Molecular Gas Kinematics in Local Early-Type Galaxies with ALMA
Abstract
:1. Introduction
2. Molecular Gas in Early-Type Galaxies
2.1. Cold Gas Content and Distribution
2.2. Molecular Gas Kinematics
2.2.1. Normal ETGs
2.2.2. Jetted AGN Hosts and Jet–ISM Interactions
2.3. Gas Disc Stability: Star Formation and Black Hole Accretion
3. Measuring SMBH Masses from CO Kinematics
4. Summary and Future Perspectives
- Molecular gas content and distribution. Molecular gas reservoirs with masses ≳107 M⊙ are found in ≈25% of local ETGs. In the majority of normal ETGs and jetted AGN hosts (including some BCGs), these significant amounts of cold gas have been observed to be distributed in smooth, thin, disc-like structures, extending on scales from a few hundred parsecs to a few kpc around the nuclear galaxy regions. In ≈20% of the cases, the gas presents circumnuclear holes, with sizes ranging from a few tens to a few hundreds of parsecs. The origin of these nuclear gas deficiencies is still debated (they may be due to either radiative dissociation, high gas excitation conditions, or dynamical or mechanical effects). In the majority of BCGs, the same large amounts of molecular gas are typically detected in the form of kpc-scale filamentary or blob-like structures, which are consistent with expectations from cooling flows.
- Molecular gas kinematics. In normal ETGs, the molecular gas is typically found to be regularly rotating and dynamically cold (with average 10–20 km s−1). Departure from symmetry (such as inclination or velocity warps) and/or secondary kinematic components (such as inflow/outflow motions) are rare. This is generally interpreted as an indication of gas that is both dynamically and morphologically settled within the potential well of the host galaxy. In jetted AGN hosts, while the bulk of the molecular gas is still consistent with being settled, various levels of local perturbations in the gas physics (i.e., high excitation conditions), morphology (e.g., warps, asymmetries, and/or disruptions) and kinematics (e.g., inflow/outflow motions) are ubiquitously observed. In general, this indicates that, when the central SMBH is caught in an active phase of its life, the gas is not fully relaxed into the host galaxy potential. In a few cases, by carrying out a detailed multi-wavelength analysis (including ALMA observations of multiple molecular gas tracers), it has been clearly shown that such alterations have to be ascribed to a jet–ISM interaction on a (sub-)kpc scale. Clear evidence of cold gas inflows onto galactic centres have been also found in the BCGs with gas distributed in filamentary or blob-like structures, where the gas overall tends to show complex kinematics (with little or no evidence of regular rotation).
- Gas disc stability. Even when hosting large amounts of cold molecular gas in their central regions, local ETGs remain overall “red and dead”. AGN feedback (in either radiative or kinetic form) can clearly play a role in maintaining them in this state. However, both simulations and high-resolution (i.e., a few tens of pc) ALMA observations have now shown that it is likely the strong shear rate induced by their deep potentials the dominant mechanism that stabilises the gas against gravitational collapse (thus hampering the formation of new stars). The fact that the molecular gas detected on the (sub-)kpc scale of local ETGs is overall found to be stable against gravitational fragmentation may also explain the low (or very low) rates of matter accretion onto the central SMBHs of some jetted AGN hosts (such as LERGs).
