Monsoon-Driven Dispersal of River-Sourced Floating Marine Debris in Tropical Semi-Enclosed Waters: A Case Study in the Gulf of Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Measurement Hydrographic Data
2.2. Hydrodynamic Model Description
2.3. FMD Trajectory Modeling
3. Results and Discussion
3.1. Validation of the Hydrodynamic Model
3.2. Validation of the FMD Model
3.3. Seasonal Distribution of FMD
3.4. FMD Hotspots and Accumulation Zones
3.5. Travel Time of FMD
3.6. Identification of FMD Sources
3.7. Beached FMD
3.8. FMD Exchanges Between the GoT and the SCS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Setup Lists | Validation Model (Model V) | General Circulation Model (Model G) |
---|---|---|
Simulation period | 2014–2020 | A five-year repeated simulation |
Validation period | 2016–2020 | - |
Warm-up period | 2014–2015 | The first two years |
Type of grid | Structured grid | |
Grid cell size | 2.8 km × 2.8 km | |
Total number of grid cell | 131,244 | |
Number of vertical layers | Ten layers in σ coordinate system | |
Initial conditions | Salinity and water temperature from Global Ocean Forecasting System (GOFS) 3.1 on 1 January 2014. | 15-year climatological salinity and water temperature data from the GOFS. |
Simulation time step | 300 s | |
Bottom roughness | Chézy coefficient at 70 m1/2/s | |
Background horizontal eddy viscosity | 10 m2/s | |
Background horizontal eddy diffusivity | 30 m2/s | |
Background vertical eddy viscosity | 1 × 10−6 m2/s | |
Model for 3D turbulence | k-Epsilon | |
Water density | 1025 kg/m3 | |
River discharge data * | Daily simulated data: Global Flood Awareness System | |
Offshore boundaries condition * | Astronomical water elevation: Derived from TPXO9 using 15 tidal components. Salinity and water temperature derived from GOFS. | |
Meteorological forcing * | ERA5 (3-hourly): northward and southward components of wind at a height of 10 m; temperature of air at 2 m height above surface; total precipitation; total cloud cover; mean sea level pressure; relative humidity |
Stations | Parameters | Data Interval | Validation Period (Day/Month/Year) | RMSE | R2 |
---|---|---|---|---|---|
Cendering | Water level | Monthly | 1 January 2016–1 December 2018 | 0.12 m | 0.83 |
Geting | Water level | Monthly | 1 January 2016–1 October 2017 | 0.08 m | 0.92 |
Ko Prap | Water level | Hourly | 1 January 2016–31 December 2020 | 0.20 m | 0.86 |
Ko Tao | Water level | 30 min | 2 March 2020–31 December 2020 | 0.17 m | 0.87 |
Water temperature | 30 min | 2 March 2020–31 December 2020 | 1.21 °C | 0.72 | |
Ko Mattaphon | Water level | Hourly | 1 January 2016–31 December 2020 | 0.19 m | 0.83 |
Ko Lak | Water level | Hourly | 1 January 2016–31 December 2020 | 0.22 m | 0.80 |
Hua Hin | Water level | Hourly | 1 January 2016–31 December 2020 | 0.27 m | 0.85 |
GOT001 | Water level | 30 min | 1 January 2018–31 December 2020 | 0.30 m | 0.88 |
Salinity | 30 min | 26 January 2018–31 December 2020 | 1.75 psu | 0.48 | |
Water temperature | 30 min | 26 January 2018–31 December 2020 | 0.91 °C | 0.72 | |
Easting velocity (3 h filtered) | 30 min | 6 March 2020–31 December 2020 | 0.1 m/s | 0.21 | |
Northing velocity (3 h filtered) | 30 min | 6 March 2020–31 December 2020 | 0.06 m/s | 0.79 | |
Ko Munnai | Water level | 30 min | 6 October 2019–31 December 2020 | 0.25 m | 0.77 |
