Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = early type—stars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4520 KiB  
Review
SN 2023ixf: The Closest Supernova of the Decade
by Wynn Jacobson-Galán
Universe 2025, 11(7), 231; https://doi.org/10.3390/universe11070231 - 15 Jul 2025
Viewed by 259
Abstract
Supernova 2023ixf occurred on 18 May 2023 in the nearby galaxy Messier 101 (D6.85 Mpc), making it the closest supernova in the last decade. Following its discovery, astronomers around the world rushed to observe the explosion across the electromagnetic spectrum [...] Read more.
Supernova 2023ixf occurred on 18 May 2023 in the nearby galaxy Messier 101 (D6.85 Mpc), making it the closest supernova in the last decade. Following its discovery, astronomers around the world rushed to observe the explosion across the electromagnetic spectrum in order to uncover its early-time properties. Based on multi-wavelength analysis during its first year after explosion, Supernova 2023ixf is a type II supernova that interacted with dense, confined circumstellar material in its local environment—this material being lost from its red supergiant progenitor in the final years before explosion. In this article, we will review the findings of >80 studies already published on this incredible event and explore how the synthesis of SN 2023ixf observations across the electromagnetic spectrum can be used to constrain type II supernova explosion physics in addition to the uncertain mass loss histories of red supergiant stars in their final years. Full article
(This article belongs to the Special Issue A Multiwavelength View of Supernovae)
Show Figures

Figure 1

11 pages, 682 KiB  
Article
A Spectroscopic and Photometric Study of MWC 342 and Its B[e] Phenomenon over the Last 40 Years
by Aigerim Zh. Akniyazova, Anatoly S. Miroshnichenko, Sergey V. Zharikov, Hans Van Winckel, Nadine Manset, Ashish Raj, Stephen Drew Chojnowski, Serik A. Khokhlov, Inna V. Reva, Raushan I. Kokumbaeva, Chingis T. Omarov, Konstantin N. Grankin, Aldiyar T. Agishev and Nadezhda L. Vaidman
Galaxies 2025, 13(3), 63; https://doi.org/10.3390/galaxies13030063 - 20 May 2025
Viewed by 844
Abstract
MWC 342 (V1972 Cyg) was discovered nearly 90 years ago as an early-type emission-line star. It was among the first hot stars whose strong infrared excess was detected in the early 1970s. Several mostly short-term photometric and spectroscopic studies resulted in contradictory conclusions [...] Read more.
MWC 342 (V1972 Cyg) was discovered nearly 90 years ago as an early-type emission-line star. It was among the first hot stars whose strong infrared excess was detected in the early 1970s. Several mostly short-term photometric and spectroscopic studies resulted in contradictory conclusions about the nature and evolutionary status of MWC 342. It has been classified as a pre-main-sequence Herbig Be star, an evolved suspected binary system, and a long-period variable star. Suggestions on the nature of the secondary component to this B0/B1 primary included a cool M-type giant and an X-ray source. We collected medium- and high-resolution optical spectra of MWC 342 taken in 1994–2024 as well as optical photometric data taken in 1986–2024. Analysis of these data shows strong variations in the object’s brightness and spectral line properties at various time scales, but no strictly periodic phenomena have been found. Inparticular, such a long-term dataset allowed us to reveal the optical brightness variations over a nearly 20-year-long quasi-period, as well as their anti-correlation with the Hα emission-line strength. Also, we did not confirm the presence of He ii emission lines and absorption lines of the star’s atmosphere that were suspected in previously published studies. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

11 pages, 887 KiB  
Article
Investigation of the Nature of the B[e] Star CI Cam in the Optical Range
by Elena A. Barsukova, Vitaly P. Goranskij, Aleksandr N. Burenkov and Ilya A. Yakunin
Galaxies 2025, 13(3), 61; https://doi.org/10.3390/galaxies13030061 - 19 May 2025
Viewed by 739
Abstract
The B[e] phenomenon is observed in a wide range of stars at various evolutionary stages. Its nature remains uncertain. The B[e] phenomenon is defined as the simultaneous presence of low-excitation forbidden line emission and strong infrared excess in the spectra of early-type stars. [...] Read more.
The B[e] phenomenon is observed in a wide range of stars at various evolutionary stages. Its nature remains uncertain. The B[e] phenomenon is defined as the simultaneous presence of low-excitation forbidden line emission and strong infrared excess in the spectra of early-type stars. Here, we present new spectral observations of a representative of this class: the star CI Cam. A monitoring campaign was carried out for the He II 4686 Å emission line, which serves as an indicator of binarity in this system. The aim was to detect variations in this line not only due to orbital motion but also those associated with the pulsations of the system’s primary component, the B[e] star. Two maxima in the equivalent width were detected over the pulsation period, during which the equivalent width increased by a factor of three. We refine the classification of CI Cam, assigning it to the FS CMa group of B[e] stars by all criteria, and we refer the secondary component of the system to a group of recently discovered “stripped” stars. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