- CO dynamical SMBH masses. Before the advent of ALMA, dynamical estimates of the SMBH mass relied exclusively on studies of the stellar, ionised gas, and megamaser kinematics within the SMBH gravitational sphere of influence (). Over the past decade, thanks to the ability of the most extended ALMA configurations to penetrate deep within the SOI, a new method for SMBH mass measurements has been developed and successfully applied to a varied range of galaxy types: probing the Keplerian motion of the molecular gas within the SOI using CO emission lines. Thanks to their molecular gas properties, ETGs are ideal targets for these types of studies. This is allowing us to put solid constraints on the high-mass ends of SMBH–host galaxy correlations (such as the ), and will ultimately help us make further progress in our understanding of the SMBH–host galaxy interplay (so-called co-evolution).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Barkhouser, R.; Berman, E.; Bastian, S. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579–1587. [Google Scholar] [CrossRef]
- Baldry, I.K.; Glazebrook, K.; Brinkmann, J.; Ivezić, Ž.; Lupton, R.H.; Nichol, R.C.; Szalay, A.S. Quantifying the Bimodal Color-Magnitude Distribution of Galaxies. Astrophys. J. 2004, 600, 681–694. [Google Scholar] [CrossRef]
- Schiminovich, D.; Wyder, T.K.; Martin, D.C.; Johnson, B.D.; Salim, S.; Seibert, M.; Treyer, M.A.; Budavári, T.; Hoopes, C.; Zamojski, M.; et al. The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution on and off of a Star-forming Sequence. ApJS 2007, 173, 315–341. [Google Scholar] [CrossRef]
- Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies. Astrophys. J. 2018, 857, 22. [Google Scholar] [CrossRef]
- Pantoni, L.; Lapi, A.; Massardi, M.; Goswami, S.; Danese, L. New Analytic Solutions for Galaxy Evolution: Gas, Stars, Metals, and Dust in Local ETGs and Their High-z Star-forming Progenitors. Astrophys. J. 2019, 880, 129. [Google Scholar] [CrossRef]
- Giulietti, M.; Lapi, A.; Massardi, M.; Behiri, M.; Torsello, M.; D’Amato, Q.; Ronconi, T.; Perrotta, F.; Bressan, A. ALMA Resolves the First Strongly Lensed Optical/Near-IR-dark Galaxy. Astrophys. J. 2023, 943, 151. [Google Scholar] [CrossRef]
- Salim, S.; Rich, R.M.; Charlot, S.; Brinchmann, J.; Johnson, B.D.; Schiminovich, D.; Seibert, M.; Mallery, R.; Heckman, T.M.; Forster, K.; et al. UV Star Formation Rates in the Local Universe. Astrophys. J. Suppl. Ser. 2007, 173, 267–292. [Google Scholar] [CrossRef]
- Faber, S.M.; Willmer, C.N.A.; Wolf, C.; Koo, D.C.; Weiner, B.J.; Newman, J.A.; Im, M.; Coil, A.L.; Conroy, C.; Cooper, M.C.; et al. Galaxy Luminosity Functions to z1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation. Astrophys. J. 2007, 665, 265–294. [Google Scholar] [CrossRef]
- Lilly, S.J.; Carollo, C.M.; Pipino, A.; Renzini, A.; Peng, Y. Gas Regulation of Galaxies: The Evolution of the Cosmic Specific Star Formation Rate, the Metallicity-Mass-Star-formation Rate Relation, and the Stellar Content of Halos. Astrophys. J. 2013, 772, 119. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Hardcastle, M. Interpreting radiative efficiency in radio-loud AGNs. Nat. Astr. 2018, 2, 273–274. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Marziani, P.; Chiosi, C. Past, Present and Future of the Scaling Relations of Galaxies and Active Galactic Nuclei. Front. Astron. Space Sci. 2021, 8, 157. [Google Scholar] [CrossRef]
- Knapp, G.R.; Rupen, M.P. Molecular Gas in Elliptical Galaxies: CO Observations of an IRAS Flux-limited Sample. Astrophys. J. 1996, 460, 271. [Google Scholar] [CrossRef]