Water temperature | 30 min | 6 October 2019–31 December 2020 | 0.88 °C | 0.83 | |
Laem Sing | Water level | Hourly | 1 January 2016–31 December 2020 | 0.25 m | 0.73 |
Vung Tau | Water level | Hourly | 1 January 2016–24 August 2020 | 0.17 m | 0.96 |
References
- Jeftic, L.; Sheavly, S.B.; Adler, E.; Meith, N.; United Nations Environment Programme. Marine Litter: A Global Challenge; Regional Seas; United Nations Environment Programme: Nairobi, Kenya, 2009; pp. 13–17. [Google Scholar]
- Díaz-Torres, E.R.; Ortega-Ortiz, C.D.; Silva-Iñiguez, L.; Nene-Preciado, A.; Orozco, E.T. Floating Marine Debris in waters of the Mexican Central Pacific. Mar. Pollut. Bull. 2017, 115, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Compa, M.; March, D.; Deudero, S. Spatio-temporal monitoring of coastal floating marine debris in the Balearic Islands from sea-cleaning boats. Mar. Pollut. Bull. 2019, 141, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Leal Filho, W.; Hunt, J.; Kovaleva, M. Garbage Patches and Their Environmental Implications in a Plastisphere. J. Mar. Sci. Eng. 2021, 9, 1289. [Google Scholar] [CrossRef]
- Sheavly, S.B.; Register, K.M. Marine Debris & Plastics: Environmental Concerns, Sources, Impacts and Solutions. J. Polym. Environ. 2007, 15, 301–305. [Google Scholar] [CrossRef]
- Gall, S.C.; Thompson, R.C. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.; Law, K. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Marine pollution. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef]
- Schmidt, C.; Krauth, T.; Wagner, S. Export of Plastic Debris by Rivers into the Sea. Environ. Sci. Technol. 2017, 51, 12246–12253. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, C.; Fang, H.; Cai, W.; Li, D.; Li, X.; Yu, H. The abundance, composition and sources of marine debris in coastal seawaters or beaches around the northern South China Sea (China). Mar. Pollut. Bull. 2011, 62, 1998–2007. [Google Scholar] [CrossRef]
- Rech, S.; Macaya-Caquilpan, V.; Pantoja, J.F.; Rivadeneira, M.M.; Jofre Madariaga, D.; Thiel, M. Rivers as a source of marine litter—A study from the SE Pacific. Mar. Pollut. Bull. 2014, 82, 66–75. [Google Scholar] [CrossRef] [PubMed]
- van Calcar, C.J.; van Emmerik, T.H.M. Abundance of plastic debris across European and Asian rivers. Environ. Res. Lett. 2019, 14, 124051. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration Marine Debris Program. Report on Modeling Oceanic Transport of Floating Marine Debris; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2016. [Google Scholar]
- van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef]
- Haque, F.; Fan, C. Fate and Impacts of Microplastics in the Environment: Hydrosphere, Pedosphere, and Atmosphere. Environments 2023, 10, 70. [Google Scholar] [CrossRef]
- Srisiri, S.; Haetrakul, T.; Dunbar, S.G.; Chansue, N. Microplastic contamination in edible marine fishes from the upper Gulf of Thailand. Mar. Pollut. Bull. 2024, 198, 115785. [Google Scholar] [CrossRef]
- Mace, T.H. At-sea detection of marine debris: Overview of technologies, processes, issues, and options. Mar. Pollut. Bull. 2012, 65, 23–27. [Google Scholar] [CrossRef]
- Lippiatt, S.; Opfer, S.; Arthur, C. Marine Debris Monitoring and Assessment: Recommendations for Monitoring Debris Trends in the Marine Environment; NOAA Marine Debris Division: Silver Spring, MD, USA, 2013. [Google Scholar]
