2007, 348, 183–196. [Google Scholar] [CrossRef]
- Dawson, M.N.; Jacobs, D.K. Molecular Evidence for Cryptic Species of Aurelia aurita (Cnidaria, Scyphozoa). Biol. Bull. 2001, 200, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Scorrano, S.; Aglieri, G.; Boero, F.; Dawson, M.N.; Piraino, S. Unmasking Aurelia species in the Mediterranean Sea: An integrative morphometric and molecular approach. Zool. J. Linn. Soc. 2017, 180, 243–267. [Google Scholar] [CrossRef]
- Kramp, P.L. Synopsis of the medusae of the world. J. Mar. Biol. Assoc. United Kingd. 1961, 40, 7–382. [Google Scholar] [CrossRef]
- Gueroun, S.K.M.; Javidpour, J.; Andrade, C.; Nogueira, N.; Freitas, M.; Canning-Clode, J. Pelagic Cnidaria and Ctenophora diversity patterns and trends in Macaronesia insular systems (NE Atlantic). Mar. Biodivers. 2021, 51, 1–13. [Google Scholar] [CrossRef]
- Gueroun, S.K.M.; Molinero, J.C.; Piraino, S.; Daly Yahia, M.N. Population dynamics and predatory impact of the alien jellyfish Aurelia solida (Cnidaria, Scyphozoa) in the Bizerte Lagoon (southwestern Mediterranean Sea). Mediterr. Mar. Sci. 2020, 21, 22–35. [Google Scholar] [CrossRef]
- El-Serehy, H.A.; Al-Rasheid, K.A. Reproductive strategy of the jellyfish Aurelia aurita (Cnidaria Scyphomedusae) in the Suez Canal and its migration between the Red Sea and Mediterranean. Aquat. Ecosyst. Health Manag. 2011, 14, 269–275. [Google Scholar] [CrossRef]
- Malej, A.; Kogovšek, T.; Ramšak, A.; Catenacci, L. Blooms and population dynamics of moon jellyfish in the northern Adriatic. Cah. Biol. Mar. 2012, 53, 337–342. [Google Scholar]
- Afli, A.; Ayari, R.; Zaabi, S. Ecological quality of some Tunisian coast and lagoon locations, by using benthic community parameters and biotic indices. Estuar. Coast. Shelf Sci. 2008, 80, 269–280. [Google Scholar] [CrossRef]
- Gueroun, S.K.M.; Yahia, O.K.-D.; Deidun, A.; Fuentes, V.; Piraino, S.; Daly Yahia, M.N. First record and potential trophic impact of Phyllorhiza punctata (Cnidaria: Scyphozoa) along the north Tunisian coast South Western Mediterranean Sea. Ital. J. Zool. 2015, 82, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Wüst, G. On the vertical circulation of the Mediterranean Sea. J. Geophys. Res. 1961, 66, 3261–3271. [Google Scholar] [CrossRef]
- Sakka Hlaili, A.; Chikhaoui, M.-A.; El Grami, B.; Hadj Mabrouk, H. Effects of N and P supply on phytoplankton in Bizerte Lagoon (western Mediterranean). J. Exp. Mar. Biol. Ecol. 2006, 333, 79–96. [Google Scholar] [CrossRef]
- Touzri, C.; Hamdi, H.; Goy, J.; Yahia, M.N.D. Diversity and distribution of gelatinous zooplankton in the Southwestern Mediterranean Sea. Mar. Ecol. 2012, 1–14. [Google Scholar] [CrossRef]
- Ma, X.; Purcell, J.E. Temperature, salinity, and prey effects on polyp versus medusa bud production by the invasive hydrozoan Moerisia lyonsi. Mar. Biol. 2005, 147, 225–234. [Google Scholar] [CrossRef]
- Helm, R.R.; Dunn, C.W. Indoles induce metamorphosis in a broad diversity of jellyfish, but not in a crown jelly (Coronatae). PLoS ONE 2017, 12, e0188601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A.; Kosinski, M.; Biecek, P. “Survminer”: Drawing Survival Curves Using “ggplot2”. 2020. Available online: https://CRAN.R-project.org/package=survminer (accessed on 26 November 2020).
- Therneau, T. “Survival”: A Package for Survival Analysis in R. 2020. Available online: https://CRAN.R-project.org/package=survival (accessed on 14 December 2020).
- Bolker, B.; R Core Team. “Bbmle”: Tools for General Maximum Likelihood Estimation. 2020. Available online: https//CRAN.R-project.org/package=bbmle (accessed on 8 January 2021).