- Welch, G.A.; Sage, L.J. The Cool Interstellar Medium in S0 Galaxies. I. A Survey of Molecular Gas. Astrophys. J. 2003, 584, 260–277. [Google Scholar] [CrossRef]
- Combes, F.; Young, L.M.; Bureau, M. Molecular gas and star formation in the SAURON early-type galaxies. Mon. Not. R. Astron. Soc. 2007, 377, 1795–1807. [Google Scholar] [CrossRef]
- Sage, L.J.; Welch, G.A.; Young, L.M. The Cool ISM in Elliptical Galaxies. I. A Survey of Molecular Gas. Astrophys. J. 2007, 657, 232–240. [Google Scholar] [CrossRef]
- Young, L.M.; Bureau, M.; Cappellari, M. Structure and Kinematics of Molecular Disks in Fast-Rotator Early-Type Galaxies. Astrophys. J. 2008, 676, 317–334. [Google Scholar] [CrossRef]
- Welch, G.A.; Sage, L.J.; Young, L.M. The Cool Interstellar Medium in Elliptical Galaxies. II. Gas Content in the Volume-limited Sample and Results from the Combined Elliptical and Lenticular Surveys. Astrophys. J. 2010, 725, 100–114. [Google Scholar] [CrossRef]
- Young, L.M.; Bureau, M.; Davis, T.A.; Combes, F.; McDermid, R.M.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Cappellari, M.; et al. The ATLAS3D project—IV. The molecular gas content of early-type galaxies. Mon. Not. R. Astron. Soc. 2011, 414, 940–967. [Google Scholar] [CrossRef]
- Crocker, A.F.; Bureau, M.; Young, L.M.; Combes, F. Molecular gas and star formation in early-type galaxies. Mon. Not. R. Astron. Soc. 2011, 410, 1197–1222. [Google Scholar] [CrossRef]
- Alatalo, K.; Davis, T.A.; Bureau, M.; Young, L.M.; Blitz, L.; Crocker, A.F.; Bayet, E.; Bois, M.; Bournaud, F.; Cappellari, M.; et al. The ATLAS3D project—XVIII. CARMA CO imaging survey of early-type galaxies. Mon. Not. R. Astron. Soc. 2013, 432, 1796–1844. [Google Scholar] [CrossRef]
- Davis, T.A.; Greene, J.E.; Ma, C.P.; Blakeslee, J.P.; Dawson, J.M.; Pandya, V.; Veale, M.; Zabel, N. The MASSIVE survey—XI. What drives the molecular gas properties of early-type galaxies. Mon. Not. R. Astron. Soc. 2019, 486, 1404–1423. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.; Oonk, J.B.R.; Frieswijk, W.; Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 2015, 580, A1. [Google Scholar] [CrossRef]
- Tremblay, G.R.; Oonk, J.B.R.; Combes, F.; Salomé, P.; O’Dea, C.P.; Baum, S.A.; Voit, G.M.; Donahue, M.; McNamara, B.R.; Davis, T.A.; et al. Cold, clumpy accretion onto an active supermassive black hole. Nature 2016, 534, 218–221. [Google Scholar] [CrossRef]
- Davis, T.A.; Bureau, M.; Onishi, K.; Cappellari, M.; Iguchi, S.; Sarzi, M. WISDOM Project—II. Molecular gas measurement of the supermassive black hole mass in NGC 4697. Mon. Not. R. Astron. Soc. 2017, 468, 4675–4690. [Google Scholar] [CrossRef]
- Boizelle, B.D.; Barth, A.J.; Darling, J.; Baker, A.J.; Buote, D.A.; Ho, L.C.; Walsh, J.L. ALMA Observations of Circumnuclear Disks in Early-type Galaxies: 12CO(2-1) and Continuum Properties. Astrophys. J. 2017, 845, 170. [Google Scholar] [CrossRef]
- Maccagni, F.M.; Morganti, R.; Oosterloo, T.A.; Oonk, J.B.R.; Emonts, B.H.C. ALMA observations of AGN fuelling. The case of PKS B1718-649. Astron. Astrophys. 2018, 614, A42. [Google Scholar] [CrossRef]
- Harrison, C.M.; Costa, T.; Tadhunter, C.N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G. AGN outflows and feedback twenty years on. Nat. Astr. 2018, 2, 198–205. [Google Scholar] [CrossRef]
- Smith, M.D.; Bureau, M.; Davis, T.A.; Cappellari, M.; Liu, L.; North, E.V.; Onishi, K.; Iguchi, S.; Sarzi, M. WISDOM project—IV. A molecular gas dynamical measurement of the supermassive black hole mass in NGC 524. Mon. Not. R. Astron. Soc. 2019, 485, 4359–4374. [Google Scholar] [CrossRef]
