Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = eastern boundary currents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 14882 KiB  
Article
Planning for Cultural Connectivity: Modeling and Strategic Use of Architectural Heritage Corridors in Heilongjiang Province, China
by Lyuhang Feng, Jiawei Sun, Tongtong Zhai, Mingrui Miao and Guanchao Yu
Buildings 2025, 15(12), 1970; https://doi.org/10.3390/buildings15121970 - 6 Jun 2025
Viewed by 545
Abstract
This study focuses on the systematic conservation of historical architectural heritage in Heilongjiang Province, particularly addressing the challenges of point-based protection and spatial fragmentation. It explores the construction of a connected and conductive heritage corridor network, using historical building clusters across the province [...] Read more.
This study focuses on the systematic conservation of historical architectural heritage in Heilongjiang Province, particularly addressing the challenges of point-based protection and spatial fragmentation. It explores the construction of a connected and conductive heritage corridor network, using historical building clusters across the province as empirical cases. A comprehensive analytical framework is established by integrating the nearest neighbor index, kernel density estimation, minimum cumulative resistance (MCR) model, entropy weighting, circuit theory, and network structure metrics. Kernel density analysis reveals a distinct spatial aggregation pattern, characterized by “one core, multiple zones.” Seven resistance factors—including elevation, slope, land use, road networks, and service accessibility—are constructed, with weights assigned through an entropy-based method to generate an integrated resistance surface and suitability map. Circuit theory is employed to simulate cultural “current” flows, identifying 401 potential corridors at the provincial, municipal, and district levels. A hierarchical station system is further developed based on current density, forming a coordinated structure of primary trunks, secondary branches, and complementary nodes. The corridor network’s connectivity is evaluated using graph-theoretic indices (α, β, and γ), which indicate high levels of closure, structural complexity, and accessibility. The results yield the following key findings: (1) Historical architectural resources in Heilongjiang demonstrate significant coupling with the Chinese Eastern Railway and multi-ethnic cultural corridors, forming a “one horizontal, three vertical” spatial configuration. The horizontal axis (Qiqihar–Harbin–Mudanjiang) aligns with the core cultural route of the railway, while the three vertical axes (Qiqihar–Heihe, Harbin–Heihe, and Mudanjiang–Luobei) correspond to ethnic cultural pathways. This forms a framework of “railway as backbone, ethnicity as wings.” (2) Comparative analysis of corridor paths, railways, and highways reveals structural mismatches in certain regions, including absent high-speed connections along northern trunk lines, insufficient feeder lines in secondary corridors, sparse terminal links, and missing ecological stations near regional boundaries. To address these gaps, a three-tier transportation coordination strategy is recommended: it comprises provincial corridors linked to high-speed rail, municipal corridors aligned with conventional rail, and district corridors connected via highway systems. Key enhancement zones include Yichun–Heihe, Youyi–Hulin, and Hegang–Wuying, where targeted infrastructure upgrades and integrated station hubs are proposed. Based on these findings, this study proposes a comprehensive governance paradigm for heritage corridors that balances multi-level coordination (provincial–municipal–district) with ecological planning. A closed-loop strategy of “identification–analysis–optimization” is developed, featuring tiered collaboration, cultural–ecological synergy, and multi-agent dynamic evaluation. The framework provides a replicable methodology for integrated protection and spatial sustainability of historical architecture in Heilongjiang and other cold-region contexts. Full article
Show Figures

