Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = echo-planar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4423 KiB  
Article
Multivariate Framework of Metabolism in Advanced Prostate Cancer Using Whole Abdominal and Pelvic Hyperpolarized 13C MRI—A Correlative Study with Clinical Outcomes
by Hsin-Yu Chen, Ivan de Kouchkovsky, Robert A. Bok, Michael A. Ohliger, Zhen J. Wang, Daniel Gebrezgiabhier, Tanner Nickles, Lucas Carvajal, Jeremy W. Gordon, Peder E. Z. Larson, John Kurhanewicz, Rahul Aggarwal and Daniel B. Vigneron
Cancers 2025, 17(13), 2211; https://doi.org/10.3390/cancers17132211 - 1 Jul 2025
Cited by 1 | Viewed by 487 | Correction
Abstract
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13 [...] Read more.
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13C-pyruvate MRI and evaluate the association between multiparametric features of metabolism (MFM) and clinical outcome measures in advanced and metastatic prostate cancer. Methods: Retrospective statistical analysis was performed on 16 participants with metastatic or local-regionally advanced prostate cancer prospectively enrolled in a tertiary center who underwent HP-pyruvate MRI of abdomen or pelvis between November 2020 and May 2023. Five patients were hormone-sensitive and eleven were castration-resistant. GMP-grade [1-13C]pyruvate was polarized using a 5T clinical-research DNP polarizer, and HP MRI used a set of flexible vest-transmit, array-receive coils, and echo-planar imaging sequences. Three basic metabolic maps (kPL, pyruvate summed-over-time, and mean pyruvate time) were created by semi-automatic segmentation, from which 316 MFMs were extracted using an open-source, radiomic-compliant software package. Univariate risk classifier was constructed using a biologically meaningful feature (kPL,median), and the multivariate classifier used a two-step feature selection process (ranking and clustering). Both were correlated with progression-free survival (PFS) and overall survival (OS) (median follow-up = 22.0 months) using Cox proportional hazards model. Results: In the univariate analysis, patients harboring tumors with lower-kPL,median had longer PFS (11.2 vs. 0.5 months, p < 0.01) and OS (NR vs. 18.4 months, p < 0.05) than their higher-kPL,median counterparts. Using a hypothesis-generating, age-adjusted multivariate risk classifier, the lower-risk subgroup also had longer PFS (NR vs. 2.4 months, p < 0.002) and OS (NR vs. 18.4 months, p < 0.05). By contrast, established laboratory markers, including PSA, lactate dehydrogenase, and alkaline phosphatase, were not significantly associated with PFS or OS (p > 0.05). Key limitations of this study include small sample size, retrospective study design, and referral bias. Conclusions: Risk classifiers derived from select multiparametric HP features were significantly associated with clinically meaningful outcome measures in this small, heterogeneous patient cohort, strongly supporting further investigation into their prognostic values. Full article
Show Figures

Figure 1

14 pages, 2941 KiB  
Article
Correction of Gradient Nonlinearity Bias in Apparent Diffusion Coefficient Measurement for Head and Neck Cancers Using Single- and Multi-Shot Echo Planar Diffusion Imaging
by Ramesh Paudyal, Alfonso Lema-Dopico, Akash Deelip Shah, Vaios Hatzoglou, Muhammad Awais, Eric Aliotta, Victoria Yu, Thomas L. Chenevert, Dariya I. Malyarenko, Lawrence H. Schwartz, Nancy Lee and Amita Shukla-Dave
Cancers 2025, 17(11), 1796; https://doi.org/10.3390/cancers17111796 - 28 May 2025
Viewed by 590
Abstract
Background/Objectives: This work prospectively evaluates the vendor-provided Low Variance (LOVA) apparent diffusion coefficient (ADC) gradient nonlinearity correction (GNC) technique for primary tumors, neck nodal metastases, and normal masseter muscles in patients with head and neck cancers (HNCs). Methods: Multiple b-value diffusion-weighted (DW)-MR [...] Read more.
Background/Objectives: This work prospectively evaluates the vendor-provided Low Variance (LOVA) apparent diffusion coefficient (ADC) gradient nonlinearity correction (GNC) technique for primary tumors, neck nodal metastases, and normal masseter muscles in patients with head and neck cancers (HNCs). Methods: Multiple b-value diffusion-weighted (DW)-MR images were acquired on a 3.0 T scanner using a single-shot echo planar imaging (SS-EPI) and multi-shot (MS)-EPI for diffusion phantom materials (20% and 40% polyvinylpyrrolidone (PVP) in water). Pretreatment DW-MRI acquisitions were performed for sixty HNC patients (n = 60) who underwent chemoradiation therapy. ADC values with and without GNC were calculated offline using a monoexponential diffusion model over all b-values, relative percentage (r%) changes (Δ) in ADC values with and without GNC were calculated, and the ADC histograms were analyzed. Results: Mean ADC values calculated using SS-EPI DW data with and without GNC differed by ≤1% for both PVP20% and PVP40% at the isocenter, whereas off-center differences were ≤19.6% for both concentrations. A similar trend was observed for these materials with MS-EPI. In patients, the mean rΔADC (%) values measured with SS-EPI differed by 4.77%, 3.98%, and 5.68% for primary tumors, metastatic nodes, and masseter muscle. MS-EPI exhibited a similar result with 5.56%, 3.95%, and 4.85%, respectively. Conclusions: This study showed that the GNC method improves the robustness of the ADC measurement, enhancing its value as a quantitative imaging biomarker used in HNC clinical trials. Full article
Show Figures