- North, E.V.; Davis, T.A.; Bureau, M.; Cappellari, M.; Iguchi, S.; Liu, L.; Onishi, K.; Sarzi, M.; Smith, M.D.; Williams, T.G. WISDOM project—V. Resolving molecular gas in Keplerian rotation around the supermassive black hole in NGC 0383. Mon. Not. R. Astron. Soc. 2019, 490, 319–330. [Google Scholar] [CrossRef]
- Sansom, A.E.; Glass, D.H.W.; Bendo, G.J.; Davis, T.A.; Rowlands, K.; Bourne, N.; Dunne, L.; Eales, S.; Kaviraj, S.; Popescu, C.; et al. ALMA observations of massive molecular gas reservoirs in dusty early-type galaxies. Mon. Not. R. Astron. Soc. 2019, 482, 4617–4629. [Google Scholar] [CrossRef]
- Olivares, V.; Salome, P.; Combes, F.; Hamer, S.; Guillard, P.; Lehnert, M.D.; Polles, F.L.; Beckmann, R.S.; Dubois, Y.; Donahue, M.; et al. Ubiquitous cold and massive filaments in cool core clusters. Astron. Astrophys. 2019, 631, A22. [Google Scholar] [CrossRef]
- Ruffa, I.; Prandoni, I.; Laing, R.A.; Paladino, R.; Parma, P.; de Ruiter, H.; Mignano, A.; Davis, T.A.; Bureau, M.; Warren, J. The AGN fuelling/feedback cycle in nearby radio galaxies I. ALMA observations and early results. Mon. Not. R. Astron. Soc. 2019, 484, 4239–4259. [Google Scholar] [CrossRef]
- Ruffa, I.; Davis, T.A.; Prandoni, I.; Laing, R.A.; Paladino, R.; Parma, P.; de Ruiter, H.; Casasola, V.; Bureau, M.; Warren, J. The AGN fuelling/feedback cycle in nearby radio galaxies—II. Kinematics of the molecular gas. Mon. Not. R. Astron. Soc. 2019, 489, 3739–3757. [Google Scholar] [CrossRef]
- Rose, T.; Edge, A.C.; Combes, F.; Gaspari, M.; Hamer, S.; Nesvadba, N.; Peck, A.B.; Sarazin, C.; Tremblay, G.R.; Baum, S.A.; et al. Constraining cold accretion on to supermassive black holes: Molecular gas in the cores of eight brightest cluster galaxies revealed by joint CO and CN absorption. Mon. Not. R. Astron. Soc. 2019, 489, 349–365. [Google Scholar] [CrossRef]
- Morokuma-Matsui, K.; Serra, P.; Maccagni, F.M.; For, B.Q.; Wang, J.; Bekki, K.; Morokuma, T.; Egusa, F.; Espada, D.; Miura, R.E.; et al. Complex distribution and velocity field of molecular gas in NGC 1316 as revealed by the Morita Array of ALMA. Publ. Astron. Soc. Jpn. 2019, 71, 85. [Google Scholar] [CrossRef]
- North, E.V.; Davis, T.A.; Bureau, M.; Gaspari, M.; Cappellari, M.; Iguchi, S.; Liu, L.; Onishi, K.; Sarzi, M.; Smith, M.D.; et al. WISDOM project—VIII. Multiscale feedback cycles in the brightest cluster galaxy NGC 0708. Mon. Not. R. Astron. Soc. 2021, 503, 5179–5192. [Google Scholar] [CrossRef]
- Smith, M.D.; Bureau, M.; Davis, T.A.; Cappellari, M.; Liu, L.; Onishi, K.; Iguchi, S.; North, E.V.; Sarzi, M. WISDOM project—VI. Exploring the relation between supermassive black hole mass and galaxy rotation with molecular gas. Mon. Not. R. Astron. Soc. 2021, 500, 1933–1952. [Google Scholar] [CrossRef]
- Boizelle, B.D.; Walsh, J.L.; Barth, A.J.; Buote, D.A.; Baker, A.J.; Darling, J.; Ho, L.C.; Cohn, J.; Kabasares, K.M. Black Hole Mass Measurements of Radio Galaxies NGC 315 and NGC 4261 Using ALMA CO Observations. Astrophys. J. 2021, 908, 19. [Google Scholar] [CrossRef]
- Young, L.M.; Meier, D.S.; Bureau, M.; Crocker, A.; Davis, T.A.; Topal, S. The Evolution of NGC 7465 as Revealed by Its Molecular Gas Properties. Astrophys. J. 2021, 909, 98. [Google Scholar] [CrossRef]
- Ruffa, I.; Prandoni, I.; Davis, T.A.; Laing, R.A.; Paladino, R.; Casasola, V.; Parma, P.; Bureau, M. The AGN fuelling/feedback cycle in nearby radio galaxies—IV. Molecular gas conditions and jet-ISM interaction in NGC 3100. Mon. Not. R. Astron. Soc. 2022, 510, 4485–4503. [Google Scholar] [CrossRef]
- Young, L.M.; Meier, D.S.; Crocker, A.; Davis, T.A.; Topal, S. Down but Not Out: Properties of the Molecular Gas in the Stripped Virgo Cluster Early-type Galaxy NGC 4526. Astrophys. J. 2022, 933, 90. [Google Scholar] [CrossRef]
