Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = eco-acoustic indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6464 KiB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Viewed by 267
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

13 pages, 1305 KiB  
Article
Fine-Tuning BirdNET for the Automatic Ecoacoustic Monitoring of Bird Species in the Italian Alpine Forests
by Giacomo Schiavo, Alessia Portaccio and Alberto Testolin
Information 2025, 16(8), 628; https://doi.org/10.3390/info16080628 - 23 Jul 2025
Viewed by 311
Abstract
The ongoing decline in global biodiversity constitutes a critical challenge for environmental science, necessitating the prompt development of effective monitoring frameworks and conservation protocols to safeguard the structure and function of natural ecosystems. Recent progress in ecoacoustic monitoring, supported by advances in artificial [...] Read more.
The ongoing decline in global biodiversity constitutes a critical challenge for environmental science, necessitating the prompt development of effective monitoring frameworks and conservation protocols to safeguard the structure and function of natural ecosystems. Recent progress in ecoacoustic monitoring, supported by advances in artificial intelligence, might finally offer scalable tools for systematic biodiversity assessment. In this study, we evaluate the performance of BirdNET, a state-of-the-art deep learning model for avian sound recognition, in the context of selected bird species characteristic of the Italian Alpine region. To this end, we assemble a comprehensive, manually annotated audio dataset targeting key regional species, and we investigate a variety of strategies for model adaptation, including fine-tuning with data augmentation techniques to enhance recognition under challenging recording conditions. As a baseline, we also develop and evaluate a simple Convolutional Neural Network (CNN) trained exclusively on our domain-specific dataset. Our findings indicate that BirdNET performance can be greatly improved by fine-tuning the pre-trained network with data collected within the specific regional soundscape, outperforming both the original BirdNET and the baseline CNN by a significant margin. These findings underscore the importance of environmental adaptation and data variability for the development of automated ecoacoustic monitoring devices while highlighting the potential of deep learning methods in supporting conservation efforts and informing soundscape management in protected areas. Full article
(This article belongs to the Special Issue Signal Processing Based on Machine Learning Techniques)
Show Figures

Graphical abstract

25 pages, 7489 KiB  
Article
Influence of Recycled Tire Steel Fiber Content on the Mechanical Properties and Fracture Characteristics of Ultra-High-Performance Concrete
by Junyan Yu, Qifan Wu, Dongyan Zhao and Yubo Jiao
Materials 2025, 18(14), 3300; https://doi.org/10.3390/ma18143300 - 13 Jul 2025
Viewed by 361
Abstract
Ultra-high-performance concrete (UHPC) reinforced with recycled tire steel fibers (RTSFs) was studied to evaluate its mechanical properties and cracking behavior. Using acoustic emission (AE) monitoring, researchers tested various RTSF replacement rates in compression and flexural tests. Results revealed a clear trend: mechanical properties [...] Read more.
Ultra-high-performance concrete (UHPC) reinforced with recycled tire steel fibers (RTSFs) was studied to evaluate its mechanical properties and cracking behavior. Using acoustic emission (AE) monitoring, researchers tested various RTSF replacement rates in compression and flexural tests. Results revealed a clear trend: mechanical properties initially improved then declined with increasing RTSF content, peaking at 25% replacement. AE analysis showed distinct patterns in energy release and crack propagation. Signal timing for energy and ringing count followed a delayed-to-advanced sequence, while b-value and information entropy changes indicated optimal flexural performance at specific replacement rates. RA-AF classification demonstrated that shear failure reached its minimum (25% replacement), with shear cracks increasing at higher ratios. These findings demonstrate RTSFs’ dual benefits: enhancing UHPC performance while promoting sustainability. The 25% replacement ratio emerged as the optimal balance, improving strength while delaying crack formation. This study provides insights into the mechanism by which waste tire steel fibers enhance the performance of UHPC. This research provides valuable insights for developing eco-friendly UHPC formulations using recycled materials, offering both environmental and economic advantages for construction applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 7707 KiB  
Article
Improving Building Acoustics with Coir Fiber Composites: Towards Sustainable Construction Systems
by Luis Bravo-Moncayo, Virginia Puyana-Romero, Miguel Chávez and Giuseppe Ciaburro
Sustainability 2025, 17(14), 6306; https://doi.org/10.3390/su17146306 - 9 Jul 2025
Viewed by 481
Abstract
Studies underscore the significance of coir fibers as a sustainable building material. Based on these insights, this research aims to evaluate coir fiber composite panels of various thicknesses as eco-friendly sound absorbing alternatives to synthetic construction materials like rockwool and fiberglass, aligning its [...] Read more.
Studies underscore the significance of coir fibers as a sustainable building material. Based on these insights, this research aims to evaluate coir fiber composite panels of various thicknesses as eco-friendly sound absorbing alternatives to synthetic construction materials like rockwool and fiberglass, aligning its use with the United Nations Sustainable Development Goals. Acoustic absorption was quantified with an impedance tube, and subsequent simulations compared the performance of coir composite panels with that of conventional materials, which constitutes an underexplored evaluation. Using 10 receiver points, the simulations reproduced the acoustic conditions of a multipurpose auditorium before and after the coir covering of parts of the rear and posterior walls. The results indicate that when coir coverings account for approximately 10% of the auditorium surface, reverberation times at 250, 500, 2000, and 4000 Hz are reduced by roughly 1 s. Furthermore, the outcomes reveal that early reflections occur more rapidly in the coir-enhanced model, while the values of the early decay time parameter decrease across all receiver points. Although the original configuration had poor speech clarity, the modified model achieved optimal values at all the measurement locations. These findings underscore the potential of coir fiber panels in enhancing acoustic performance while fostering sustainable construction practices. Full article
(This article belongs to the Special Issue Sustainable Architecture: Energy Efficiency in Buildings)
Show Figures