Figure 1

19 pages, 1971 KiB  
Article
Safety of Simultaneous Scalp and Intracranial EEG and fMRI: Evaluation of RF-Induced Heating
by Hassan B. Hawsawi, Anastasia Papadaki, Vejay N. Vakharia, John S. Thornton, David W. Carmichael, Suchit Kumar and Louis Lemieux
Bioengineering 2025, 12(6), 564; https://doi.org/10.3390/bioengineering12060564 - 24 May 2025
Viewed by 656
Abstract
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner’s electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue [...] Read more.
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner’s electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue in the vicinity of electrodes. We have previously demonstrated that concurrent intracranial EEG (icEEG) and fMRI data acquisitions (icEEG-fMRI) can be performed with acceptable risk in specific conditions using a head RF transmit coil. Here, we estimate the potential additional heating associated with the addition of scalp EEG electrodes using a body transmit RF coil. In this study, electrodes were placed in clinically realistic positions on a phantom in two configurations: (1) icEEG electrodes only, and (2) following the addition of subdermal scalp electrodes. Heating was measured during MRI scans using a body transmit coil with a high specific absorption rate (SAR), TSE (turbo spin echo), and low SAR gradient-echo EPI (echo-planar imaging) sequences. During the application of the high-SAR sequence, the maximum temperature change for the intracranial electrodes was +2.8 °C. The addition of the subdural scalp EEG electrodes resulted in a maximum temperature change for the intracranial electrodes of 2.1 °C and +0.6 °C across the scalp electrodes. For the low-SAR sequence, the maximum temperature increase across all intracranial and scalp electrodes was +0.7 °C; in this condition, the temperature increases around the intracranial electrodes were below the detection level. Therefore, in the experimental conditions (MRI scanner, electrode, and wire configurations) used at our centre for icEEG-fMRI, adding six scalp EEG electrodes did not result in significant additional localised RF-induced heating compared to the model using icEEG electrodes only. Full article
(This article belongs to the Special Issue Multimodal Neuroimaging Techniques: Progress and Application)
Show Figures

Figure 1

11 pages, 1690 KiB  
Communication
Temporal Shift When Comparing Contrast-Agent Concentration Curves Estimated Using Quantitative Susceptibility Mapping (QSM) and ΔR2*: The Association Between Vortex Parameters and Oxygen Extraction Fraction
by Ronnie Wirestam, Anna Lundberg, Linda Knutsson and Emelie Lind
Tomography 2025, 11(4), 46; https://doi.org/10.3390/tomography11040046 - 9 Apr 2025
Viewed by 512
Abstract
Background: When plotting data points corresponding to the contrast-agent-induced change in transverse relaxation rate from a dynamic gradient-echo (GRE) magnetic resonance imaging (MRI) study versus a corresponding spin-echo study, a loop or vortex curve rather than a reversible line is formed. The vortex [...] Read more.
Background: When plotting data points corresponding to the contrast-agent-induced change in transverse relaxation rate from a dynamic gradient-echo (GRE) magnetic resonance imaging (MRI) study versus a corresponding spin-echo study, a loop or vortex curve rather than a reversible line is formed. The vortex curve area is likely to reflect vessel architecture and oxygenation level. In this study, the vortex effect seen when using only GRE-based estimates, i.e., contrast-agent concentration based on GRE transverse relaxation rate and contrast-agent concentration based on quantitative susceptibility mapping (QSM), was investigated. Methods: Twenty healthy volunteers were examined using 3 T MRI. Magnitude and phase dynamic contrast-enhanced MRI (DSC-MRI) data were obtained using GRE echo-planar imaging. Vortex curves for grey-matter (GM) regions and for arterial input function (AIF) data were constructed by plotting concentration based on GRE transverse relaxation rate versus concentration based on QSM. Vortex parameters (vortex area and normalised vortex width) were compared with QSM-based whole-brain OEF estimates obtained using 3D GRE. Results: An obvious vortex effect was observed, and both GM vortex parameters showed a moderate and significant correlation with OEF (r = −0.51, p = 0.02). The vortex parameters for AIF data showed no significant correlation with OEF. Conclusions: GRE-based GM vortex parameters correlated significantly with whole-brain OEF. In agreement with expectations, the corresponding AIF data, representing high fractions of arterial blood, showed no significant correlation. Novel parameters, based solely on standard GRE protocols, are of relevance to investigate, considering that GRE-based DSC-MRI is very common in brain tumour applications. Full article
(This article belongs to the Section Brain Imaging)
Show Figures