8 pages, 350 KiB  
Article
The Effect of Viscosity on the Temperature of Ae Star Disks
by R. Anusha and T. A. A. Sigut
Galaxies 2025, 13(3), 54; https://doi.org/10.3390/galaxies13030054 - 3 May 2025
Viewed by 654
Abstract
This study explores the impact of viscous heating on decretion disks around Classical Ae (CAe) stars, with a focus on modeling the disk’s thermal structure. While photoionization is the dominant heating mechanism, viscous dissipation can play an important role in shaping the disk [...] Read more.
This study explores the impact of viscous heating on decretion disks around Classical Ae (CAe) stars, with a focus on modeling the disk’s thermal structure. While photoionization is the dominant heating mechanism, viscous dissipation can play an important role in shaping the disk temperature, particularly for cooler CAe subtypes. Our models incorporate viscosity-driven heating and predict that shear heating has a negligible effect for early A-type stars (A0–A1), but it becomes increasingly significant for later spectral types, especially as the viscosity parameter (α) increases. This heating also influences the strength of Hα emission. Furthermore, our models predict a sharp decline in the number of emission-line stars beyond spectral type A2, a trend observed in CAe populations. However, for sufficiently high α values (≥0.3), a higher fraction of emission-line objects is expected even among later subtypes, such as A5, despite the lack of well-characterized CAe stars observed beyond the spectral type A4. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

11 pages, 2062 KiB  
Article
IRAS 17449+2320: A Possible Binary System with the B[e] Phenomenon and a Strong Magnetic Field
by Sergey Zharikov, Anatoly Miroshnichenko, Inna Reva, Raushan Kokumbaeva, Chingis Omarov, Steve Danford, Alicia Aarnio, Nadine Manset, Ashish Raj, S. Drew Chojnowski and Joseph Daglen
Galaxies 2025, 13(2), 32; https://doi.org/10.3390/galaxies13020032 - 31 Mar 2025
Cited by 1 | Viewed by 506
Abstract
We report the recent results of a long-term spectroscopic and photometric monitoring of IRAS 17449+2320, a member of the least studied group of objects with the B[e] phenomenon called FS CMa-type objects. The main hypothesis for explaining the strong emission-line spectra and infrared [...] Read more.
We report the recent results of a long-term spectroscopic and photometric monitoring of IRAS 17449+2320, a member of the least studied group of objects with the B[e] phenomenon called FS CMa-type objects. The main hypothesis for explaining the strong emission-line spectra and infrared excesses of these objects assumes an ongoing or past mass transfer between the components in binary systems. The object is the only star with a gaseous and dusty envelope, where a strong and variable magnetic field (5.5–7.2 kG) was found through the splitting of some spectral lines. Additionally, we discovered the regular appearance of a red-shifted absorption component in spectral lines of neutral hydrogen, helium, and oxygen as well as one of ionized silicon with a period of 36.13 ± 0.20 days. We show that the magnetic field strength also followed this period. The process was accompanied by increasing emission component strengths for the hydrogen lines as well as the helium and metallic absorption lines. We refined the fundamental parameters of the optical counterpart of IRAS 17449+2320 (Teff=9800±300 K, log L/L=1.86±0.06, vsini=9±2 km s−1) and concluded that the star was slightly metal-deficient and viewed nearly pole-on. No signs of a secondary component were found. Possible interpretations of the observed phenomena are suggested, and some earlier findings about the object’s nature are revised. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