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. “Tidyr”: Tidy Messy Data. 2020. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 27 October 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 16 March 2020).
- Fox, J.; Weisberg, S. “Car”: An {R} Companion to Applied Regression. 2019. Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (accessed on 2 November 2020).
- Lenth, R.V. “Emmeans”: Estimated Marginal Means, aka Least-Squares Means. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 8 January 2021).
- Amorim, K.; Mattmüller, R.M.; Algueró-Muñiz, M.; Meunier, C.L.; Alvarez-Fernandez, S.; Boersma, M.; Morais, P.; Teodósio, M.A. Winter river discharge may affect summer estuarine jellyfish blooms. Mar. Ecol. Prog. Ser. 2018, 591, 253–265. [Google Scholar] [CrossRef]
- Pascual, M.; Fuentes, V.; Canepa, A.; Atienza, D.; Gili, J.-M.; Purcell, J.E. Temperature effects on asexual reproduction of the scyphozoan Aurelia aurita s.l.: Differences between exotic (Baltic and Red seas) and native (Mediterranean Sea) populations. Mar. Ecol. 2015, 36, 994–1002. [Google Scholar] [CrossRef]
- Hubot, N.; Lucas, C.H.; Piraino, S. Environmental control of asexual reproduction and somatic growth of Aurelia spp. (Cnidaria, Scyphozoa) polyps from the Adriatic Sea. PLoS ONE 2017, 12, e0178482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamstedt, U.; Lane, J.; Martinussen, M.B. Bioenergetics of ephyra larvae of the scyphozoan jellyfish Aurelia aurita in relation to temperature and salinity. Mar. Biol. 1999, 135, 89–98. [Google Scholar] [CrossRef]
- Fu, Z.; Li, J.; Wang, J.; Lai, J.; Liu, Y.; Sun, M. Combined Effects of Temperature and Salinity on the Growth and Pulsation of Moon Jellyfish (Aurelia coerulea) Ephyrae. Am. J. Life Sci. 2020, 8, 144–151. [Google Scholar] [CrossRef]
- Widmer, C.L. Effects of temperature on growth of north-east Pacific moon jellyfish ephyrae, Aurelia labiata (Cnidaria: Scyphozoa). J. Mar. Biol. Assoc. United Kingd. 2005, 85, 569–573. [Google Scholar] [CrossRef]
- Miller, A.D.; Coleman, M.A.; Clark, J.; Cook, R.; Naga, Z.; Doblin, M.A.; Hoffmann, A.A.; Sherman, C.D.H.; Bellgrove, A. Local thermal adaptation and limited gene flow constrain future climate responses of a marine ecosystem engineer. Evol. Appl. 2020, 13, 918–934. [Google Scholar] [CrossRef] [PubMed]
- King, N.G.; McKeown, N.J.; Smale, D.A.; Moore, P.J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 2018, 41, 1469–1484. [Google Scholar] [CrossRef]
- Mardones, M.L.; Fenberg, P.B.; Thatje, S.; Hauton, C. Intraspecific plasticity and trans-generational adaptation of reproductive traits and early development in a temperate marine neogastropod. Mar. Environ. Res. 2020, 161, 105123. [Google Scholar] [CrossRef] [PubMed]
- Loveridge, A.; Lucas, C.H.; Pitt, K.A. Shorter, warmer winters may inhibit production of ephyrae in a population of the moon jellyfish Aurelia Aurita. Hydrobiologia 2021, 848, 739–749. [Google Scholar] [CrossRef]
- Shaltout, M.; Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 2014, 56, 411–443. [Google Scholar] [CrossRef] [Green Version]
- Simoncelli, S.; Oliveri, P.; Mattia, G.; Myroshnychenko, V. SeaDataCloud Temperature and Salinity Historical Data Collection for the Mediterranean Sea (Version 2). SeaDaraNet 2020. [Google Scholar] [CrossRef]
- Canning-Clode, J.; Carlton, J.T. Refining and expanding global climate change scenarios in the sea: Poleward creep complexities, range termini, and setbacks and surges. Divers. Distrib. 2017, 23, 463–473. [Google Scholar] [CrossRef]