Figure 1

14 pages, 1984 KiB  
Article
Lipid Deposition in Skeletal Muscle Tissues and Its Correlation with Intra-Abdominal Fat: A Pilot Investigation in Type 2 Diabetes Mellitus
by Manoj Kumar Sarma, Andres Saucedo, Suresh Anand Sadananthan, Christine Hema Darwin, Ely Richard Felker, Steve Raman, S. Sendhil Velan and Michael Albert Thomas
Metabolites 2025, 15(1), 25; https://doi.org/10.3390/metabo15010025 - 7 Jan 2025
Viewed by 1133
Abstract
Background/Objectives: This study evaluated metabolites and lipid composition in the calf muscles of Type 2 diabetes mellitus (T2DM) patients and age-matched healthy controls using multi-dimensional MR spectroscopic imaging. We also explored the association between muscle metabolites, lipids, and intra-abdominal fat in T2DM. Methods: [...] Read more.
Background/Objectives: This study evaluated metabolites and lipid composition in the calf muscles of Type 2 diabetes mellitus (T2DM) patients and age-matched healthy controls using multi-dimensional MR spectroscopic imaging. We also explored the association between muscle metabolites, lipids, and intra-abdominal fat in T2DM. Methods: Participants included 12 T2DM patients (60.3 ± 8.6 years), 9 age-matched healthy controls (AMHC) (60.9 ± 7.8 years), and 10 young healthy controls (YHC) (28.3 ± 1.8 years). We acquired the 2D MR spectra of calf muscles using an enhanced accelerated 5D echo-planar correlated spectroscopic imaging (EP-COSI) technique and abdominal MRI with breath-hold 6-point Dixon sequence. Results: In YHC, choline levels were lower in the gastrocnemius (GAS) and soleus (SOL) muscles but higher in the tibialis anterior (TA) compared to AMHC. YHC also showed a higher unsaturation index (U.I.) of extramyocellular lipids (EMCL) in TA, intramyocellular lipids (IMCL) in GAS, carnosine in SOL, and taurine and creatine in TA. T2DM patients exhibited higher choline in TA and myo-inositol in SOL than AMHC, while triglyceride fat (TGFR2) levels in TA were lower. Correlation analyses indicated associations between IMCL U.I. and various metabolites in muscles with liver, pancreas, and abdominal fat estimates in T2DM. Conclusions: This study highlights distinct muscle metabolite and lipid composition patterns across YHC, AMHC, and T2DM subjects. Associations between IMCL U.I. and abdominal fat depots underscore the interplay between muscle metabolism and adiposity in T2DM. These findings provide new insights into metabolic changes in T2DM and emphasize the utility of advanced MR spectroscopic imaging in characterizing muscle-lipid interactions. Full article
Show Figures