Figure 1

23 pages, 5310 KiB  
Article
Ecoacoustic Baseline of a Successional Subarctic Ecosystem Post-Glaciation Amidst Climate Change in South-Central Alaska
by Timothy C. Mullet and Almo Farina
Diversity 2025, 17(7), 443; https://doi.org/10.3390/d17070443 - 23 Jun 2025
Viewed by 284
Abstract
As climate change alters subarctic ecosystems and human activities in Alaska, ecological baselines are critical for long-term conservation. We applied an ecoacoustic approach to characterize the ecological conditions of a rapidly deglaciating region in Kenai Fjords National Park, Alaska. Using automated recording units [...] Read more.
As climate change alters subarctic ecosystems and human activities in Alaska, ecological baselines are critical for long-term conservation. We applied an ecoacoustic approach to characterize the ecological conditions of a rapidly deglaciating region in Kenai Fjords National Park, Alaska. Using automated recording units deployed at increasing distances from a road, we collected over 120,000 one-minute audio samples during the tourist seasons of 2021 and 2022. Ecoacoustic indices—Sonic Heterogeneity Index (SHItf), Spectral Sonic Signature (SSS), Weighted Proportion of Occupied Frequencies (wPOF), and Normalized Difference Sonic Heterogeneity Index (NDSHI)—were used to measure spatio-temporal patterns of the sonoscape. Results revealed higher sonic heterogeneity near the road attributed to technophony (vehicles) and geophony (wind) that spanned across the frequency spectrum, masking mid-high frequency biophony. Seasonal phenology and diel variations reflected ecological and human rhythms, including biophony from the dawn chorus from May–June, technophony from vehicle-based tourism from July–September, and decreased sonic activity in the form of geophonic ambience in October. Low-frequency geophonies were prevalent throughout the sonoscape with more natural sounds at greater distances from the road. Our findings demonstrate the benefits of using ecoacoustic methods to assess ecosystem dynamics for establishing ecological baselines useful for future comparisons in rapidly changing environments. Full article
(This article belongs to the Special Issue Wildlife in Natural and Altered Environments)
Show Figures