Figure 1

33 pages, 6346 KiB  
Article
Urban Spatial Blessing: Effect of Land Use Intensity on Human Development Index
by Xiang Luo, Shuchen Niu, Xin Li, Liwei Jing, Jingjing Qin and Yue Tang
Land 2025, 14(5), 1085; https://doi.org/10.3390/land14051085 - 16 May 2025
Viewed by 575
Abstract
Urban land use is characterized by pronounced externalities. In most developing countries, economic welfare considerations drive the changes in land use intensity, leading to the spatial reallocation of resources and thereby affecting the enhancement of urban welfare. This study combined multi-source data to [...] Read more.
Urban land use is characterized by pronounced externalities. In most developing countries, economic welfare considerations drive the changes in land use intensity, leading to the spatial reallocation of resources and thereby affecting the enhancement of urban welfare. This study combined multi-source data to construct a panel dataset of 284 prefectural-level and above cities in China from 2011 to 2022, and employed the spatial Durbin model, spatial heterogeneity model, and spatial mechanism model to systematically analyze the spatial spillover effects of urban land use intensity (ULUI) on urban welfare (Human Development Index, HDI), its heterogeneity, and the underlying influencing mechanisms. The study concluded that: (i) Both HDI and ULUI have shown certain improvement despite some distinct regional heterogeneity; (ii) ULUI significantly contributes to local urban welfare, yet exerts a negative spatial spillover effect on neighboring cities, and the effective boundary of this spillover effect is 400 km. (iii) Spatial spillover heterogeneity analysis revealed that the spillover effect of ULUI on HDI is negative for non-eastern and non-megacities, whereas it is positive for eastern and megacities, though the estimated coefficients are relatively small. (iv) In terms of the spatial influencing mechanism, industrial rationalization, industrial advancement, and economic agglomeration in the market dimension, as well as expenditure scaling, expenditure structuring, and public serviceability in the non-market dimension, are essential channels for ULUI to affect the HDI of both local and neighboring cities. The results indicate that the current “land-based” land use is not conducive to the enhancement of regional welfare, and there is an urgent need for better understanding the principles of factor allocation and agglomeration, establishing cross-regional synergistic mechanisms, and fully leveraging the comparative advantages of geographic conditions and scale effects across different cities, so as to improve the urban space welfare. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

24 pages, 3145 KiB  
Article
Enhancing Post-Disaster Food Security Through Urban Agriculture in the Context of Climate Change
by Yanxin Liu, Victoria Chanse and Fabricio Chicca
Land 2025, 14(4), 799; https://doi.org/10.3390/land14040799 - 8 Apr 2025
Viewed by 1209
Abstract
Cities face growing challenges from climate change, including rising temperatures, extreme rainfall, and intensifying urban heat islands, resulting in significant socio-cultural costs. Urban areas are increasingly vulnerable to food insecurity during disasters, yet the potential of urban agriculture (UA) to address this challenge [...] Read more.
Cities face growing challenges from climate change, including rising temperatures, extreme rainfall, and intensifying urban heat islands, resulting in significant socio-cultural costs. Urban areas are increasingly vulnerable to food insecurity during disasters, yet the potential of urban agriculture (UA) to address this challenge remains underexplored. This study focuses on Wellington, New Zealand (NZ), a region highly prone to earthquakes, to evaluate the role of UA in enhancing post-disaster food security. The study calculates vegetable self-sufficiency by mapping potential productive land, estimating vegetable yields, and assessing post-disaster food demands across multiple scenarios. Potential productive land was quantified using a reproducible GIS-based method, considering three soil-based UA types: private yards, communal gardens, and urban farms. Due to Wellington’s mountainous topography, slopes and aspects were used to select four land scenarios. Three yield scenarios were estimated using aggregated data from previous studies and cross-checked with local UA and NZ conventional farming data. Food demands were based on NZ’s recommended vegetable intake and three targeted population scenarios: the entire population, displaced populations, and vulnerable populations. Results indicate that potential productive land is primarily evenly distributed in the eastern part within the city boundary, accounting for 0.3% to 1.5% of the total area. Vegetable self-sufficient rates for Wellington through UA range from 3% to 75%, with higher rates for displaced and vulnerable populations. These figures significantly exceed the current self-sufficiency rate estimated in the authors’ preliminary research, indicating Wellington’s considerable potential to enhance post-disaster food security through expanding UA and promoting related initiatives. However, realizing this potential will require stronger policy support, integrating UA with urban planning and disaster preparedness. Full article
Show Figures