11 pages, 520 KiB  
Article
The Photometric Variability and Spectrum of the Hot Post-AGB Star IRAS 21546+4721
by Natalia Ikonnikova, Marina Burlak and Alexander Dodin
Galaxies 2025, 13(2), 31; https://doi.org/10.3390/galaxies13020031 - 31 Mar 2025
Cited by 1 | Viewed by 484
Abstract
We present the results of photometric and spectroscopic observations of a poorly studied B-type supergiant with infrared excess, the hot post-AGB star IRAS 21546+4721. Based on our photometric observations in the UBVRCIC bands, we detected rapid, night-to-night, [...] Read more.
We present the results of photometric and spectroscopic observations of a poorly studied B-type supergiant with infrared excess, the hot post-AGB star IRAS 21546+4721. Based on our photometric observations in the UBVRCIC bands, we detected rapid, night-to-night, non-periodic brightness variations in the star with peak-to-peak amplitudes up to 0.m3 in the V band, as well as color–color and color–brightness correlations. Based on its variability characteristics, IRAS 21546+4721 appears similar to other hot post-AGB stars. Possible causes of the photometric variability are discussed. Additionally, we acquired low-resolution spectra in a wavelength range from 3500 to 7500 Å. The spectrum contains absorption lines typical of an early B-type star, along with a set of emission lines of H I, He I, [O I], [O II], [N II], [S II], and C II originating from an ionized circumstellar envelope. An analysis of the emission spectrum allowed us to estimate the parameters of the gas envelope (Ne∼ 104 cm−3, Te∼ 10,000 K) and the star’s temperature (∼26,500 K). The radial velocity measured from the emission lines was Vr=141±7 km s−1. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

19 pages, 5901 KiB  
Article
Scaling Relations of Early-Type Galaxies in MOND
by Robin Eappen and Pavel Kroupa
Galaxies 2025, 13(2), 22; https://doi.org/10.3390/galaxies13020022 - 14 Mar 2025
Viewed by 832
Abstract
We investigate the shape and morphology of early-type galaxies (ETGs) within the framework of Modified Newtonian Dynamics (MOND). Building on our previous studies, which demonstrated that the monolithic collapse of primordial gas clouds in MOND produces galaxies (noted throughout as ‘model relics’ in [...] Read more.
We investigate the shape and morphology of early-type galaxies (ETGs) within the framework of Modified Newtonian Dynamics (MOND). Building on our previous studies, which demonstrated that the monolithic collapse of primordial gas clouds in MOND produces galaxies (noted throughout as ‘model relics’ in the context of this work) with short star formation timescales and a downsizing effect as observationally found, we present new analyses on the resulting structural and morphological properties of these systems. Initially, the monolithically formed galaxies display disk-like structures. In this study, we further analyze the transformations that occur when these galaxies merge, observing that the resulting systems (noted throughout as ‘merged galaxies’ in the context of this work) take on elliptical-like shapes, with the (Vrot/Vσ)–ellipticity relations closely matching observational data across various projections. We extend this analysis by examining the isophotal shapes and rotational parameter (λR) of both individual relics and merged galaxies. The results indicate that ETGs may originate in pairs in dense environments, with mergers subsequently producing elliptical structures that align well with the observed kinematic and morphological characteristics. Finally, we compare both the model relics and merged galaxies with the fundamental plane and Kormendy relation of observed ETGs, finding close agreement. Together, these findings suggest that MOND provides a viable physical framework for the rapid formation and morphological evolution of ETGs. Full article
(This article belongs to the Special Issue Alternative Interpretations of Observed Galactic Behaviors)
Show Figures