- Ryan, P.G.; Moore, C.J.; van Franeker, J.A.; Moloney, C.L. Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1999–2012. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Xu, X.; Zavala-Romero, O. Tracking Marine Litter With a Global Ocean Model: Where Does It Go? Where Does It Come From? Front. Mar. Sci. 2021, 8, 667591. [Google Scholar] [CrossRef]
- Lebreton, L.C.; Greer, S.D.; Borrero, J.C. Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull. 2012, 64, 653–661. [Google Scholar] [CrossRef]
- Carlson, D.F.; Suaria, G.; Aliani, S.; Fredj, E.; Fortibuoni, T.; Griffa, A.; Russo, A.; Melli, V. Combining Litter Observations with a Regional Ocean Model to Identify Sources and Sinks of Floating Debris in a Semi-enclosed Basin: The Adriatic Sea. Front. Mar. Sci. 2017, 4, 78. [Google Scholar] [CrossRef]
- Li, Y.; Wolanski, E.; Dai, Z.; Lambrechts, J.; Tang, C.; Zhang, H. Trapping of plastics in semi-enclosed seas: Insights from the Bohai Sea, China. Mar. Pollut. Bull. 2018, 137, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Buranapratheprat, A.; Bunpapong, M. A Two-Dimensional Hydrodynamic Model for the Gulf of Thailand. In Proceedings of the The IOC/WESTPAC Fourth International Scientific Symposium, Okinawa, Japan, 2–7 February 1998; pp. 469–478. [Google Scholar]
- Buranapratheprat, A.; Luadnakrob, P.; Yanagi, T.; Morimoto, A.; Qiao, F. The modification of water column conditions in the Gulf of Thailand by the influences of the South China Sea and monsoonal winds. Cont. Shelf Res. 2016, 118, 100–110. [Google Scholar] [CrossRef]
- Cherdsukjai, P.; Praisankul, S.; Thammavichan, J.; Lertkasetvittaya, N. Floating marine litter from river mouth in the Upper Gulf of Thailand. In Proceedings of the 5th Marine Science Conference, Bangkok, Thailand, 1–3 June 2016; pp. 443–451. [Google Scholar]
- Yaiprasert, C.; Jaroensutasinee, K.; Veruttipong, T. Floating Circle of Objects Simulation with the Princeton Ocean Model for the Gulf of Thailand. Walailak J. Sci. Technol. 2005, 2, 99–113. [Google Scholar]
- Phiphit, J.; Wangwongchai, A.; Humphries, U.W. Simulation of Marine Debris Path Using Mathematical Model in the Gulf of Thailand. Axioms 2022, 11, 571. [Google Scholar] [CrossRef]
- Vibhatabandhu, P.; Srithongouthai, S. Influence of seasonal variations on the distribution characteristics of microplastics in the surface water of the Inner Gulf of Thailand. Mar. Pollut. Bull. 2022, 180, 113747. [Google Scholar] [CrossRef]
- Nakano, H.; Alfonso, M.B.; Jandang, S.; Phinchan, N.; Chavanich, S.; Viyakarn, V.; Isobe, A. Influence of monsoon seasonality and tidal cycle on microplastics presence and distribution in the Upper Gulf of Thailand. Sci. Total Environ. 2024, 920, 170787. [Google Scholar] [CrossRef]
- Hu, K.; Ding, P.; Wang, Z.; Yang, S. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China. J. Mar. Syst. 2009, 77, 114–136. [Google Scholar] [CrossRef]
- Mendes, J.; Ruela, R.; Picado, A.; Pinheiro, J.P.; Ribeiro, A.S.; Pereira, H.; Dias, J.M. Modeling Dynamic Processes of Mondego Estuary and Óbidos Lagoon Using Delft3D. J. Mar. Sci. Eng. 2021, 9, 91. [Google Scholar] [CrossRef]
- Pokavanich, T.; Worrawatanathum, V.; Phattananuruch, K.; Koolkalya, S. Seasonal Dynamics and Three-Dimensional Hydrographic Features of the Eastern Gulf of Thailand: Insights from High-Resolution Modeling and Field Measurements. Water 2024, 16, 1962. [Google Scholar] [CrossRef]