Figure 1

19 pages, 32077 KiB  
Article
Present-Day Tectonic Deformation Characteristics of the Northeastern Pamir Margin Constrained by InSAR and GPS Observations
by Junjie Zhang, Xiaogang Song, Donglin Wu and Xinjian Shan
Remote Sens. 2024, 16(24), 4771; https://doi.org/10.3390/rs16244771 - 21 Dec 2024
Viewed by 1034
Abstract
The Pamir is located on the northwestern margin of the Tibetan Plateau, which is an area of intense continental deformation and part of the famous India–Himalaya collision zone. The dominant structural deformation in the eastern Pamir is characterized by a 250 km long [...] Read more.
The Pamir is located on the northwestern margin of the Tibetan Plateau, which is an area of intense continental deformation and part of the famous India–Himalaya collision zone. The dominant structural deformation in the eastern Pamir is characterized by a 250 km long east–west extensional fault system, known as the Kongur Shan extensional system (KSES), which has developed a series of faults with different orientations and characteristics, resulting in highly complex structural deformation and lacking sufficient geodetic constraints. We collected Sentinel-1 SAR data from December 2016 to March 2023, obtained high-resolution ascending and descending LOS velocities and 3D deformation fields, and combined them with GPS data to constrain the current motion characteristics of the northeastern Pamirs for the first time. Based on the two-dimensional screw dislocation model and using the Bayesian Markov chain Monte Carlo (MCMC) inversion method, the kinematic parameters of the fault were calculated, revealing the fault kinematic characteristics in this region. Our results demonstrate that the present-day deformation of the KSES is dominated by nearly E–W extension, with maximum extensional motion concentrated in its central segment, reaching peak extension rates of ~7.59 mm/yr corresponding to the Kongur Shan. The right-lateral Muji fault at the northern end exhibits equivalent rates of extensional motion with a relatively shallow locking depth. The strike-slip rate along the Muji fault gradually increases from west to east, ranging approximately between 4 and 6 mm/yr, significantly influenced by the eastern normal fault. The Tahman fault (TKF) at the southernmost end of the KSES shows an extension rate of ~1.5 mm/yr accompanied by minor strike-slip motion. The Kashi anticline is approaching stability, while the Mushi anticline along the eastern Pamir frontal thrust (PFT) remains active with continuous uplift at ~2 mm/yr, indicating that deformation along the Tarim Basin–Tian Shan boundary has propagated southward from the South Tian Shan thrust (STST). Overall, this study demonstrates the effectiveness of integrated InSAR and GPS data in constraining contemporary deformation patterns along the northeastern Pamir margin, contributing to our understanding of the region’s tectonic characteristics. Full article
Show Figures

Figure 1

23 pages, 8776 KiB  
Article
Monsoon-Driven Dispersal of River-Sourced Floating Marine Debris in Tropical Semi-Enclosed Waters: A Case Study in the Gulf of Thailand
by Kittipong Phattananuruch and Tanuspong Pokavanich
J. Mar. Sci. Eng. 2024, 12(12), 2258; https://doi.org/10.3390/jmse12122258 - 9 Dec 2024
Cited by 1 | Viewed by 1801
Abstract
Marine debris (MD) causes significant threats to marine ecosystems. However, limited research addresses its transport of MD in tropical shallow semi-enclosed seas. This study applied a validated 3D hydrodynamic model and a particle tracking model to simulate the seasonal distribution of floating marine [...] Read more.
Marine debris (MD) causes significant threats to marine ecosystems. However, limited research addresses its transport of MD in tropical shallow semi-enclosed seas. This study applied a validated 3D hydrodynamic model and a particle tracking model to simulate the seasonal distribution of floating marine debris (FMD) originating from major river mouths in the vicinity of the Gulf of Thailand (GoT). The aim was to examine seasonal distribution patterns and variations influenced by sea surface circulation. Simulated particles were released every six hours from 12 river mouths and tracked over three years. Results revealed that seasonal currents drive the distribution of debris between the eastern and western regions, as well as its export and import across the gulf. The upper Gulf of Thailand (UGoT) exhibited the highest concentration of debris, with around 50% of the total released particles ending up onshore across the GoT, varying seasonally. An analysis showed that 74% of the debris released within the gulf remains there. Additionally, the GoT receives approximately 10% of the debris from rivers located outside its boundaries. Findings from this study suggest that the GoT, as an example of a tropical semi-enclosed sea, functions as both a sink and a source for FMD. These results could support the development of strategic seasonal cleanup frameworks, optimizing efforts during peak debris accumulation periods to enhance management efficiency. In addition, the mapping of debris distribution provides critical data for assessing and mitigating marine environmental impacts in the GoT. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