- Glass, D.H.W.; Sansom, A.E.; Davis, T.A.; Popescu, C.C. Cool interstellar medium as an evolutionary tracer in ALMA-observed local dusty early-type galaxies. Mon. Not. R. Astron. Soc. 2022, 517, 5524–5540. [Google Scholar] [CrossRef]
- Temi, P.; Gaspari, M.; Brighenti, F.; Werner, N.; Grossova, R.; Gitti, M.; Sun, M.; Amblard, A.; Simionescu, A. Probing Multiphase Gas in Local Massive Elliptical Galaxies via Multiwavelength Observations. Astrophys. J. 2022, 928, 150. [Google Scholar] [CrossRef]
- Torresi, E.; Balmaverde, B.; Liuzzo, E.; Giovannini, G.; Paladino, R.; Baldi, R.D.; Boccardi, B.; Capetti, A.; Ciprini, S.; Dadina, M.; et al. Exploring the radio morphology-accretion mode link in radio galaxies at high energies. Mem. Soc. Astron. Ital. 2022, 93, 81. [Google Scholar] [CrossRef]
- Ruffa, I.; Davis, T.A.; Cappellari, M.; Bureau, M.; Elford, J.; Iguchi, S.; Lelli, F.; Liang, F.H.; Liu, L.; Lu, A.; et al. WISDOM project—XIV. SMBH mass in the early-type galaxies NGC 0612, NGC 1574, and NGC 4261 from CO dynamical modelling. Mon. Not. R. Astron. Soc. 2023, 522, 6170–6195. [Google Scholar] [CrossRef]
- Rose, T.; McNamara, B.R.; Combes, F.; Edge, A.C.; Fabian, A.C.; Gaspari, M.; Russell, H.; Salomé, P.; Tremblay, G.; Ferland, G. Does absorption against AGN reveal supermassive black hole accretion? Mon. Not. R. Astron. Soc. 2023, 518, 878–892. [Google Scholar] [CrossRef]
- Audibert, A.; Ramos Almeida, C.; García-Burillo, S.; Combes, F.; Bischetti, M.; Meenakshi, M.; Mukherjee, D.; Bicknell, G.; Wagner, A.Y. Jet-induced molecular gas excitation and turbulence in the Teacup. Astron. Astrophys. 2023, 671, L12. [Google Scholar] [CrossRef]
- Maccagni, F.M.; Ruffa, I.; Loni, A.; Prandoni, I.; Ragusa, R.; Kleiner, D.; Serra, P.; Iodice, E.; Spavone, M. The AGN fuelling/feedback cycle in nearby radio galaxies. V. The cold atomic gas of NGC 3100 and its group. Astron. Astrophys. 2023, 675, A59. [Google Scholar] [CrossRef]
- Williams, T.G.; Bureau, M.; Davis, T.A.; Cappellari, M.; Choi, W.; Elford, J.S.; Iguchi, S.; Gensior, J.; Liang, F.H.; Lu, A.; et al. WISDOM Project—XVII. Beam-by-beam properties of the molecular gas in early-type galaxies. Mon. Not. R. Astron. Soc. 2023, 525, 4270–4298. [Google Scholar] [CrossRef]
- Elford, J.S.; Davis, T.A.; Ruffa, I.; Bureau, M.; Cappellari, M.; Gensior, J.; Iguchi, S.; Liang, F.H.; Liu, L.; Lu, A.; et al. WISDOM Project—XVI. The link between circumnuclear molecular gas reservoirs and active galactic nucleus fuelling. Mon. Not. R. Astron. Soc. 2024, 528, 319–336. [Google Scholar] [CrossRef]
- Dominiak, P.; Bureau, M.; Davis, T.A.; Ma, C.P.; Greene, J.E.; Gu, M. The MASSIVE survey—XIX. Molecular gas measurements of the supermassive black hole masses in the elliptical galaxies NGC 1684 and NGC 0997. Mon. Not. R. Astron. Soc. 2024, 529, 1597–1616. [Google Scholar] [CrossRef]
- Dominiak, P.; Cappellari, M.; Bureau, M.; Davis, T.A.; Sarzi, M.; Ruffa, I.; Iguchi, S.; Williams, T.G.; Zhang, H. WISDOM Project—XXIV. Cross-checking supermassive black hole mass estimates from ALMA CO gas kinematics and SINFONI stellar kinematics in the galaxy NGC 4751. arXiv 2024, arXiv:2404.11260. [Google Scholar] [CrossRef]
- Rose, T.; McNamara, B.R.; Combes, F.; Edge, A.C.; McDonald, M.; O’Sullivan, E.; Russell, H.; Fabian, A.C.; Ferland, G.; Salome, P.; et al. Two distinct molecular cloud populations detected in massive galaxies. arXiv 2024, arXiv:2403.03974. [Google Scholar] [CrossRef]
- Jungwiert, B.; Combes, F.; Palouš, J. Continuous stellar mass-loss in N-body models of galaxies. Astron. Astrophys. 2001, 376, 85–97. [Google Scholar] [CrossRef]