- Alosairi, Y.; Al-Salem, S.M.; Al Ragum, A. Three-dimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/Persian Gulf. Mar. Pollut. Bull. 2020, 161, 111723. [Google Scholar] [CrossRef]
- Liao, Z.; Zou, Q.; Vinh, V.D.; Pan, Z.; Kaiser, M.J. Seasonal change in fate and transport of plastics from Red River to the coast of Vietnam. Mar. Pollut. Bull. 2024, 208, 116923. [Google Scholar] [CrossRef] [PubMed]
- Booncherm, C.; Vongpintu, V.; Nutpramoon, R. The characteristic of the sea surface residual flow and the circulation in the Gulf of Thailand from the long term collected data of the SEAWATCH Thailand program. In Proceedings of the 39th Kasetsart University Annual Conference, Bangkok, Thailand, 5–7 February 2001; pp. 315–325. [Google Scholar]
- Deltares. Delft3D-FLOW, User Manual; Deltares: Delft, The Netherlands, 2018; p. 672. [Google Scholar]
- Metzger, E.J.; Helber, R.W.; Hogan, P.J.; Posey, P.G.; Thoppil, P.G.; Townsend, T.L.; Wallcraft, A.J.; Smedstad, O.M.; Franklin, D.S.; Zamudio-Lopez, L.; et al. Global Ocean Forecast System 3.1 Validation Test; NRL/MR/7320—17-9722; Naval Research Laboratory, Oceanography Division, Stennis Space Center: Bay St. Louis, MS, USA, 2017. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Erofeeva, S.; Padman, L.; Howard, S. Tide Model Driver (TMD), version 2.5; Toolbox for Matlab. 2020. Available online: https://github.com/EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5 (accessed on 3 December 2020).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data 2020, 12, 2043–2060. [Google Scholar] [CrossRef]
- Leenawarat, D. The Investigation of the Residence Time of Water Mass in the Gulf of Thailand by Using a Hydrodynamic Model. Master’s Thesis, Burapha University, Chonburi, Thailand, 2018. [Google Scholar]
- Yanagi, T.; Takao, T. Seasonal variation of three-dimensional circulations in the Gulf of Thailand. La Mer 1998, 36, 43–55. [Google Scholar]
- Snidvongs, A.; Sojisuporn, P. Numerical simulations of the net current in the gulf of Thailand under different monsoon regimes. In Proceedings of the First Technical Seminar on Marine Fishery Resources Survey in the South China Sea, Area I: Gulf of Thailand and Peninsular Malaysia, Bangkok, Thailand, 24–26 November 1997; pp. 54–72. [Google Scholar]
- Anutaliya, A. Surface circulation in the Gulf of Thailand from remotely sensed observations: Seasonal and interannual timescales. Ocean. Sci. 2023, 19, 335–350. [Google Scholar] [CrossRef]
- Liubartseva, S.; Coppini, G.; Lecci, R.; Creti, S. Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Mar. Pollut. Bull. 2016, 103, 115–127. [Google Scholar] [CrossRef]
- Stanev, E.V.; Ricker, M. The Fate of Marine Litter in Semi-Enclosed Seas: A Case Study of the Black Sea. Front. Mar. Sci. 2019, 6, 660. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Hole, L.R.; Breivik, Ø.; Nguyen, T.B.; Pham, N.K. Marine Plastic Drift from the Mekong River to Southeast Asia. J. Mar. Sci. Eng. 2023, 11, 925. [Google Scholar] [CrossRef]
- Zhang, H. Transport of microplastics in coastal seas. Estuar. Coast. Shelf Sci. 2017, 199, 74–86. [Google Scholar] [CrossRef]
- Cai, C.; Zhu, L.; Hong, B. A review of methods for modeling microplastic transport in the marine environments. Mar. Pollut. Bull. 2023, 193, 115136. [Google Scholar] [CrossRef] [PubMed]