21 pages, 7515 KiB  
Article
Severe Convective Weather in the Central and Eastern United States: Present and Future
by Changhai Liu, Kyoko Ikeda and Roy Rasmussen
Atmosphere 2024, 15(12), 1444; https://doi.org/10.3390/atmos15121444 - 30 Nov 2024
Viewed by 1338
Abstract
The continental United States is a global hotspot of severe thunderstorms and therefore is particularly vulnerable to social and economic damages from high-impact severe convective weather (SCW), such as tornadoes, thunderstorm winds, and large hail. However, our knowledge of the spatiotemporal climatology and [...] Read more.
The continental United States is a global hotspot of severe thunderstorms and therefore is particularly vulnerable to social and economic damages from high-impact severe convective weather (SCW), such as tornadoes, thunderstorm winds, and large hail. However, our knowledge of the spatiotemporal climatology and variability of SCW occurrence is still lacking, and the potential change in SCW frequency and intensity in response to anthropogenic climate warming is highly uncertain due to deficient and sparse historical records and the global and regional climate model’s inability to resolve thunderstorms. This study investigates SCW in the Central and Eastern United States in spring and early summer for the current and future warmed climate using two multi-year continental-scale convection-permitting Weather Research and Forecasting (WRF) model simulations. The pair of simulations consist of a retrospective simulation, which downscales the ERA-Interim reanalysis during October 2000–September 2013, and a future climate sensitivity simulation based on the perturbed reanalysis-derived boundary conditions with the CMIP5 ensemble-mean high-end emission scenario climate change. A proxy based on composite reflectivity and updraft helicity threshold is applied to infer the simulated SCW occurrence. Results indicate that the retrospective simulation captures reasonably well the spatial distributions and seasonal variations of the observed SCW events, with an exception of an overestimate along the Atlantic and Gulf coast. In a warmer-moister future, most regions experience intensified SCW activity, most notably in the early-middle spring, with the largest percentage increase in the foothills and higher latitudes. In addition, a shift of simulated radar reflectivity toward higher values, in association with the significant thermodynamic environmental response to climatic warming, potentially increases the SCW severity and resultant damage. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

21 pages, 19883 KiB  
Article
Larval Transport Pathways for Lutjanus peru and Lutjanus argentiventris in the Northwestern Mexico and Tropical Eastern Pacific
by Nicole Reguera-Rouzaud, Guillermo Martínez-Flores, Noé Díaz-Viloria and Adrián Munguía-Vega
Water 2024, 16(21), 3084; https://doi.org/10.3390/w16213084 - 28 Oct 2024
Viewed by 1243
Abstract
Understanding how ocean currents influence larval dispersal and measuring its magnitude is critical for conservation and sustainable exploitation, especially in the Tropical Eastern Pacific (TEP), where the larval transport of rocky reef fish remains untested. For this reason, a lagrangian simulation model was [...] Read more.
Understanding how ocean currents influence larval dispersal and measuring its magnitude is critical for conservation and sustainable exploitation, especially in the Tropical Eastern Pacific (TEP), where the larval transport of rocky reef fish remains untested. For this reason, a lagrangian simulation model was implemented to estimate larval transport pathways in Northwestern Mexico and TEP. Particle trajectories were simulated with data from the Hybrid Ocean Coordinate Model, focusing on three simulation scenarios: (1) using the occurrence records of Lutjanus peru and L. argentiventris as release sites; (2) considering a continuous distribution along the study area, and (3) taking the reproduction seasonality into account in both species. It was found that the continuous distribution scenario largely explained the genetic structure previously found in both species (genetic brakes between central and southern Mexico and Central America), confirming that the ocean currents play a significant role as predictors of genetic differentiation and gene flow in Northwestern Mexico and the TEP. Due to the oceanography of the area, the southern localities supply larvae from the northern localities; therefore, disturbances in any southern localities could affect the surrounding areas and have impacts that spread beyond their political boundaries. Full article
(This article belongs to the Special Issue Aquatic Environment and Ecosystems)
Show Figures