- Storchi-Bergmann, T.; Schnorr-Müller, A. Observational constraints on the feeding of supermassive black holes. Nat. Astr. 2019, 3, 48–61. [Google Scholar] [CrossRef]
- Padovani, P. The faint radio sky: Radio astronomy becomes mainstream. Astron. Astrophys. Rev. 2016, 24, 13. [Google Scholar] [CrossRef]
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Krips, M.; Viti, S.; Alonso-Herrero, A.; Hunt, L.K.; Schinnerer, E.; Baker, A.J.; et al. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron. Astrophys. 2014, 567, A125. [Google Scholar] [CrossRef]
- Russell, H.R.; McNamara, B.R.; Fabian, A.C.; Nulsen, P.E.J.; Edge, A.C.; Combes, F.; Murray, N.W.; Parrish, I.J.; Salomé, P.; Sanders, J.S.; et al. ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191. Mon. Not. R. Astron. Soc. 2016, 458, 3134–3149. [Google Scholar] [CrossRef]
- Oosterloo, T.; Raymond Oonk, J.B.; Morganti, R.; Combes, F.; Dasyra, K.; Salomé, P.; Vlahakis, N.; Tadhunter, C. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063. Astron. Astrophys. 2017, 608, A38. [Google Scholar] [CrossRef]
- Ruffa, I.; Laing, R.A.; Prandoni, I.; Paladino, R.; Parma, P.; Davis, T.A.; Bureau, M. The AGN fuelling/feedback cycle in nearby radio galaxies—III. 3D relative orientations of radio jets and CO discs and their interaction. Mon. Not. R. Astron. Soc. 2020, 499, 5719–5731. [Google Scholar] [CrossRef]
- Dotti, M.; Buscicchio, R.; Bollati, F.; Decarli, R.; Del Pozzo, W.; Franchini, A. Partial alignment between jets and megamasers: Coherent or selective accretion? arXiv 2024, arXiv:2403.18002. [Google Scholar] [CrossRef]
- Best, P.N.; Heckman, T.M. On the fundamental dichotomy in the local radio-AGN population: Accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 2012, 421, 1569–1582. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Evans, D.A.; Croston, J.H. Hot and cold gas accretion and feedback in radio-loud active galaxies. Mon. Not. R. Astron. Soc. 2007, 376, 1849–1856. [Google Scholar] [CrossRef]
- Bolatto, A.D.; Wolfire, M.; Leroy, A.K. The CO-to-H2 Conversion Factor. Annu. Rev. Astron. Astrophys. 2013, 51, 207–268. [Google Scholar] [CrossRef]
- Zovaro, H.R.M.; Sharp, R.; Nesvadba, N.P.H.; Bicknell, G.V.; Mukherjee, D.; Wagner, A.Y.; Groves, B.; Krishna, S. Jets blowing bubbles in the young radio galaxy 4C 31.04. Mon. Not. R. Astron. Soc. 2019, 484, 3393–3409. [Google Scholar] [CrossRef]
- Carilli, C.L.; Walter, F. Cool Gas in High-Redshift Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 105–161. [Google Scholar] [CrossRef]
- Topal, S.; Bureau, M.; Davis, T.A.; Krips, M.; Young, L.M.; Crocker, A.F. Molecular gas kinematics and line diagnostics in early-type galaxies: NGC 4710 and NGC 5866. Mon. Not. R. Astron. Soc. 2016, 463, 4121–4152. [Google Scholar] [CrossRef]
- Bigiel, F.; Leroy, A.K.; Jiménez-Donaire, M.J.; Pety, J.; Usero, A.; Cormier, D.; Bolatto, A.; Garcia-Burillo, S.; Colombo, D.; González-García, M.; et al. The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-disk Mapping of M51. Astrophys. J. Lett. 2016, 822, L26. [Google Scholar] [CrossRef]
- Ocaña Flaquer, B.; Leon, S.; Combes, F.; Lim, J. TANGO I: Interstellar medium in nearby radio galaxies. Molecular gas. Astron. Astrophys. 2010, 518, A9. [Google Scholar] [CrossRef]
- Van de Voort, F.; Davis, T.A.; Matsushita, S.; Rowlands, K.; Shabala, S.S.; Allison, J.R.; Ting, Y.S.; Sansom, A.E.; van der Werf, P.P. An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers. Mon. Not. R. Astron. Soc. 2018, 476, 1232. [Google Scholar] [CrossRef]