Figure 1

16 pages, 3741 KiB  
Article
Mechanical Properties of Large-Volume Waste Concrete Lumps Cemented by Desert Mortar: Laboratory Tests
by Hui Chen, Zhiyuan Qi, Baiyun Yu and Xinyu Li
Buildings 2025, 15(12), 2060; https://doi.org/10.3390/buildings15122060 - 15 Jun 2025
Viewed by 456
Abstract
In response to the high cost and environmental impact of backfill materials in Xinjiang mines, an eco-friendly, large-volume composite was developed by bonding desert-sand mortar to waste concrete. A rock-filled concrete process produced a highly flowable mortar from desert sand, cement, and fly [...] Read more.
In response to the high cost and environmental impact of backfill materials in Xinjiang mines, an eco-friendly, large-volume composite was developed by bonding desert-sand mortar to waste concrete. A rock-filled concrete process produced a highly flowable mortar from desert sand, cement, and fly ash. Waste concrete blocks served as coarse aggregate. Specimens were cured for 28 days, then subjected to uniaxial compression tests on a mining rock-mechanics system using water-to-binder ratios of 0.30, 0.35, and 0.40 and aggregate sizes of 30–40 mm, 40–50 mm, and 50–60 mm. Mechanical performance—failure modes, stress–strain response, and related properties—was systematically evaluated. Crack propagation was tracked via digital image correlation (DIC) and acoustic emission (AE) techniques. Failure patterns indicated that the pure-mortar specimens exhibited classic brittle fractures with through-going cracks. Aggregate-containing specimens showed mixed-mode failure, with cracks flowing around aggregates and secondary branches forming non-through-going damage networks. Optimization identified a 0.30 water-to-binder ratio (Groups 3 and 6) as optimal, yielding an average strength of 25 MPa. Among the aggregate sizes, 40–50 mm (Group 7) performed best, with 22.58 MPa. The AE data revealed a three-stage evolution—linear-elastic, nonlinear crack growth, and critical failure—with signal density positively correlating to fracture energy. DIC maps showed unidirectional energy release in pure-mortar specimens, whereas aggregate-containing specimens displayed chaotic energy patterns. This confirms that aggregates alter stress fields at crack tips and redirect energy-dissipation paths, shifting failure from single-crack propagation to a multi-scale damage network. These results provide a theoretical basis and technical support for the resource-efficient use of mining waste and advance green backfill technology, thereby contributing to the sustainable development of mining operations. Full article
Show Figures

Figure 1

24 pages, 15849 KiB  
Article
The Influence of Green Infrastructure on the Acoustic Environment: A Conceptual and Methodological Basis for Quiet Area Assessment in Urban Regions
by Bryce T. Lawrence, Damian Heying and Dietwald Gruehn
Conservation 2025, 5(2), 22; https://doi.org/10.3390/conservation5020022 - 9 May 2025
Viewed by 1406
Abstract
Urban regions represent complex acoustic environments with few respites from noise other than small or remote patches of green infrastructure (GI). Recent noise action planning in the German Ruhr region indicates that urban expansion is fueling encroachment upon GI and subsequently the loss [...] Read more.
Urban regions represent complex acoustic environments with few respites from noise other than small or remote patches of green infrastructure (GI). Recent noise action planning in the German Ruhr region indicates that urban expansion is fueling encroachment upon GI and subsequently the loss of quiet areas. A systematic exploration of this loss in Germany is needed. An explorative systematic review on Scopus with snowballing supports the synthesis of a conceptual framework linking acoustically relevant ecosystem services with GI. Our review identifies natural quietness, abatement, connection to nature, positive soundscape perception, fidelity, and bird sound presence as sound-related ecosystem functions or services. Empirical case studies justify the need to better understand the link between GI, ecosystem services, and the acoustic environment. Guidance for quiet area assessments in the EU to address this research gap in noise action planning is an emerging topic and needs further study. To address the knowledge gap and provide quiet area assessment guidance, we present a stratified habitat-based acoustic study design for a multi-community area in the middle of the German Ruhr region. A multi-tier sample of 120 locations across eleven habitat and land use strata in the Ruhr is presented, pointing out the scarcity of protected biotopes and large biotope complexes in the study area. This work is a contribution towards a conceptual and methodological basis for quiet area assessment, especially in German and EU noise action planning. Full article
Show Figures