- Vargas-Yáñez, M.; García-Martínez, M.C.; Moya, F.; Balbín, R.; López-Jurado, J.L.; Serra, M.; Zuninod, P.; Pascuale, J.; Salat, J. Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project. Prog. Oceanogr. 2017, 157, 27–46. [Google Scholar] [CrossRef]
- Purcell, J.E. Climate effects on formation of jellyfish and ctenophore blooms: A review. J. Mar. Biol. Assoc. United Kingd. 2005, 85, 461–476. [Google Scholar] [CrossRef]
- Daly Yahia, M.N.; Batistic, W.; Lucic, D.; Fernández de Puelles, M.L.; Licandro, P.; Malej, A.; Molinero, J.; Siokou-Frangou, I.; Zervoudaki, S.; Prieto, L.; et al. Are outbreaks of Pelagia noctiluca (Forskäl, 1771) more frequent in the Mediterranean basin? In Proceedings of the Joint ICES/CIESM Workshop to Compare Zooplankton Ecology and Methodologies between the Mediterranean and the North Atlantic (WKZEM): ICES Cooperative Research Report, Copenhagen, Denmark, 2 February 2010; Volume 300, pp. 8–14. [Google Scholar]
- Castro, N.; Ramalhosa, P.; Jiménez, J.; Costa, J.L.; Gestoso, I.; Canning-Clode, J. Exploring marine invasions connectivity in a NE Atlantic Island through the lens of historical maritime traffic patterns. Reg. Stud. Mar. Sci. 2020, 37, 101333. [Google Scholar] [CrossRef]
- Pitt, K.A.; Welsh, Æ.D.T.; Condon, R.H. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 2009, 616, 133–149. [Google Scholar] [CrossRef]
- Guy-Haim, T.; Rubin-Blum, M.; Rahav, E.; Belkin, N.; Silverman, J.; Sisma-Ventura, G. The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea. Biogeosciences 2020, 17, 5489–5511. [Google Scholar] [CrossRef]
- Kramar, M.K.; Tinta, T.; Lučić, D.; Malej, A.; Turk, V. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS ONE 2019, 14, e0198056. [Google Scholar] [CrossRef] [Green Version]
- Delannoy, C.M.J.; Houghton, J.D.R.; Fleming, N.E.C.; Ferguson, H.W. Mauve Stingers (Pelagia noctiluca) as carriers of the bacterial fish pathogen Tenacibaculum maritimum. Aquaculture 2011, 311, 255–257. [Google Scholar] [CrossRef]
- Peng, S.; Hao, W.; Li, Y.; Wang, L.; Sun, T.; Zhao, J.; Dong, Z. Bacterial Communities Associated with Four Blooming Scyphozoan Jellyfish: Potential Species-Specific Consequences for Marine Organisms and Humans Health. Front. Microbiol. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Chakroun, F.; Aloui-Bejaouin, N. Invasion d’Aurelia aurita (Cnidaria, Scyphomédusa) dans le lac de Bizerte (Tunisie) au cours de l’été 1994. Ann. Inst. Océanograph. 1995, 71, 67–69. [Google Scholar]
- Gueroun, S.K.M. Diversité et Impact des Méduses sur le Réseau Trophique Planctonique des Ecosystèmes Lagunaire et Côtier de la Région de Bizerte. Master’s Thesis, Faculty of Science of Bizerte, Carthage University, Bizerte, Tunisia, 2012. [Google Scholar]
- Kogovsek, T.; Bogunovic, B.; Malej, A. Recurrence of bloom-forming scyphomedusae: Wavelet analysis of a 200-year time series. Hydrobiologia 2010, 645, 81–96. [Google Scholar] [CrossRef]
Variable Tested | Temperature (°C) | Salinity (psu) | Temperature × Salinity | |||
---|---|---|---|---|---|---|
Test Statistic | p-Value | Test Statistic | p-Value | Test Statistic | p-Value | |
Polyp survival | X2 = 03.23 | 0.520 | X2 = 03.64 | 0.603 | X2 = 43.34 | 0.002 |
Asexual reproduction | X2 = 87.14 | <0.001 | X2 = 42.86 | <0.001 | X2 = 49.67 | <0.001 |
Ephyra survival | X2 = 25.43 | <0.001 | X2 = 11.35 | 0.003 | X2 = 7.047 | 0.317 |