Figure 1

10 pages, 551 KiB  
Article
AS 314: A Massive Dusty Hypergiant or a Low-Mass Post-Asymptotic Giant Branch Object?
by Aigerim Bakhytkyzy, Anatoly S. Miroshnichenko, Valentina G. Klochkova, Vladimir E. Panchuk, Sergey V. Zharikov, Laurent Mahy, Hans Van Winckel, Aldiyar T. Agishev and Serik A. Khokhlov
Galaxies 2025, 13(2), 17; https://doi.org/10.3390/galaxies13020017 - 28 Feb 2025
Viewed by 718
Abstract
AS 314 (V452 Sct) is a poorly studied early-type emission-line star, which exhibits an infrared excess at wavelengths longer than 10 μm. Its earlier studies have been limited to small amounts of observational data and led to controversial conclusions about its fundamental [...] Read more.
AS 314 (V452 Sct) is a poorly studied early-type emission-line star, which exhibits an infrared excess at wavelengths longer than 10 μm. Its earlier studies have been limited to small amounts of observational data and led to controversial conclusions about its fundamental parameters and evolutionary status. Comparison of high-resolution spectra of AS 314 taken over 20 years ago with those of Luminous Blue Variables and other high-luminosity objects suggested its observed properties can be explained by a strong stellar wind from a distant (D∼10 kpc) massive star, possibly in a binary system. However, a recent assessment of its low-resolution spectrum along with a new distance from a Gaia parallax (∼1.6 kpc) resulted in an alternative hypothesis that AS 314 is a low-mass post-asymptotic giant branch (post-AGB) star. The latter hypothesis ignored the high-resolution data, which gave rise to the former explanation. We collected over 30 mostly high-resolution spectra taken in 1997–2023, supplemented them with results of long-term photometric surveys, compared the spectra and the spectral energy distribution with those of post-AGB objects and B/A supergiants, and concluded that the observed properties AS 314 are more consistent with those of the latter. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

7 pages, 215 KiB  
Review
Going Forward to Unveil the Nature of γ Cas Analogs
by Yaël Nazé
Galaxies 2025, 13(1), 8; https://doi.org/10.3390/galaxies13010008 - 24 Jan 2025
Viewed by 679
Abstract
The star γ Cas and its analogs are a subset of Be stars that display particularly hard and bright thermal X-ray emission, which has no equivalent among other massive stars. Here, I will review their characteristics and present the latest results of our [...] Read more.
The star γ Cas and its analogs are a subset of Be stars that display particularly hard and bright thermal X-ray emission, which has no equivalent among other massive stars. Here, I will review their characteristics and present the latest results of our optical and X-ray monitoring campaigns, including an assessment of the links between the circumstellar environment and the high-energy properties. Possible scenarios to explain this phenomenon will be presented in light of these observational results. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
17 pages, 5124 KiB  
Article
Pulsation in Hot Main-Sequence Stars: Comparison of Observations with Models
by Luis A. Balona
Universe 2024, 10(12), 437; https://doi.org/10.3390/universe10120437 - 25 Nov 2024
Cited by 1 | Viewed by 1034
Abstract
The locations of hot pulsating variables in the H–R diagram are found using the effective temperatures derived from spectroscopic analysis and luminosities from Gaia parallaxes. Frequency peaks extracted from TESS photometry were used to compare with model predictions. A large number of stars [...] Read more.
The locations of hot pulsating variables in the H–R diagram are found using the effective temperatures derived from spectroscopic analysis and luminosities from Gaia parallaxes. Frequency peaks extracted from TESS photometry were used to compare with model predictions. A large number of stars with pulsation frequencies similar to δ Scuti variables were found between the predicted δ Scuti and β Cephei instability regions, contrary to the models. These Maia variables cannot be explained by rapid rotation. There is a serious mismatch between the observed and predicted frequencies for stars within the known δ Scuti instability strip. In δ Scuti and Maia stars, the frequency at the maximum amplitude as a function of the effective temperature was found to have a surprisingly well-defined upper envelope. The majority of γ Doradus stars were found within the δ Scuti instability strip. This is difficult to understand unless pulsational driving is non-linear. Non-linearity may also explain the huge variety in frequency patterns and the presence of low frequencies in hot δ Scuti stars. γ Doradus stars were found all along the main sequence and into the B-star region, where they merged with SPB variables. There seemed to be no distinct instability regions in the H–R diagram. It was concluded that current models do not offer a satisfactory description of observations. Full article
Show Figures