Figure 1

31 pages, 6784 KiB  
Article
Unraveling Soundscape Dynamics: The Interaction Between Vegetation Structure and Acoustic Patterns
by Giorgia Guagliumi, Claudia Canedoli, Andrea Potenza, Valentina Zaffaroni-Caorsi, Roberto Benocci, Emilio Padoa-Schioppa and Giovanni Zambon
Sustainability 2025, 17(9), 4204; https://doi.org/10.3390/su17094204 - 6 May 2025
Viewed by 751
Abstract
Ecoacoustics examines the interactions between soundscapes, ecological processes, and anthropogenic disturbance. Acoustic communication is crucial for wildlife, making noise pollution a key factor in shaping biodiversity, though its effects are also modulated by habitat characteristics. In this work, we assess the influence of [...] Read more.
Ecoacoustics examines the interactions between soundscapes, ecological processes, and anthropogenic disturbance. Acoustic communication is crucial for wildlife, making noise pollution a key factor in shaping biodiversity, though its effects are also modulated by habitat characteristics. In this work, we assess the influence of highway noise and vegetation structure on the soundscape and avian distribution of the Moriano oxbow lake (Bereguardo, PV, Italy), a Site of Community Importance in the Ticino Valley Regional Park. A two-week monitoring campaign (April 2022) used eight recorders arranged in a grid to analyze soundscape dynamics through eight ecoacoustic indices (ACI, ADI, AEI, BI, NDSI, H, DSC, ZCR). Vegetation surveys quantified tree diversity and structural parameters such as basal area, height, stem density, biomass, and leaf cover. Correlation analyses revealed that Quercus robur abundance and tree diversity significantly influenced the acoustic environment, while bird richness correlated positively with vegetation biomass and Quercus robur presence. Highway proximity was a key structuring factor, with indices (ADI, H, NDSI, ACI) increasing with distance. These findings underscore the dual role of noise and vegetation in shaping soundscapes and highlight the importance of incorporating habitat features into ecoacoustic assessments to better understand biodiversity patterns in anthropized landscapes. Full article
Show Figures

Figure 1

20 pages, 13082 KiB  
Article
Exploring the Soundscape in a University Campus: Students’ Perceptions and Eco-Acoustic Indices
by Valentina Zaffaroni-Caorsi, Oscar Azzimonti, Andrea Potenza, Fabio Angelini, Ilaria Grecchi, Giovanni Brambilla, Giorgia Guagliumi, Luca Daconto, Roberto Benocci and Giovanni Zambon
Sustainability 2025, 17(8), 3526; https://doi.org/10.3390/su17083526 - 15 Apr 2025
Cited by 2 | Viewed by 674
Abstract
Urban noise pollution significantly degrades people’s health and well-being and, furthermore, traditional noise reduction strategies often overlook individual perception differences. This study proposed to explore the role of eco-acoustic indices in capturing the interplay between biophony, geophony, and anthrophony, and their relationship with [...] Read more.
Urban noise pollution significantly degrades people’s health and well-being and, furthermore, traditional noise reduction strategies often overlook individual perception differences. This study proposed to explore the role of eco-acoustic indices in capturing the interplay between biophony, geophony, and anthrophony, and their relationship with classical acoustic metrics and the perceived soundscapes within a University Campus (University of “Mila-no-Bicocca”, Italy). The study area is divided in to eight different sites in “Piazza della Scienza” square. Sound measurements and surveys conducted in June 2023 across four paved sites and adjacent courtyards involved 398 participants (51.7% female, 45.6% male, 2.7% other). The main noise sources included road traffic, technical installations, and human activity, where traffic noise was more prominent at street-level sites (Sites 1–4) and technical installations dominated underground courtyards (6–8). Human activity was most noticeable at Sites 4–8, especially at Site 5, which showed the highest activity levels. A circumplex model revealed that street-level sites were less pleasant and eventful than courtyards. Pairwise comparisons of noise variability showed significant differences among sites, with underground locations offering quieter environments. Eco-acoustic analysis identified two site groups: one linked to noisiness and spectral features, the other to intensity distribution metrics. Technical installations, people, and traffic noises showed distinct correlations with acoustic indices, influencing emotional responses like stimulation and liveliness. These findings emphasize the need to integrate subjective perceptions with objective noise metrics in soundscape descriptions. Full article
Show Figures