- Davis, T.A.; Gensior, J.; Bureau, M.; Cappellari, M.; Choi, W.; Elford, J.S.; Kruijssen, J.M.D.; Lelli, F.; Liang, F.H.; Liu, L.; et al. WISDOM Project—X. The morphology of the molecular ISM in galaxy centres and its dependence on galaxy structure. Mon. Not. R. Astron. Soc. 2022, 512, 1522–1540. [Google Scholar] [CrossRef]
- Davis, T.A.; Alatalo, K.; Bureau, M.; Cappellari, M.; Scott, N.; Young, L.M.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; et al. The ATLAS3D Project—XIV. The extent and kinematics of the molecular gas in early-type galaxies. Mon. Not. R. Astron. Soc. 2013, 429, 534–555. [Google Scholar] [CrossRef]
- Combes, F.; García-Burillo, S.; Audibert, A.; Hunt, L.; Eckart, A.; Aalto, S.; Casasola, V.; Boone, F.; Krips, M.; Viti, S.; et al. ALMA observations of molecular tori around massive black holes. Astron. Astrophys. 2019, 623, A79. [Google Scholar] [CrossRef]
- García-Burillo, S.; Combes, F.; Ramos Almeida, C.; Usero, A.; Alonso-Herrero, A.; Hunt, L.K.; Rouan, D.; Aalto, S.; Querejeta, M.; Viti, S.; et al. ALMA images the many faces of the NGC 1068 torus and its surroundings. Astron. Astrophys. 2019, 632, A61. [Google Scholar] [CrossRef]
- Imanishi, M.; Nakanishi, K. ALMA Observations of Nearby Luminous Infrared Galaxies with Various AGN Energetic Contributions Using Dense Gas Tracers. Astron. J. 2014, 148, 9. [Google Scholar] [CrossRef]
- Imanishi, M.; Nakanishi, K.; Izumi, T.; Wada, K. ALMA Reveals an Inhomogeneous Compact Rotating Dense Molecular Torus at the NGC 1068 Nucleus. Astrophys. J. Lett. 2018, 853, L25. [Google Scholar] [CrossRef]
- García-Burillo, S.; Alonso-Herrero, A.; Ramos Almeida, C.; González-Martín, O.; Combes, F.; Usero, A.; Hönig, S.; Querejeta, M.; Hicks, E.K.S.; Hunt, L.K.; et al. The Galaxy Activity, Torus, and Outflow Survey (GATOS). I. ALMA images of dusty molecular tori in Seyfert galaxies. Astron. Astrophys. 2021, 652, A98. [Google Scholar] [CrossRef]
- Harrison, C.M.; Ramos Almeida, C. Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation. Galaxies 2024, 12, 17. [Google Scholar] [CrossRef]
- Combes, F. Dynamical Evolution: Spirals and Bars. In Proceedings of the Galaxy Disks and Disk Galaxies, Rome, Italy, 12–16 June 2000; Astronomical Society of the Pacific Conference Series; Funes, J.G., Corsini, E.M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2001; Volume 230, pp. 213–220. [Google Scholar]
- Combes, F.; García-Burillo, S.; Casasola, V.; Hunt, L.; Krips, M.; Baker, A.J.; Boone, F.; Eckart, A.; Marquez, I.; Neri, R.; et al. ALMA observations of feeding and feedback in nearby Seyfert galaxies: An AGN-driven outflow in NGC 1433. Astron. Astrophys. 2013, 558, A124. [Google Scholar] [CrossRef]
- David, L.P.; Lim, J.; Forman, W.; Vrtilek, J.; Combes, F.; Salome, P.; Edge, A.; Hamer, S.; Jones, C.; Sun, M.; et al. Molecular Gas in the X-ray Bright Group NGC 5044 as Revealed by ALMA. Astrophys. J. 2014, 792, 94. [Google Scholar] [CrossRef]
- Werner, N.; Oonk, J.B.R.; Sun, M.; Nulsen, P.E.J.; Allen, S.W.; Canning, R.E.A.; Simionescu, A.; Hoffer, A.; Connor, T.; Donahue, M.; et al. The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback. Mon. Not. R. Astron. Soc. 2014, 439, 2291–2306. [Google Scholar] [CrossRef]
- Temi, P.; Amblard, A.; Gitti, M.; Brighenti, F.; Gaspari, M.; Mathews, W.G.; David, L. ALMA Observations of Molecular Clouds in Three Group-centered Elliptical Galaxies: NGC 5846, NGC 4636, and NGC 5044. Astrophys. J. 2018, 858, 17. [Google Scholar] [CrossRef]
- Tremblay, G.R.; Combes, F.; Oonk, J.B.R.; Russell, H.R.; McDonald, M.A.; Gaspari, M.; Husemann, B.; Nulsen, P.E.J.; McNamara, B.R.; Hamer, S.L.; et al. A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole. Astrophys. J. 2018, 865, 13. [Google Scholar] [CrossRef]