Figure 1

14 pages, 1342 KiB  
Article
Diffusion-Weighted MRI and Human Papillomavirus (HPV) Status in Oropharyngeal Cancer
by Heleen Bollen, Rüveyda Dok, Frederik De Keyzer, Sarah Deschuymer, Annouschka Laenen, Johannes Devos, Vincent Vandecaveye and Sandra Nuyts
Cancers 2024, 16(24), 4284; https://doi.org/10.3390/cancers16244284 - 23 Dec 2024
Cited by 1 | Viewed by 1097
Abstract
Background: This study aimed to explore the differences in quantitative diffusion-weighted (DW) MRI parameters in oropharyngeal squamous cell carcinoma (OPC) based on Human Papillomavirus (HPV) status before and during radiotherapy (RT). Methods: Echo planar DW sequences acquired before and during (chemo)radiotherapy (CRT) of [...] Read more.
Background: This study aimed to explore the differences in quantitative diffusion-weighted (DW) MRI parameters in oropharyngeal squamous cell carcinoma (OPC) based on Human Papillomavirus (HPV) status before and during radiotherapy (RT). Methods: Echo planar DW sequences acquired before and during (chemo)radiotherapy (CRT) of 178 patients with histologically proven OPC were prospectively analyzed. The volumetric region of interest (ROI) was manually drawn on the apparent diffusion coefficient (ADC) map, and 105 DW-MRI radiomic parameters were extracted. Change in ADC values (Δ ADC) was calculated as the difference between baseline and during RT at week 4, normalized by the baseline values. Results: Pre-treatment first-order 10th percentile ADC and Gray Level co-occurrence matrix (GLCM)-correlation were significantly lower in HPV-positive compared with HPV-negative tumors (82.4 × 10−5 mm2/s vs. 90.3 × 10−5 mm2/s, p = 0.03 and 0.18 vs. 0.30, p < 0.01). In the fourth week of RT, all first-order ADC values were significantly higher in HPV-positive tumors (p < 0.01). Δ ADC mean was significantly higher for the HPV-positive compared with the HPV-negative OPC group (95% vs. 55%, p < 0.01). A predictive model for HPV status based on smoking status, alcohol consumption, GLCM correlation, and mean ADC and 10th percentile ADC values yielded an area under the curve of 0.77 (95% CI 0.70–0.84). Conclusions: Our results highlight the potential of DW-MR imaging as a non-invasive biomarker for the prediction of HPV status, although its current role remains supplementary to pathological confirmation. Full article
(This article belongs to the Special Issue Advances in Radiotherapy for Head and Neck Cancer)
Show Figures

Figure 1

12 pages, 1167 KiB  
Article
Relationship Between DWI-Based Acute Ischemic Stroke Volume, Location and Severity of Dysphagia
by Carlo A. Mallio, Daniele Vertulli, Gianfranco Di Gennaro, Maria Teresa Ascrizzi, Fioravante Capone, Chiara Grattarola, Vitaliana Luccarelli, Federico Greco, Bruno Beomonte Zobel, Vincenzo Di Lazzaro and Fabio Pilato
Brain Sci. 2024, 14(12), 1185; https://doi.org/10.3390/brainsci14121185 - 26 Nov 2024
Viewed by 1072
Abstract
Background/Objectives: The impact of stroke location and volume on the development of post-stroke dysphagia is not fully understood. The aim of this study is to evaluate the relationship between acute ischemic lesions and the severity of dysphagia. Methods: Brain MRIs were obtained with [...] Read more.
Background/Objectives: The impact of stroke location and volume on the development of post-stroke dysphagia is not fully understood. The aim of this study is to evaluate the relationship between acute ischemic lesions and the severity of dysphagia. Methods: Brain MRIs were obtained with a 1.5 Tesla MRI system (Magnetom Avanto B13, Siemens, Erlangen, Germany). The brain MRI protocol included axial echo planar diffusion-weighted imaging (DWI). The acute ischemic volume was obtained using DWI by drawing regions of interest (ROIs). The diagnosis and assessment of the severity of dysphagia was carried out by a multidisciplinary team and included the Dysphagia Outcome and Severity Scale (DOSS), the Penetration–Aspiration Scale (PAS), and the Pooling score (P-score). The threshold for statistical significance was set at 5%. Results: Among all the patients enrolled (n = 64), 28 (43.8%) were males and 36 (56.2%) were females, with a mean age of 78.8 years. Thirty-three (51.6%) of them had mild dysphagia and thirty-one (48.4%) had moderate–severe dysphagia. The total ischemic volume was negatively correlated with the DOSS (r = −0.441, p = 0.0003) and positively with the P-score (rs = 0.3054, p = 0.0328). Conclusions: There are significant associations between the severity of dysphagia and the quantitative DWI-based data of the acute ischemic volume and anatomical location. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