Figure 1

20 pages, 4186 KiB  
Article
Eco-Efficiency of Concrete Sandwich Panels with Different Insulation Core Materials
by Bruna Moura, Tiago Ramos da Silva, Nelson Soares and Helena Monteiro
Sustainability 2025, 17(4), 1687; https://doi.org/10.3390/su17041687 - 18 Feb 2025
Viewed by 1375
Abstract
Given the current need to improve the thermal and energy performance of buildings, special attention has been given to the building envelope and materials. Concrete sandwich panels (CSPs) are versatile composite construction elements whose popularity is increasing given their properties, e.g., good thermal [...] Read more.
Given the current need to improve the thermal and energy performance of buildings, special attention has been given to the building envelope and materials. Concrete sandwich panels (CSPs) are versatile composite construction elements whose popularity is increasing given their properties, e.g., good thermal and acoustic insulation, durability, and fire resistance. Nevertheless, besides their properties, it is important to evaluate the sustainability of composite panels under development. This work aims to assess the eco-efficiency of six CSPs with distinct insulation materials: lightweight concrete (LWC), cork, glass wool, and expanded polystyrene (EPS). Coupling both life cycle assessment (LCA) and life cycle costing (LCC) analysis, this study derives eco-efficiency indicators to inform decisions regarding CSP environmental and economic performances. The results of the LCA and LCC showed that the high-performance concrete (HPC) layer was the main hotspot of the CSPs in all scenarios. Moreover, the best scenario changed when different environmental impact categories were considered. Thus, using multiple environmental indicators is recommended to avoid problem-shifting. Considering the final cost, the CSP with cork is the most expensive panel to produce, with the other five options having very similar manufacturing prices. On average, raw material inputs, labour, and material delivery account for 62.9%, 18.1%, and 17.1% of the total costs, respectively. Regarding the eco-efficiency results, the most eco-efficient scenario changed with the environmental indicator used. Cork seems to be the best option when considering the carbon footprint of the panels, whereas when considering other environmental indicators, the recycled EPS scenario has the best eco-efficiency and the CSP with cork the worst. Full article
Show Figures

Figure 1

21 pages, 870 KiB  
Article
Monitoring Grassland Bird Communities with Acoustic Indices
by Bethany L. Ostrom, Mary J. Harner and Andrew J. Caven
Birds 2025, 6(1), 11; https://doi.org/10.3390/birds6010011 - 11 Feb 2025
Viewed by 1547
Abstract
Several researchers have tried to find relationships between acoustic indices and vocal animal communities to use acoustic indices as a passive monitoring method, as human-derived surveys are expensive, time-consuming, and suffer from observer bias. However, supplanting manual surveys with acoustic indices is a [...] Read more.
Several researchers have tried to find relationships between acoustic indices and vocal animal communities to use acoustic indices as a passive monitoring method, as human-derived surveys are expensive, time-consuming, and suffer from observer bias. However, supplanting manual surveys with acoustic indices is a daunting task, considering effective indices for biological monitoring need to differentiate biologically relevant sounds from the broader soundscape, including anthropophony and geophony. The objective of our study was to test how well acoustic indices can be applied to avian community monitoring within a temperate grassland ecosystem in North America. We collected avian community data and calculated six commonly used acoustic indices from recordings in an intact lowland tallgrass prairie in the Central Platte River Valley of Nebraska throughout the avian breeding seasons of 2019–2021. Singular acoustic indices had only weak correlations with all community metrics. However, multivariate models including multiple acoustic indices showed potential for monitoring grassland bird abundance when anthropophony was considered. Fragmented grassland remnants likely experience significant anthropophony that needs to be accounted for when monitoring avian populations. Additionally, multivariate models incorporating several indices may provide a more accurate prediction of avian biophony than individual acoustic indices. Full article
Show Figures