Figure 1

24 pages, 9037 KiB  
Article
Comparative Study of Potential Habitats for Two Endemic Grassland Caterpillars on the Qinghai-Tibet Plateau Based on BIOMOD2 and Land Use Data
by Chuanji Li, Yunxiang Liu, Youpeng Lai and Hainan Shao
Insects 2024, 15(10), 781; https://doi.org/10.3390/insects15100781 - 8 Oct 2024
Cited by 3 | Viewed by 1765
Abstract
This study has systematically investigated and compared the geographical distribution patterns and population density of G. menyuanensis (Gm) and G. qinghaiensis (Gq), which are endemic to the QTP region and inflict severe damage. Using a method combining the BIOMOD2 [...] Read more.
This study has systematically investigated and compared the geographical distribution patterns and population density of G. menyuanensis (Gm) and G. qinghaiensis (Gq), which are endemic to the QTP region and inflict severe damage. Using a method combining the BIOMOD2 integration model (incorporating nine ecological niche models) and current species distribution data, this study has compared changes in potential habitats and distribution centers of these two species during ancient, present, and future climate periods and conducted a correlation test on the prediction results with land use types. The study results indicate that there are differences in geographical distribution patterns, distribution elevations, and population density of these two species. Compared with single models, the integration model exhibits prominent accuracy and stability with higher KAPPA, TSS, and AUC values. The distribution of suitable habitats for these two species is significantly affected by climatic temperature and precipitation. There is a significant difference between the potential habitats of these two species. Gm and Gq are distributed in the northeastern boundary area and the central and eastern areas of the QTP, respectively. The areas of their suitable habitats are significantly and positively correlated with the area of grassland among all land use types of QTP, with no correlations with the areas of other land use types of QTP. The potential habitats of both species during the paleoclimate period were located in the eastern and southeastern boundary areas of the QTP. During the paleoclimate period, their potential habitats expanded towards the Hengduan Mountains (low-latitude regions) in the south compared with their current suitable habitats. With the subsequent temperature rising, their distribution centers shifted towards the northeast (high-latitude) regions, which could validate the hypothesis that the Hengduan Mountains were refuges for these species during the glacial period. In the future, there will be more potential suitable habitats for these two species in the QTP. This study elucidates the ecological factors affecting the current distribution of these grass caterpillars, provides an important reference for designating the prevention and control areas for Gm and Gq, and helps protect the alpine meadow ecosystem in the region. Full article
(This article belongs to the Collection Insects in Mountain Ecosystems)
Show Figures

Graphical abstract

24 pages, 6198 KiB  
Article
The China Coastal Front from Himawari-8 AHI SST Data—Part 2: South China Sea
by Igor M. Belkin, Shang-Shang Lou, Yi-Tao Zang and Wen-Bin Yin
Remote Sens. 2024, 16(18), 3415; https://doi.org/10.3390/rs16183415 - 14 Sep 2024
Cited by 2 | Viewed by 997
Abstract
High-resolution (2 km) high-frequency (hourly) SST data from 2015 to 2021 provided by the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 geostationary satellite were used to study spatial and temporal variability of the China Coastal Front (CCF) in the South China Sea. [...] Read more.
High-resolution (2 km) high-frequency (hourly) SST data from 2015 to 2021 provided by the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 geostationary satellite were used to study spatial and temporal variability of the China Coastal Front (CCF) in the South China Sea. The SST data were processed with the Belkin and O’Reilly (2009) algorithm to generate monthly maps of the CCF’s intensity (defined as SST gradient magnitude GM) and frontal frequency (FF). The horizontal structure of the CCF was investigated from cross-frontal distributions of SST along 11 fixed lines that allowed us to determine inshore and offshore boundaries of the CCF and calculate the CCF’s strength (defined as total cross-frontal step of SST). Combined with the results of Part 1 of this study, where the CCF was documented in the East China Sea, the new results reported in this paper allowed the CCF to be traced from the Yangtze Bank to Hainan Island. The CCF is continuous in winter, when its intensity peaks at 0.15 °C/km (based on monthly data). In summer, when the Guangdong Coastal Current reverses and flows eastward, the CCF’s intensity is reduced to 0.05 °C/km or less, especially off western Guangdong, where the CCF vanishes almost completely. Owing to its breadth (50–100 km, up to 200 km in the Taiwan Strait), the CCF is a very strong front, especially in winter, when the total SST step across the CCF peaks at 9 °C in the Taiwan Strait. The CCF’s strength decreases westward to 6 °C off eastern Guangdong, 5 °C off western Guangdong, and 2 °C off Hainan Island, all in mid-winter. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