13 pages, 812 KiB  
Article
Model and Energy Bounds for a Two-Dimensional System of Electrons Localized in Concentric Rings
by Orion Ciftja, Josep Batle, Mahmoud Abdel-Aty, Mohammad Ahmed Hafez and Shawkat Alkhazaleh
Nanomaterials 2024, 14(20), 1615; https://doi.org/10.3390/nano14201615 - 10 Oct 2024
Cited by 2 | Viewed by 1100
Abstract
We study a two-dimensional system of interacting electrons confined in equidistant planar circular rings. The electrons are considered spinless and each of them is localized in one ring. While confined to such ring orbits, each electron interacts with the remaining ones by means [...] Read more.
We study a two-dimensional system of interacting electrons confined in equidistant planar circular rings. The electrons are considered spinless and each of them is localized in one ring. While confined to such ring orbits, each electron interacts with the remaining ones by means of a standard Coulomb interaction potential. The classical version of this two-dimensional quantum model can be viewed as representing a system of electrons orbiting planar equidistant concentric rings where the kinetic energy may be discarded when one is searching for the lowest possible energy. Within this framework, the lowest possible energy of the system is the one that minimizes the total Coulomb interaction energy. This is the equilibrium energy that is numerically determined with high accuracy by using the simulated annealing method. This process allows us to obtain both the equilibrium energy and position configuration for different system sizes. The adopted semi-classical approach allows us to provide reliable approximations for the quantum ground state energy of the corresponding quantum system. The model considered in this work represents an interesting problem for studies of low-dimensional systems, with echoes that resonate with developments in nanoscience and nanomaterials. Full article
Show Figures

Figure 1

33 pages, 18210 KiB  
Article
Ultrafast Brain MRI at 3 T for MS: Evaluation of a 51-Second Deep Learning-Enhanced T2-EPI-FLAIR Sequence
by Martin Schuhholz, Christer Ruff, Eva Bürkle, Thorsten Feiweier, Bryan Clifford, Markus Kowarik and Benjamin Bender
Diagnostics 2024, 14(17), 1841; https://doi.org/10.3390/diagnostics14171841 - 23 Aug 2024
Cited by 2 | Viewed by 1969
Abstract
In neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g., in patients who cannot remain motionless for long or suffer from claustrophobia, or in the event of [...] Read more.
In neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g., in patients who cannot remain motionless for long or suffer from claustrophobia, or in the event of extensive waiting times. For multiple sclerosis (MS) patients, MRI plays a major role in drug therapy decision-making. The purpose of this study was to evaluate whether an ultrafast, T2-weighted (T2w), deep learning-enhanced (DL), echo-planar-imaging-based (EPI) fluid-attenuated inversion recovery (FLAIR) sequence (FLAIRUF) that has targeted neurological emergencies so far might even be an option to detect MS lesions of the brain compared to conventional FLAIR sequences. Therefore, 17 MS patients were enrolled prospectively in this exploratory study. Standard MRI protocols and ultrafast acquisitions were conducted at 3 tesla (T), including three-dimensional (3D)-FLAIR, turbo/fast spin-echo (TSE)-FLAIR, and FLAIRUF. Inflammatory lesions were grouped by size and location. Lesion conspicuity and image quality were rated on an ordinal five-point Likert scale, and lesion detection rates were calculated. Statistical analyses were performed to compare results. Altogether, 568 different lesions were found. Data indicated no significant differences in lesion detection (sensitivity and positive predictive value [PPV]) between FLAIRUF and axially reconstructed 3D-FLAIR (lesion size ≥3 mm × ≥2 mm) and no differences in sensitivity between FLAIRUF and TSE-FLAIR (lesion size ≥3 mm total). Lesion conspicuity in FLAIRUF was similar in all brain regions except for superior conspicuity in the occipital lobe and inferior conspicuity in the central brain regions. Further findings include location-dependent limitations of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as artifacts such as spatial distortions in FLAIRUF. In conclusion, FLAIRUF could potentially be an expedient alternative to conventional methods for brain imaging in MS patients since the acquisition can be performed in a fraction of time while maintaining good image quality. Full article
(This article belongs to the Special Issue Artificial Intelligence in Brain Diseases)
Show Figures