Figure 1

15 pages, 4676 KiB  
Article
dmrt1 Is Responsible for Androgen-Induced Masculinization in Nile Tilapia
by Shengfei Dai, Mei Li, Jie Yuan, Xueyan Wei, Eryan Ma, Deshou Wang and Minghui Li
Genes 2024, 15(9), 1238; https://doi.org/10.3390/genes15091238 - 23 Sep 2024
Cited by 2 | Viewed by 1486
Abstract
17α-Methyltestosterone (MT) is a widely used androgen for all-male fish production in aquaculture. However, the molecular mechanism underlying MT-induced masculinization remains unclear. In this study, we aim to identify the key gene responsible for MT-induced masculinization using the Nile tilapia (Oreochromis niloticus [...] Read more.
17α-Methyltestosterone (MT) is a widely used androgen for all-male fish production in aquaculture. However, the molecular mechanism underlying MT-induced masculinization remains unclear. In this study, we aim to identify the key gene responsible for MT-induced masculinization using the Nile tilapia (Oreochromis niloticus) amhy, dmrt1, and gsdf mutants, which exhibit male-to-female sex reversal. Nile tilapia fry from these three mutant lines were treated with 50 μg/g MT from 5 to 30 days after hatching (dah). The results showed that amhy and gsdf mutants, but not dmrt1 mutants, were masculinized by the MT treatment. Gonadal transcriptome analysis revealed that genes involved in steroidogenesis and germ cell development in MT-treated dmrt1 mutants exhibited a similar expression pattern to that of the wild type (WT) XX. In addition, the dmrt1 mutants cannot be masculinized by co-treatment with MT and the aromatase inhibitor fadrozole. The MT treatment completely blocked early steroidogenic enzyme (Star2, Cyp17a2, and Cyp19a1a) expression independent of amhy, gsdf, and dmrt1. A luciferase analysis showed that MT directly suppressed basal and Sf-1-activated cyp19a1a promoter activity through ara and arb in cultured HEK293 cells. Furthermore, MT treatment inhibited germ cell proliferation in amhy and gsdf mutants but not in dmrt1 mutants. Consistently, dmrt1 expression was induced in MT-treated WT XX, -amhy, and -gsdf mutants. Taken together, these results suggest that dmrt1 is indispensable for MT-induced masculinization in Nile tilapia and that MT functions by inhibiting early steroid synthesis and activating dmrt1 to promote testis development. Full article
(This article belongs to the Special Issue Genetics and Genomics in Aquatic Animals)
Show Figures

Figure 1

18 pages, 661 KiB  
Article
Steps toward Unraveling the Structure and Formation of Five Polar Ring Galaxies
by Kyle E. Lackey, Varsha P. Kulkarni and Monique C. Aller
Galaxies 2024, 12(4), 42; https://doi.org/10.3390/galaxies12040042 - 31 Jul 2024
Viewed by 1436
Abstract
Polar ring galaxies (PRGs) are unusual relative to common galaxies in that they consist of a central host galaxy—usually a gas-poor, early-type S0 or elliptical galaxy—surrounded by a ring of gas, dust and stars that orbit perpendicular to the major axis of the [...] Read more.
Polar ring galaxies (PRGs) are unusual relative to common galaxies in that they consist of a central host galaxy—usually a gas-poor, early-type S0 or elliptical galaxy—surrounded by a ring of gas, dust and stars that orbit perpendicular to the major axis of the host. Despite the general quiescence of early-type galaxies (ETGs) and the rings’ lack of spiral density waves, PRGs are the sites of significant star formation relative to typical ETGs. To study these structures and improve PRG statistics, we obtained and analyzed infrared (IR) images from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope, and combined these IR data with archival optical data from both the Sloan Digital Sky Survey and the Hubble Space Telescope, and with optical imaging data we obtained with the Gemini South Observatory. We performed structural decomposition and photometry for five PRGs, and fit the spectral energy distributions (SEDs) of each PRG component to estimate the stellar masses, ages, and other physical properties of the PRG components. We show that PRC B-12 and PRC B-22, both lacking previous analysis, obey trends commonly observed among PRGs. We find that the stellar masses of polar rings can be a significant fraction of the host galaxy’s stellar masses (∼10–30%). We note, however, that our estimates of stellar mass and other physical properties are the results of SED fitting and not direct measurements. Our findings corroborate both previous theoretical expectations and measurements of existing samples of PRGs and indicate the utility of SED fitting in the context of these unusual galaxies, which historically have lacked multi-wavelength photometry of their stellar components. Finally, we outline future improvements needed for more definitive studies of PRGs and their formation scenarios. Full article
Show Figures