15 pages, 11451 KiB  
Article
Impact of Climate Change on Distribution of Suitable Niches for Black Locust (Robinia pseudoacacia L.) Plantation in China
by Shanchao Zhao, Hesong Wang and Yang Liu
Forests 2024, 15(9), 1616; https://doi.org/10.3390/f15091616 - 13 Sep 2024
Cited by 2 | Viewed by 1109
Abstract
Black locust (Robinia pseudoacacia L.), one of the major afforestation species adopted in vegetation restoration, is notable for its rapid root growth and drought resistance. It plays a vital role in improving the natural environment and soil fertility, contributing significantly to soil [...] Read more.
Black locust (Robinia pseudoacacia L.), one of the major afforestation species adopted in vegetation restoration, is notable for its rapid root growth and drought resistance. It plays a vital role in improving the natural environment and soil fertility, contributing significantly to soil and water conservation and biodiversity protection. However, compared with natural forests, due to the low diversity, simple structure and poor stability, planted forests including Robinia pseudoacacia L. are more sensitive to the changing climate, especially in the aspects of growth trend and adaptive range. Studying the ecological characteristics and geographical boundaries of Robinia pseudoacacia L. is therefore important to explore the adaptation of suitable niches to climate change. Here, based on 162 effective distribution records in China and 22 environmental variables, the potential distribution of suitable niches for Robinia pseudoacacia L. plantations in past, present and future climates was simulated by using a Maximum Entropy (MaxEnt) model. The results showed that the accuracy of the MaxEnt model was excellent and the area under the curve (AUC) value reached 0.937. Key environmental factors constraining the distribution and suitable intervals were identified, and the geographical distribution and area changes of Robinia pseudoacacia L. plantations in future climate scenarios were also predicted. The results showed that the current suitable niches for Robinia pseudoacacia L. plantations covered 9.2 × 105 km2, mainly distributed in the Loess Plateau, Huai River Basin, Sichuan Basin, eastern part of the Yunnan–Guizhou Plateau, Shandong Peninsula, and Liaodong Peninsula. The main environmental variables constraining the distribution included the mean temperature of the driest quarter, precipitation of driest the quarter, temperature seasonality and altitude. Among them, the temperature of the driest quarter was the most important factor. Over the past 90 years, the suitable niches in the Sichuan Basin and Yunnan–Guizhou Plateau have not changed significantly, while the suitable niches north of the Qinling Mountains have expanded northward by 2° and the eastern area of Liaoning Province has expanded northward by 1.2°. In future climate scenarios, the potential suitable niches for Robinia pseudoacacia L. are expected to expand significantly in both the periods 2041–2060 and 2061–2080, with a notable increase in highly suitable niches, widely distributed in southern China. A warning was issued for the native vegetation in the above-mentioned areas. This work will be beneficial for developing reasonable afforestation strategies and understanding the adaptability of planted forests to climate change. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

24 pages, 27047 KiB  
Article
Sustainable Spatial Development of Multifunctional Villages: A Case Study of Eastern Poland
by Dawid Soszyński, Piotr Kociuba and Andrzej Tucki
Sustainability 2024, 16(18), 7965; https://doi.org/10.3390/su16187965 - 12 Sep 2024
Cited by 2 | Viewed by 1417
Abstract
The decline in the role of agriculture as the basis for the livelihood of rural residents has led to the development of new directions for rural transformation. In Poland, the concept of multifunctional development has gained the most popularity. However, it does not [...] Read more.
The decline in the role of agriculture as the basis for the livelihood of rural residents has led to the development of new directions for rural transformation. In Poland, the concept of multifunctional development has gained the most popularity. However, it does not have a defined spatial development model. There has also been no research into how the development of non-agricultural functions affects spatial development and to what extent this development is sustainable. Therefore, the aim of this study is to show and compare the changes that have taken place over the last 40–50 years in the spatial arrangements of development in traditional agricultural villages and in villages with different non-agricultural functions (tourist, industrial, and service functions). At the same time, we want to indicate which of these functions have contributed to the development of the most sustainable spatial arrangements. To this end, we selected three indicators of sustainable development of rural space: compactness of buildings, continuation of traditional rural layouts, and availability of services, and then carried out an analysis of changes in these indicators on the basis of archival and current cartographic materials and data on service facilities. We conducted the research for four municipalities in eastern Poland (50 villages). The results indicate the predominance of negative spatial phenomena such as the deterioration of the accessibility of services and spatial development contrary to historical spatial layouts. There is a spillover of development in the form of discontinuous, chaotic clusters of buildings often having the character of suburbia and, consequently, the disappearance of village centres, worsening walkability, and blurring of village boundaries. The only positive change is an increase in the compactness of buildings—mainly in villages that previously had a dispersed character. It is difficult to identify village functions that would unequivocally favour spatial sustainability. The service villages showed slight advantages in terms of social (availability of services) and environmental (compactness of buildings) factors. In contrast, the development of agricultural villages was more favourable in cultural terms (traditional village layouts). In all aspects, negative changes were recorded in industrial villages and (the worst results) in tourist villages. However, the trends were similar in all municipalities, which draws attention primarily to the lack of a rational spatial policy related to multifunctional village development. Full article
Show Figures