Figure 1

16 pages, 4019 KiB  
Article
Improving the Sensitivity of Task-Based Multi-Echo Functional Magnetic Resonance Imaging via T2* Mapping Using Synthetic Data-Driven Deep Learning
by Yinghe Zhao, Qinqin Yang, Shiting Qian, Jiyang Dong, Shuhui Cai, Zhong Chen and Congbo Cai
Brain Sci. 2024, 14(8), 828; https://doi.org/10.3390/brainsci14080828 - 17 Aug 2024
Viewed by 1622
Abstract
(1) Background: Functional magnetic resonance imaging (fMRI) utilizing multi-echo gradient echo-planar imaging (ME-GE-EPI) has demonstrated higher sensitivity and stability compared to utilizing single-echo gradient echo-planar imaging (SE-GE-EPI). The direct derivation of T2* maps from fitting multi-echo data enables accurate recording of [...] Read more.
(1) Background: Functional magnetic resonance imaging (fMRI) utilizing multi-echo gradient echo-planar imaging (ME-GE-EPI) has demonstrated higher sensitivity and stability compared to utilizing single-echo gradient echo-planar imaging (SE-GE-EPI). The direct derivation of T2* maps from fitting multi-echo data enables accurate recording of dynamic functional changes in the brain, exhibiting higher sensitivity than echo combination maps. However, the widely employed voxel-wise log-linear fitting is susceptible to inevitable noise accumulation during image acquisition. (2) Methods: This work introduced a synthetic data-driven deep learning (SD-DL) method to obtain T2* maps for multi-echo (ME) fMRI analysis. (3) Results: The experimental results showed the efficient enhancement of the temporal signal-to-noise ratio (tSNR), improved task-based blood oxygen level-dependent (BOLD) percentage signal change, and enhanced performance in multi-echo independent component analysis (MEICA) using the proposed method. (4) Conclusion: T2* maps derived from ME-fMRI data using the proposed SD-DL method exhibit enhanced BOLD sensitivity in comparison to T2* maps derived from the LLF method. Full article
Show Figures

Figure 1

17 pages, 2135 KiB  
Article
Stability of Radiomic Features against Variations in Lesion Segmentations Computed on Apparent Diffusion Coefficient Maps of Breast Lesions
by Mona Pistel, Luise Brock, Frederik Bernd Laun, Ramona Erber, Elisabeth Weiland, Michael Uder, Evelyn Wenkel, Sabine Ohlmeyer and Sebastian Bickelhaupt
Diagnostics 2024, 14(13), 1427; https://doi.org/10.3390/diagnostics14131427 - 3 Jul 2024
Cited by 1 | Viewed by 1381
Abstract
Diffusion-weighted imaging (DWI) combined with radiomics can aid in the differentiation of breast lesions. Segmentation characteristics, however, might influence radiomic features. To evaluate feature stability, we implemented a standardized pipeline featuring shifts and shape variations of the underlying segmentations. A total of 103 [...] Read more.
Diffusion-weighted imaging (DWI) combined with radiomics can aid in the differentiation of breast lesions. Segmentation characteristics, however, might influence radiomic features. To evaluate feature stability, we implemented a standardized pipeline featuring shifts and shape variations of the underlying segmentations. A total of 103 patients were retrospectively included in this IRB-approved study after multiparametric diagnostic breast 3T MRI with a spin-echo diffusion-weighted sequence with echoplanar readout (b-values: 50, 750 and 1500 s/mm2). Lesion segmentations underwent shifts and shape variations, with >100 radiomic features extracted from apparent diffusion coefficient (ADC) maps for each variation. These features were then compared and ranked based on their stability, measured by the Overall Concordance Correlation Coefficient (OCCC) and Dynamic Range (DR). Results showed variation in feature robustness to segmentation changes. The most stable features, excluding shape-related features, were FO (Mean, Median, RootMeanSquared), GLDM (DependenceNonUniformity), GLRLM (RunLengthNonUniformity), and GLSZM (SizeZoneNonUniformity), which all had OCCC and DR > 0.95 for both shifting and resizing the segmentation. Perimeter, MajorAxisLength, MaximumDiameter, PixelSurface, MeshSurface, and MinorAxisLength were the most stable features in the Shape category with OCCC and DR > 0.95 for resizing. Considering the variability in radiomic feature stability against segmentation variations is relevant when interpreting radiomic analysis of breast DWI data. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