- Janakiram, R.; Keerthivasan, R.; Janani, R.; Ramasundaram, S.; Martin, M.V.; Venkatesan, R.; Ramana Murthy, M.V.; Sudhakar, T. Seasonal distribution of microplastics in surface waters of the Northern Indian Ocean. Mar. Pollut. Bull. 2023, 190, 114838. [Google Scholar] [CrossRef] [PubMed]
- Dobler, D.; Maes, C.; Martinez, E.; Rahmania, R.; Gautama, B.G.; Farhan, A.R.; Dounias, E. On the Fate of Floating Marine Debris Carried to the Sea through the Main Rivers of Indonesia. J. Mar. Sci. Eng. 2022, 10, 1009. [Google Scholar] [CrossRef]
- Veerasingam, S.; Al-Khayat, J.A.; Aboobacker, V.M.; Hamza, S.; Vethamony, P. Sources, spatial distribution and characteristics of marine litter along the west coast of Qatar. Mar. Pollut. Bull. 2020, 159, 111478. [Google Scholar] [CrossRef] [PubMed]
- Young, M.; Adams, N.J. Plastic debris and seabird presence in the Hauraki Gulf, New Zealand. N. Z. J. Mar. Freshw. Res. 2010, 44, 167–175. [Google Scholar] [CrossRef]
- Nakano, H.; Arakawa, H.; Tokai, T. Microplastics on the sea surface of the semi-closed Tokyo Bay. Mar. Pollut. Bull. 2021, 162, 111887. [Google Scholar] [CrossRef]
- Iskandar, M.R.; Surinati, D.; Cordova, M.R.; Siong, K. Pathways of floating marine debris in Jakarta Bay, Indonesia. Mar. Pollut. Bull. 2021, 169, 112511. [Google Scholar] [CrossRef]
- Chanpiwat, P.; Damrongsiri, S. From Sea Water to Salt Crystals: An Onsite Investigation of Microplastics in a Conventional Sea Salt Farming System. Environ. Geochem. Health 2024, 46, 300. [Google Scholar] [CrossRef]
River Names | Abbreviations | Locations |
---|---|---|
Tapee River | TP | Inside the GoT |
Mae Klong River | MK | Inside the GoT |
Tha Chin River | TC | Inside the GoT |
Chao Phraya River | CP | Inside the GoT |
Bang Pakong River | BP | Inside the GoT |
Prasae River | PS | Inside the GoT |
Cai Lon River | CL | Inside the GoT |
Kelantan River | KT | Outside the GoT |
Mekong River and other major rivers in the Mekong Delta | MKs | Outside the GoT |
Seasons\Proportions (%) | Sea Surface | Beached | Out of Domain |
---|---|---|---|
First inter-monsoon (April) | 19 | 56 | 25 |
Southwest monsoon (August) | 11 | 53 | 36 |
Second inter-monsoon (October) | 14 | 49 | 37 |
Northeast monsoon (December) | 26 | 51 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phattananuruch, K.; Pokavanich, T. Monsoon-Driven Dispersal of River-Sourced Floating Marine Debris in Tropical Semi-Enclosed Waters: A Case Study in the Gulf of Thailand. J. Mar. Sci. Eng. 2024, 12, 2258. https://doi.org/10.3390/jmse12122258
Phattananuruch K, Pokavanich T. Monsoon-Driven Dispersal of River-Sourced Floating Marine Debris in Tropical Semi-Enclosed Waters: A Case Study in the Gulf of Thailand. Journal of Marine Science and Engineering. 2024; 12(12):2258. https://doi.org/10.3390/jmse12122258
Chicago/Turabian StylePhattananuruch, Kittipong, and Tanuspong Pokavanich. 2024. "Monsoon-Driven Dispersal of River-Sourced Floating Marine Debris in Tropical Semi-Enclosed Waters: A Case Study in the Gulf of Thailand" Journal of Marine Science and Engineering 12, no. 12: 2258. https://doi.org/10.3390/jmse12122258
APA StylePhattananuruch, K., & Pokavanich, T. (2024). Monsoon-Driven Dispersal of River-Sourced Floating Marine Debris in Tropical Semi-Enclosed Waters: A Case Study in the Gulf of Thailand. Journal of Marine Science and Engineering, 12(12), 2258. https://doi.org/10.3390/jmse12122258