Figure 1

13 pages, 976 KiB  
Article
Advancing Conservation Strategies for Native Eastern Highlands-Strain Walleye Sander vitreus in West Virginia: Insights from Genomic Investigations and Broodstock Screening
by Andrew Johnson, Katherine Zipfel and Amy Welsh
Diversity 2024, 16(7), 371; https://doi.org/10.3390/d16070371 - 27 Jun 2024
Cited by 4 | Viewed by 1100
Abstract
Walleye, Sander vitreus, has several distinct genetic lineages throughout North America as a consequence of Pleistocene glaciation. Stocking walleye across genetic boundaries in the mid-20th century has led to the introduction of non-native strains that persist to this day. In West Virginia, the [...] Read more.
Walleye, Sander vitreus, has several distinct genetic lineages throughout North America as a consequence of Pleistocene glaciation. Stocking walleye across genetic boundaries in the mid-20th century has led to the introduction of non-native strains that persist to this day. In West Virginia, the identification of the native Eastern Highlands strain led the West Virginia Division of Natural Resources (WVDNR) to employ broodstock screening to assist in the conservation of the native strain. To develop a baseline native ancestry prevalence in walleye populations throughout the state, 1532 broodstock were sampled across 17 sampling locations over a 6-year period. To evaluate the effectiveness of the current broodstock two-SNP qPCR assay protocol and identify whether more SNPs need to be implemented, 284 walleye were sequenced and ancestry-genotyped across 42 fixed SNPs between the two strains. When comparing the current protocol to the older microsatellite protocol, advancement in the ability to identify native-strain individuals was observed. Genotyping previously assigned walleye broodstock across multiple fixed SNPs revealed that the current ancestry assignment protocol, on average, assigned individuals that display 96% Eastern Highlands native ancestry to the native strain and accurately identified >93% of all pure Eastern Highlands walleye. Throughout the state of West Virginia, the New and Kanawha River systems contained a high prevalence of native ancestry, with the Ohio River and sampled impoundments displaying varying levels of ancestry. SNPs with >98% prevalence in individuals assigned to the Eastern Highlands strain were identified during the course of the study and can be implemented in future screening protocols. Our results highlight the utility of genomic approaches as tools to assist fisheries management goals and their capability to accurately identify native ancestry to assist in conservation efforts. Full article
(This article belongs to the Collection Feature Papers in Animal Diversity)
Show Figures

Figure 1

19 pages, 6292 KiB  
Article
Formation of Abnormal Gas-Geochemical Fields and Dissolved Gases Transport at the Shallow Northeastern Shelf of Sakhalin Island in Warm Season: Expedition Data and Remote Sensing
by Nadezhda Syrbu, Andrey Kholmogorov, Igor Stepochkin, Vyacheslav Lobanov and Svetlana Shkorba
Water 2024, 16(10), 1434; https://doi.org/10.3390/w16101434 - 17 May 2024
Cited by 2 | Viewed by 1330
Abstract
Our paper deals with gas-geochemical measurements of CH4 and CO2, as well as the first measurements of dissolved H2 and He in the waters of the eastern shelf of Sakhalin Island, obtained during cruise 68 on the R/V Akademik [...] Read more.
Our paper deals with gas-geochemical measurements of CH4 and CO2, as well as the first measurements of dissolved H2 and He in the waters of the eastern shelf of Sakhalin Island, obtained during cruise 68 on the R/V Akademik Oparin (OP68) on 12–18 August 2023. The shallow eastern shelf has high concentrations of dissolved methane and helium in the water. The combined anomalies of methane and helium indicate the presence of an ascending deep fluid. The sources of methane in the studied area are the underlying oil- and gas-bearing rocks extending to the coast of the island. The deep faults of the region and the minor discontinuities that accompany them along the eastern coast of Sakhalin Island create a fluid-permeable geological environment both on the shallow shelf and on the coastal part of the island. East Sakhalin current and counter-current influence gases that migrate from lithospheric sources; these currents form a special hydrological regime that ensures high solubility of the gases released and their transfer under the lower boundary of the seasonal pycnocline to the east, where they are involved in the general circulation of the Sea of Okhotsk. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