21 pages, 1006 KiB  
Article
Parameter Extraction of Accelerated Moving Targets under Non-Quasi-Axial Incidence Conditions Based on Vortex Electromagnetic Wave Radar
by Lingling Zhang, Yongzhong Zhu, Yijun Chen, Wenxuan Xie and Hang Yuan
Remote Sens. 2024, 16(11), 1931; https://doi.org/10.3390/rs16111931 - 27 May 2024
Cited by 1 | Viewed by 1201
Abstract
Vortex electromagnetic wave radar carrying orbital angular momentum can compensate for the deficiency of planar electromagnetic wave radar in detecting motion parameters perpendicular to the direction of electromagnetic wave propagation, thus providing more information for target recognition, which has become a hot research [...] Read more.
Vortex electromagnetic wave radar carrying orbital angular momentum can compensate for the deficiency of planar electromagnetic wave radar in detecting motion parameters perpendicular to the direction of electromagnetic wave propagation, thus providing more information for target recognition, which has become a hot research field in recent years. However, existing research makes it difficult to obtain the acceleration and rotation centers of targets under non-quasi-axial incidence conditions of vortex electromagnetic waves. Based on this, this article proposes a variable speed motion target parameter extraction method that combines single element and total element echoes. This method can achieve three-dimensional information extraction of radar targets based on a uniform circular array (UCA). Firstly, we establish a non-quasi-axis detection echo model for variable-speed moving targets and extract echoes from different array elements. Then, a single element echo is used to extract the target’s range slow time profile and obtain the target’s rotation center z coordinate. We further utilize the target linear, angular Doppler frequency shift extremum, and median information to extract parameters such as target acceleration, tilt angle, rotation radius, and rotation center x and y coordinates. We analyzed the impact of different signal-to-noise ratios and motion states on parameter extraction. The simulation results have verified the effectiveness of the proposed algorithm. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Graphical abstract

15 pages, 6289 KiB  
Article
Automated Foreign Object Detection for Carbon Fiber Laminates Using High-Resolution Ultrasound Testing
by Rifat Ara Nargis, Daniel P. Pulipati and David A. Jack
Materials 2024, 17(10), 2381; https://doi.org/10.3390/ma17102381 - 16 May 2024
Cited by 4 | Viewed by 1596
Abstract
Carbon fiber laminates have become popular in the manufacturing industry for their many desirable properties, like good vibration damping, high strength-to-weight ratio, toughness, high dimensional stability, and low coefficient of thermal expansion. During the manufacturing process, undesirable foreign objects, such as peel-ply strips, [...] Read more.
Carbon fiber laminates have become popular in the manufacturing industry for their many desirable properties, like good vibration damping, high strength-to-weight ratio, toughness, high dimensional stability, and low coefficient of thermal expansion. During the manufacturing process, undesirable foreign objects, such as peel-ply strips, gloving material, and Kapton film, can be introduced into the part which can lead to a localized weakness. These manufacturing defects can function as stress concentration points and oftentimes cause a premature catastrophic failure. In this study, a method using high-resolution pulse-echo ultrasound testing is employed for the detection and quantification of the dimensions of foreign object debris (FOD) embedded within carbon fiber laminates. This research presents a method to create high-resolution C-scans using an out of immersion tank portable housing ultrasound scanning system, with similar capabilities to that of a full immersion system. From the full-waveform dataset, we extract the FOD depth and planar dimensions with an automatic edge detection technique. Results from several carbon fiber laminates are investigated with embedded foreign objects that are often considered undetectable. Results are presented for FOD identification for two different shapes: circles with diameters ranging from 7.62 mm to 12.7 mm, and 3-4-5 triangles with hypotenuses ranging from 7.6 mm to 12.7 mm. CT imaging is used to confirm proper FOD placement and that the FOD was not damaged or altered during manufacturing. Of importance for the ultrasound inspection results, in every single case studied, the FOD is detected, the layer depth is properly identified, and the typical error is less than 1.5 mm for the primary dimension. Full article
(This article belongs to the Special Issue Non-Destructive Testing (NDT) of Advanced Composites and Structures)
Show Figures