Figure 1

29 pages, 17264 KiB  
Article
Application of Transfer Entropy Measure to Characterize Environmental Sounds in Urban and Wild Parks
by Roberto Benocci, Giorgia Guagliumi, Andrea Potenza, Valentina Zaffaroni-Caorsi, H. Eduardo Roman and Giovanni Zambon
Sensors 2025, 25(4), 1046; https://doi.org/10.3390/s25041046 - 10 Feb 2025
Cited by 1 | Viewed by 841
Abstract
Anthropized green zones in urban areas and their surroundings develop complex soundscapes, characterized by the presence of multiple sound sources. This makes the interpretation of the sound environment challenging. To accurately distinguish between different sound components, a combination of selective analysis techniques is [...] Read more.
Anthropized green zones in urban areas and their surroundings develop complex soundscapes, characterized by the presence of multiple sound sources. This makes the interpretation of the sound environment challenging. To accurately distinguish between different sound components, a combination of selective analysis techniques is necessary. Urban parks are significant and interesting examples, where the interaction between anthropogenic and biophonic sound sources persists over broad temporal and spatial scales, making them important sites for evaluating local soundscape quality. In this work, we suggest that a transfer entropy measure (TEM) may more efficiently disentangle relevant information than traditional eco-acoustic indices. The two study areas were Parco Nord in Milan, Italy, and Ticino River Park, also in Italy. For Parco Nord, we used 3.5-h (1-min interval) recordings taken over an area of about 20 hectares, employing 16 sensors. For the Ticino River Park, we used 5-day (1 min plus 5 min pause) recordings taken over an area of approximately 10 hectares, using a smaller set of eight sensors. We calculated the classical eco-acoustic indices and selected two of them: the acoustic entropy (H) and the bio-acoustic index (BI), calculated for all sites with a 1 min time resolution obtained after a principal components analysis. For these time series, we studied the TEM of all sites in both directions, i.e., from one site to another and vice-versa, resulting in asymmetric transfer entropies depending on the location and period of the day. The results suggest the existence of a network of interconnections among sites characterized by strong bio-phonic activity, whereas the interconnection network is damped at sites close to sources of traffic noise. The TEM seems to be independent of the choice of eco-acoustic index time series, and therefore can be considered a robust index of sound quality in urban and wild park environments, providing additional structural insights complementing the traditional approach based on eco-acoustic indices. Specifically, TEM provides directional information about intersite sound connectivity in the area of study, enabling a nuanced understanding of the sound flows across varying anthropogenic and natural sound sources, which is not available using conventional methods. Full article
Show Figures

Figure 1

18 pages, 4429 KiB  
Article
Composition and Dynamics of the Sonosphere Along a Soil-Surface Ecotone at an Agricultural Site in Northern Italy: A Preliminary Approach
by Almo Farina and Timothy C. Mullet
Geosciences 2025, 15(2), 34; https://doi.org/10.3390/geosciences15020034 - 21 Jan 2025
Viewed by 763
Abstract
Investigating the sonosphere can serve as a valuable proxy for understanding various ecosystem processes. Consequently, an ecoacoustic perspective broadens our capacity to understand how airborne sounds interact along an ecotone at the soil surface with the subterranean sounds generated within a pedon. We [...] Read more.
Investigating the sonosphere can serve as a valuable proxy for understanding various ecosystem processes. Consequently, an ecoacoustic perspective broadens our capacity to understand how airborne sounds interact along an ecotone at the soil surface with the subterranean sounds generated within a pedon. We explored techniques that could detect, quantify, and analyze the sonic dimensions of a sonosphere in the form of sounds within a unit of soil (sonopedon), sounds from a landscape unit (sonotope), and the sonic ecotone (sonotone) where these phenomena converge. We recorded sounds for 24 h over 20 days in September 2024 at 40 sites distributed evenly across a small rural parcel of agricultural land in Northern Italy. We utilized a sound recording device fabricated with a sonic probe that simultaneously operated inside the soil and the grounds’ surface, which successfully captured sounds attributable both to the soilscape and to the landscape. We calculated the Sonic Heterogeneity Indices, SHItf and SHIft, and analyzed the Spectral and Temporal Sonic Signatures along with Spectral Sonic Variability, Effective Number of Frequency Bins, and Sonic Dissimilarity. Each calculation contributed to a detailed description of how the sonosphere is characterized across the frequency spectrum, temporal dynamics, and sound sources. The sonosphere in our study area, primarily characterized by the low-frequency spectra, possessed a mix of biological, geophysical, and anthropogenic sounds displaying distinct temporal patterns (sonophases) that coincided with astronomic divisions of the day (daytime, twilights, and nighttime). Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