Figure 1

23 pages, 34923 KiB  
Review
Molecular Gas Kinematics in Local Early-Type Galaxies with ALMA
by Ilaria Ruffa and Timothy A. Davis
Galaxies 2024, 12(4), 36; https://doi.org/10.3390/galaxies12040036 - 2 Jul 2024
Cited by 5 | Viewed by 2352
Abstract
Local early-type galaxies (ETGs) are mostly populated by old stars, with little or no recent star formation activity. For this reason, they have historically been believed to be essentially devoid of cold gas, which is the fuel for the formation of new stars. [...] Read more.
Local early-type galaxies (ETGs) are mostly populated by old stars, with little or no recent star formation activity. For this reason, they have historically been believed to be essentially devoid of cold gas, which is the fuel for the formation of new stars. Over the past two decades, however, increasingly-sensitive instrumentation observing the sky at (sub-)millimetre wavelengths has revealed the presence of significant amounts of cold molecular gas in the hearts of nearby ETGs. The unprecedented capabilities offered by the Atacama Large Millimeter/submillimeter Array (ALMA), in particular, have allowed us to obtain snapshots of the central regions of these ETGs with unprecedented detail, mapping this gas with higher sensitivity and resolution than ever before possible. Studies of the kinematics of the observed cold gas reservoirs are crucial for galaxy formation and evolution theories, providing, e.g., constraints on the fundamental properties and fuelling/feedback processes of super-massive black holes (SMBHs) at the centre of these galaxies. In this brief review, we summarise what the first 10 years of ALMA observations have taught us about the distribution and kinematics of the cold molecular gas component in nearby ellipticals and lenticulars. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

17 pages, 2043 KiB  
Article
Infrared Spectroscopy of Be Stars: Influence of the Envelope Parameters on Brackett-Series Behaviour
by Yanina Roxana Cochetti, Anahi Granada, María Laura Arias, Andrea Fabiana Torres and Catalina Arcos
Galaxies 2023, 11(4), 90; https://doi.org/10.3390/galaxies11040090 - 17 Aug 2023
Cited by 3 | Viewed by 1729
Abstract
The IR spectra of Be stars display numerous hydrogen recombination lines, constituting a great resource for obtaining information on the physical and dynamic structures of different regions within the circumstellar envelope. Nevertheless, this spectral region has not been analysed in depth, and there [...] Read more.
The IR spectra of Be stars display numerous hydrogen recombination lines, constituting a great resource for obtaining information on the physical and dynamic structures of different regions within the circumstellar envelope. Nevertheless, this spectral region has not been analysed in depth, and there is a lack of synthetic spectra with which to compare observations. Therefore, we computed synthetic spectra with the HDUST code for different disc parameters. Here, we present our results on the spectral region that includes lines of the Brackett series. We discuss the dependence of the line series strengths on several parameters that describe the structure of the disc. We also compared model line profiles, fluxes, and EWs with observational data for two Be stars (MX Pup and π Aqr). Even though the synthetic spectra adequately fit our observations of both stars and allow us to constrain the parameters of the disc, there is a discrepancy with the observed data in the EW and flux measurements, especially in the case of MX Pup. It is possible that by including Brackett lines of higher terms or adding the analysis of other series, we may be able to better constrain the parameters of the observed disc. Full article
(This article belongs to the Special Issue Theory and Observation of Active B-type Stars)
Show Figures

Figure 1

14 pages, 37354 KiB  
Article
Large-Scale Ejecta of Z CMa—Proper Motion Study and New Features Discovered
by Tiina Liimets, Michaela Kraus, Lydia Cidale, Sergey Karpov and Anthony Marston
Galaxies 2023, 11(3), 64; https://doi.org/10.3390/galaxies11030064 - 4 May 2023
Cited by 1 | Viewed by 1806
Abstract
Z Canis Majoris is a fascinating early-type binary with a Herbig Be primary and a FU Orionis-type secondary. Both of the stars exhibit sub-arcsecond jet-like ejecta. In addition, the primary is associated with the extended jet as well as with the large-scale outflow. [...] Read more.
Z Canis Majoris is a fascinating early-type binary with a Herbig Be primary and a FU Orionis-type secondary. Both of the stars exhibit sub-arcsecond jet-like ejecta. In addition, the primary is associated with the extended jet as well as with the large-scale outflow. In this study, we investigate further the nature of the large-scale outflow, which has not been studied since its discovery almost three and a half decades ago. We present proper motion measurements of individual features of the large-scale outflow and determine their kinematical ages. Furthermore, with our newly acquired deep images, we have discovered additional faint arc-shaped features that can be associated with the central binary. Full article
(This article belongs to the Special Issue Theory and Observation of Active B-type Stars)
Show Figures

Figure 1

Back to TopTop