Figure 1

14 pages, 3758 KiB  
Article
Deep Learning Reconstruction for DWIs by EPI and FASE Sequences for Head and Neck Tumors
by Hirotaka Ikeda, Yoshiharu Ohno, Kaori Yamamoto, Kazuhiro Murayama, Masato Ikedo, Masao Yui, Yunosuke Kumazawa, Yurika Shimamura, Yui Takagi, Yuhei Nakagaki, Satomu Hanamatsu, Yuki Obama, Takahiro Ueda, Hiroyuki Nagata, Yoshiyuki Ozawa, Akiyoshi Iwase and Hiroshi Toyama
Cancers 2024, 16(9), 1714; https://doi.org/10.3390/cancers16091714 - 28 Apr 2024
Cited by 1 | Viewed by 1259
Abstract
Background: Diffusion-weighted images (DWI) obtained by echo-planar imaging (EPI) are frequently degraded by susceptibility artifacts. It has been suggested that DWI obtained by fast advanced spin-echo (FASE) or reconstructed with deep learning reconstruction (DLR) could be useful for image quality improvements. The purpose [...] Read more.
Background: Diffusion-weighted images (DWI) obtained by echo-planar imaging (EPI) are frequently degraded by susceptibility artifacts. It has been suggested that DWI obtained by fast advanced spin-echo (FASE) or reconstructed with deep learning reconstruction (DLR) could be useful for image quality improvements. The purpose of this investigation using in vitro and in vivo studies was to determine the influence of sequence difference and of DLR for DWI on image quality, apparent diffusion coefficient (ADC) evaluation, and differentiation of malignant from benign head and neck tumors. Methods: For the in vitro study, a DWI phantom was scanned by FASE and EPI sequences and reconstructed with and without DLR. Each ADC within the phantom for each DWI was then assessed and correlated for each measured ADC and standard value by Spearman’s rank correlation analysis. For the in vivo study, DWIs obtained by EPI and FASE sequences were also obtained for head and neck tumor patients. Signal-to-noise ratio (SNR) and ADC were then determined based on ROI measurements, while SNR of tumors and ADC were compared between all DWI data sets by means of Tukey’s Honest Significant Difference test. Results: For the in vitro study, all correlations between measured ADC and standard reference were significant and excellent (0.92 ≤ ρ ≤ 0.99, p < 0.0001). For the in vivo study, the SNR of FASE with DLR was significantly higher than that of FASE without DLR (p = 0.02), while ADC values for benign and malignant tumors showed significant differences between each sequence with and without DLR (p < 0.05). Conclusion: In comparison with EPI sequence, FASE sequence and DLR can improve image quality and distortion of DWIs without significantly influencing ADC measurements or differentiation capability of malignant from benign head and neck tumors. Full article
(This article belongs to the Section Cancer Informatics and Big Data)
Show Figures

Figure 1

11 pages, 642 KiB  
Article
Toward Improved Detection of Cholesteatoma Recidivism: Exploring the Role of Non-EPI-DWI MRI
by Natalia Díaz Zufiaurre, Marta Calvo-Imirizaldu, Joan Lorente-Piera, Pablo Domínguez-Echávarri, Pau Fontova Porta, Manuel Manrique and Raquel Manrique-Huarte
J. Clin. Med. 2024, 13(9), 2587; https://doi.org/10.3390/jcm13092587 - 28 Apr 2024
Cited by 2 | Viewed by 2211
Abstract
Background: Cholesteatoma is a lesion capable of destroying surrounding tissues, which may result in significant complications. Surgical resection is the only effective treatment; however, the presence of cholesteatoma recidivism is common. This study evaluated the effectiveness of the Attic Exposure-Antrum Exclusion (AE-AE) surgical [...] Read more.
Background: Cholesteatoma is a lesion capable of destroying surrounding tissues, which may result in significant complications. Surgical resection is the only effective treatment; however, the presence of cholesteatoma recidivism is common. This study evaluated the effectiveness of the Attic Exposure-Antrum Exclusion (AE-AE) surgical technique in treating cholesteatomas and identifying factors associated with recidivism. Additionally, the study aimed to assess the utility of non-echo-planar diffusion MRI (non-EPI-DWI MRI) in detecting cholesteatoma recidivism in patients undergoing AE-AE surgery. Methods: The study involved 63 patients who underwent AE-AE surgery for primary acquired cholesteatoma and were followed up clinically and radiologically for at least five years. The radiological follow-up included a non-EPI-DWI MRI. Results: Results showed that the AE-AE technique successfully treated cholesteatomas, with a recidivism rate of 5.2%. The study also found that non-EPI-DWI MRI was a useful diagnostic tool for detecting cholesteatoma recidivism, although false positives could occur due to the technique’s high sensitivity. As Preoperative Pure-tone average (PTA) increases, there is a higher probability of cholesteatoma recidivism in imaging tests (p = 0.003). Conclusions: Overall, the study highlights the importance of the AE-AE surgical technique and non-EPI-DWI MRI in managing cholesteatoma recidivism in patients, providing valuable insights into associated risk factors and how to manage recidivism. Non-EPI-DWI MRI can assist in patient selection for revision surgery, reducing unnecessary interventions and associated risks while improving treatment outcomes and patient care. Full article
Show Figures

Figure 1

Back to TopTop