19 pages, 5393 KiB  
Article
Effect of Natural Fiber and Biomass on Acoustic Performance of 3D Hybrid Fabric-Reinforced Composite Panels
by Shabnam Nazari, Tatiana Alexiou Ivanova, Rajesh Kumar Mishra, Miroslav Müller, Mehdi Akhbari and Zohreh Esfahani Hashjin
Materials 2024, 17(23), 5695; https://doi.org/10.3390/ma17235695 - 21 Nov 2024
Cited by 5 | Viewed by 1636
Abstract
This research investigated the sound insulation performance of 3D woven hybrid fabric-reinforced composites using natural fibers, such as jute, along with E-glass and biomass derived from agro-waste, e.g., coffee husk and waste palm fiber. The composites made from pure E-glass, pure jute, and [...] Read more.
This research investigated the sound insulation performance of 3D woven hybrid fabric-reinforced composites using natural fibers, such as jute, along with E-glass and biomass derived from agro-waste, e.g., coffee husk and waste palm fiber. The composites made from pure E-glass, pure jute, and hybrid glass–jute configurations were tested for sound absorbance at frequencies of 1000 Hz and 10,000 Hz. A sound insulation chamber was used for measuring the sound reduction levels. Results show that the sound insulation performance of the panels was remarkably enhanced with composites containing natural fiber reinforcements. The jute-based composites provided the maximum insulation of sound, with waste palm fiber fillers in particular. At a frequency of 10,000 Hz, a noise reduction reaching 44.9 dB was observed. The highest sound absorption was observed in the 3D woven jute composites with the additive of waste palm fiber, which outperformed the other samples. When comparing the effect of coffee husk and palm fiber as biomass fillers, both exhibited notable improvements in sound insulation, but the palm fiber generally performed better across different samples. Although panels containing palm fiber additives appeared to reduce sound more than those containing coffee husk, statistical analysis revealed no significant difference between the two, indicating that both are efficient and eco-friendly fillers for soundproofing applications. One-way analysis of variance (ANOVA) confirmed the significance of the effect of reinforcing structures and biofillers on acoustic performance. This study demonstrated the possibility of using sustainable green materials for soundproofing applications within various industries. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

19 pages, 10939 KiB  
Article
Comparative Evaluation of Mechanical and Physical Properties of Mycelium Composite Boards Made from Lentinus sajor-caju with Various Ratios of Corn Husk and Sawdust
by Praween Jinanukul, Jaturong Kumla, Worawoot Aiduang, Wandee Thamjaree, Rawiwan Oranratmanee, Umpiga Shummadtayar, Yuttana Tongtuam, Saisamorn Lumyong, Nakarin Suwannarach and Tanut Waroonkun
J. Fungi 2024, 10(9), 634; https://doi.org/10.3390/jof10090634 - 5 Sep 2024
Cited by 4 | Viewed by 2686
Abstract
Mycelium-based composites (MBCs) exhibit varied properties as alternative biodegradable materials that can be used in various industries such as construction, furniture, household goods, and packaging. However, these properties are primarily influenced by the type of substrate used. This study aims to investigate the [...] Read more.
Mycelium-based composites (MBCs) exhibit varied properties as alternative biodegradable materials that can be used in various industries such as construction, furniture, household goods, and packaging. However, these properties are primarily influenced by the type of substrate used. This study aims to investigate the properties of MBCs produced from Lentinus sajor-caju strain CMU-NK0427 using different ratios of sawdust to corn husk in the development of mycelium composite boards (MCBs) with thicknesses of 8, 16, and 24 mm. The results indicate that variations in the ratios of corn husk to sawdust and thickness affected the mechanical and physical properties of the obtained MCBs. Reducing the corn husk content in the substrate increased the modulus of elasticity, density, and thermal conductivity, while increasing the corn husk content increased the bending strength, shrinkage, water absorption, and volumetric swelling. Additionally, an increase in thickness with the same substrate ratio only indicated an increase in density and shrinkage. MCBs have sound absorption properties ranging from 61 to 94% at a frequency of 1000 Hz. According to the correlation results, a reduction in corn husk content in the substrate has a significant positive effect on the reduction in bending strength, shrinkage, and water absorption in MCBs. However, a decrease in corn husk content shows a strong negative correlation with the increase in the modulus of elasticity, density, and thermal conductivity. The thickness of MCBs with the same substrate ratio only shows a significant negative correlation with the modulus of elasticity and bending strength. Compared to commercial boards, the mechanical (bending strength) and physical (density, thermal conductivity, and sound absorption) properties of MCBs made from a 100% corn husk ratio are most similar to those of softboards and acoustic boards. The results of this study can provide valuable information for the production of MCBs and will serve as a guide to enhance strategies for further improving their properties for commercial manufacturing, as well as fulfilling the long-term goal of eco-friendly recycling of lignocellulosic substrates. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Figure 1

Back to TopTop