Ephyra growth | F = 46.82 | <0.001 | F = 0.28 | 0.761 | F = 7.69 | <0.001 |
Temperature (°C) | Salinity (psu) | Duration until First Ephyra (Days) | Duration from First to Last Ephyra (Days) | Number of Released Ephyrae (per Polyp) | Comment |
---|---|---|---|---|---|
12 | 40 | 71 | 5 | 5 | deformed ephyrae |
16 | 20 | 66 | 17 | 10 | deformed ephyrae |
16 | 25 | 75 | 16 | 29 | - |
16 | 35 | 85 ± 5.1 (n = 5) | 13.7 ± 1.5 (n = 3) | 28 ± 3.6 (n = 3) | not all polyps finished strobilation during the experiment |
Stage | Parameter | Species | Temperature (°C) | Salinity (psu) | Optimal Combination | Ref |
---|---|---|---|---|---|---|
Polyp | Survival | A. aurita * | 14–28 | 38 | all | [48] |
A. aurita | 4–23 | 21–34 | all | [22] | ||
A. aurita s.l. | 7.9–25.1 | 15–35 | all, except 25 °C/<27 psu | [47] | ||
A. aurita s.l. | 14–28 | 38 | all | [48] | ||
A. coerulea | 9–24 | 15–40 | all, except <15 °C/15 psu | [20] | ||
A. labiata | 7–15 | 20–34 | all (but lower at 7 °C/34 psu) | [23] | ||
A. solida * | 14–28 | 38 | all (but lower at 14 °C) | [48] | ||
A. solida | 12–28 | 20–40 | all, except 28 °C/20 psu | ** | ||
Polyp | Budding | A. aurita * | 14–28 | 38 | 28 °C/38 psu | [48] |
A. aurita | 4–23 | 21–34 | 9 °C/21 psu | [22] | ||
A. aurita s.l. | 7.9–25.1 | 15–35 | 17.4 °C/ 3 psu | [47] | ||
A. aurita s.l. | 14–28 | 38 | 28 °C/38 psu | [48] | ||
A. coerulea | 9–24 | 15–40 | 21 °C/25 psu | [20] | ||
A. coerulea | 14 and 21 | 24 and 37 | 14 °C/24 psu | [49] | ||
A. labiata | 7–15 | 20–34 | 7 °C/27 psu | [23] | ||
A. relicta | 14 and 21 | 37 | 14 °C/37 psu | [49] | ||
A. solida * | 14–28 | 38 | 28 °C/38 psu | [48] | ||
A. solida | 12–28 | 20–40 | 20 °C/30 psu | ** | ||
Polyp | Strobilation | A. aurita * | 14–28 | 38 | 14 °C/38 psu | [48] |
A. aurita | 4–23 | 21–34 | 4 °C/27 psu | [22] | ||
A. aurita s.l. | 14–28 | 38 | 14 °C/38 psu | [48] | ||
A. coerulea | 9–24 | 15–40 | 15 °C/33 psu | [20] | ||
A. labiata | 7–15 | 20–34 | 15 °C/27 psu | [23] | ||
A. solida * | 14–28 | 38 | 14 °C/38 psu | [48] | ||
A. solida | 12–28 | 20–40 | 16 °C/35 psu | ** | ||
Ephyra | Survival | A. aurita | 6–18 | 35 | all | [50] |
18 | 17.5–35 | all | ||||
A. solida | 10–25 | 20–40 | 15 °C/20 psu and 10 °C/35 psu | ** | ||
Ephyra | Growth | A. aurita | 6–18 | 35 | 18 °C/35 psu | [50] |
18 | 17.5–35 | 18 °C/35 psu | ||||
A. coerulea | 10–25 | 22–31 | 25 °C/25 psu | [51] | ||
A. labiata | 8–28 | 34 | 21 °C/34 psu | [52] | ||
A. solida | 10–25 | 20–40 | 20 °C/20 psu | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schäfer, S.; Gueroun, S.K.M.; Andrade, C.; Canning-Clode, J. Combined Effects of Temperature and Salinity on Polyps and Ephyrae of Aurelia solida (Cnidaria: Scyphozoa). Diversity 2021, 13, 573. https://doi.org/10.3390/d13110573
Schäfer S, Gueroun SKM, Andrade C, Canning-Clode J. Combined Effects of Temperature and Salinity on Polyps and Ephyrae of Aurelia solida (Cnidaria: Scyphozoa). Diversity. 2021; 13(11):573. https://doi.org/10.3390/d13110573
Chicago/Turabian StyleSchäfer, Susanne, Sonia K. M. Gueroun, Carlos Andrade, and João Canning-Clode. 2021. "Combined Effects of Temperature and Salinity on Polyps and Ephyrae of Aurelia solida (Cnidaria: Scyphozoa)" Diversity 13, no. 11: 573. https://doi.org/10.3390/d13110573
APA StyleSchäfer, S., Gueroun, S. K. M., Andrade, C., & Canning-Clode, J. (2021). Combined Effects of Temperature and Salinity on Polyps and Ephyrae of Aurelia solida (Cnidaria: Scyphozoa). Diversity, 13(11), 573. https://doi.org/10.3390/d13110573