17 pages, 15155 KiB  
Article
Gulf Stream Effects on Sea Level Oscillations: Enhancing Performance of a Coastal and Estuarine Model Nested into Global Model through Modified Boundary Conditions
by Md Ahsan Habib and Gary A. Zarillo
J. Mar. Sci. Eng. 2024, 12(5), 775; https://doi.org/10.3390/jmse12050775 - 6 May 2024
Cited by 1 | Viewed by 1270
Abstract
This study investigates the effects of the gulf stream (GS) on sea-level oscillations across various time scales and assesses the performance of a coastal and estuarine model nested within a global model in simulating these variations. It aims to improve boundary conditions to [...] Read more.
This study investigates the effects of the gulf stream (GS) on sea-level oscillations across various time scales and assesses the performance of a coastal and estuarine model nested within a global model in simulating these variations. It aims to improve boundary conditions to simulate sea-level oscillations more accurately by considering the influence of GS flow. An inverse correlation is observed between observed sea-level oscillation and GS flow, which becomes more pronounced over longer time scales. Using Delft3D, a high-resolution coastal and estuarine model is developed to simulate circulation dynamics in the central Indian River Lagoon (IRL), FL, and adjacent coastal areas on the Florida east coast. The model is nested into the HYCOM (Hybrid Coordinate Ocean Model), and meteorological forcings are derived from the NARR (North American Regional Reanalysis) model. The model demonstrates satisfactory performance across key parameters, including tide, salinity, water temperature, and currents. However, there remains a noticeable difference between the modeled and observed data. To address this, the model is executed with modified flow boundary conditions at eastern boundary nodes, integrating HYCOM tide, and observing low-frequency sea-level variations. The implementation of the new boundary conditions results in an improved simulation of sea-level oscillations. This study presents the conceptual framework and detailed methodologies employed in the creation of a high-resolution model tailored for estuarine and coastal areas nested into global models capable of satisfactorily simulating sea-level oscillations even when the global model does not represent GS effects. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

28 pages, 6361 KiB  
Article
Optimization and Evaluation of the Weather Research and Forecasting (WRF) Model for Wind Energy Resource Assessment and Mapping in Iran
by Abbas Ranjbar Saadatabadi, Nasim Hossein Hamzeh, Dimitris G. Kaskaoutis, Zahra Ghasabi, Mohammadreza Mohammadpour Penchah, Rafaella-Eleni P. Sotiropoulou and Maral Habibi
Appl. Sci. 2024, 14(8), 3304; https://doi.org/10.3390/app14083304 - 14 Apr 2024
Cited by 6 | Viewed by 2421
Abstract
This study aims to optimize the Weather Research and Forecasting (WRF) model regarding the choice of the best planetary boundary layer (PBL) physical scheme and to evaluate the model’s performance for wind energy assessment and mapping over the Iranian territory. In this initiative, [...] Read more.
This study aims to optimize the Weather Research and Forecasting (WRF) model regarding the choice of the best planetary boundary layer (PBL) physical scheme and to evaluate the model’s performance for wind energy assessment and mapping over the Iranian territory. In this initiative, five PBL and surface layer parameterization schemes were tested, and their performance was evaluated via comparison with observational wind data. The study used two-way nesting domains with spatial resolutions of 15 km and 5 km to represent atmospheric circulation patterns affecting the study area. Additionally, a seventeen-year simulation (2004–2020) was conducted, producing wind datasets for the entire Iranian territory. The accuracy of the WRF model was assessed by comparing its results with observations from multiple sites and with the high-resolution Global Wind Atlas. Statistical parameters and wind power density were calculated from the simulated data and compared with observations to evaluate wind energy potential at specific sites. The model’s performance was sensitive to the horizontal resolution of the terrain data, with weaker simulations for wind speeds below 3 m/s and above 10 m/s. The results confirm that the WRF model provides reliable wind speed data for realistic wind energy assessment studies in Iran. The model-generated wind resource map identifies areas with high wind (wind speed > 5.6 m/s) potential that are currently without wind farms or Aeolic parks for exploitation of the wind energy potential. The Sistan Basin in eastern Iran was identified as the area with the highest wind power density, while areas west of the Zagros Mountains and in southwest Iran showed high aeolian potential during summer. A novelty of this research is the application of the WRF model in an area characterized by high topographical complexities and specific geographical features. The results provide practical solutions and valuable insights for industry stakeholders, facilitating informed decision making, reducing uncertainties, and promoting the effective utilization of wind energy resources in the region. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting)
Show Figures

Figure 1

Back to TopTop