- Nagai, H.; Onishi, K.; Kawakatu, N.; Fujita, Y.; Kino, M.; Fukazawa, Y.; Lim, J.; Forman, W.; Vrtilek, J.; Nakanishi, K.; et al. The ALMA Discovery of the Rotating Disk and Fast Outflow of Cold Molecular Gas in NGC 1275. Astrophys. J. 2019, 883, 193. [Google Scholar] [CrossRef]
- Gaspari, M.; Ruszkowski, M.; Oh, S.P. Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 2013, 432, 3401–3422. [Google Scholar] [CrossRef]
- King, A.; Nixon, C. AGN flickering and chaotic accretion. Mon. Not. R. Astron. Soc. 2015, 453, L46–L47. [Google Scholar] [CrossRef]
- Gaspari, M.; Brighenti, F.; Temi, P. Chaotic cold accretion on to black holes in rotating atmospheres. Astron. Astrophys. 2015, 579, A62. [Google Scholar] [CrossRef]
- Gaspari, M.; Temi, P.; Brighenti, F. Raining on black holes and massive galaxies: The top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 2017, 466, 677–704. [Google Scholar] [CrossRef]
- Babyk, I.V.; McNamara, B.R.; Tamhane, P.D.; Nulsen, P.E.J.; Russell, H.R.; Edge, A.C. Origins of Molecular Clouds in Early-type Galaxies. Astrophys. J. 2019, 887, 149. [Google Scholar] [CrossRef]
- Di Teodoro, E.M.; Fraternali, F. 3D BAROLO: A new 3D algorithm to derive rotation curves of galaxies. Mon. Not. R. Astron. Soc. 2015, 451, 3021–3033. [Google Scholar] [CrossRef]
- Krajnović, D.; Cappellari, M.; de Zeeuw, P.T.; Copin, Y. Kinemetry: A generalization of photometry to the higher moments of the line-of-sight velocity distribution. Mon. Not. R. Astron. Soc. 2006, 366, 787–802. [Google Scholar] [CrossRef]
- Boizelle, B.D.; Barth, A.J.; Walsh, J.L.; Buote, D.A.; Baker, A.J.; Darling, J.; Ho, L.C. A Precision Measurement of the Mass of the Black Hole in NGC 3258 from High-resolution ALMA Observations of Its Circumnuclear Disk. Astrophys. J. 2019, 881, 10. [Google Scholar] [CrossRef]
- Kabasares, K.M.; Barth, A.J.; Buote, D.A.; Boizelle, B.D.; Walsh, J.L.; Baker, A.J.; Darling, J.; Ho, L.C.; Cohn, J. Black Hole Mass Measurements of Early-type Galaxies NGC 1380 and NGC 6861 through ALMA and HST Observations and Gas-dynamical Modeling. Astrophys. J. 2022, 934, 162. [Google Scholar] [CrossRef]
- Kabasares, K.M.; Cohn, J.H.; Barth, A.J.; Boizelle, B.D.; Davidson, J.; Sy, J.M.; Flores-Velázquez, J.; Delgado Andrade, S.C.; Buote, D.A.; Walsh, J.L.; et al. Gas-dynamical Mass Measurements of the Supermassive Black Holes in the Early-Type Galaxies NGC 4786 and NGC 5193 from ALMA and HST Observations. arXiv 2024, arXiv:2403.00181. [Google Scholar] [CrossRef]
- Cappellari, M.; Emsellem, E.; Krajnović, D.; McDermid, R.M.; Scott, N.; Verdoes Kleijn, G.A.; Young, L.M.; Alatalo, K.; Bacon, R.; Blitz, L.; et al. The ATLAS3D project—I. A volume-limited sample of 260 nearby early-type galaxies: Science goals and selection criteria. Mon. Not. R. Astron. Soc. 2011, 413, 813–836. [Google Scholar] [CrossRef]
- Davis, T.A.; Bureau, M.; Onishi, K.; van de Voort, F.; Cappellari, M.; Iguchi, S.; Liu, L.; North, E.V.; Sarzi, M.; Smith, M.D. WISDOM Project—III. Molecular gas measurement of the supermassive black hole mass in the barred lenticular galaxy NGC4429. Mon. Not. R. Astron. Soc. 2018, 473, 3818–3834. [Google Scholar] [CrossRef]
- Wisnioski, E.; Förster Schreiber, N.M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Wilman, D.; Genzel, R.; Bender, R.; Davies, R.; Fossati, M.; et al. The KMOS3D Survey: Design, First Results, and the Evolution of Galaxy Kinematics from 0.7 <= z <= 2.7. Astrophys. J. 2015, 799, 209. [Google Scholar] [CrossRef]
- Dasyra, K.M.; Combes, F.; Oosterloo, T.; Oonk, J.B.R.; Morganti, R.; Salomé, P.; Vlahakis, N. ALMA reveals optically thin, highly excited CO gas in the jet-driven winds of the galaxy IC 5063. Astron. Astrophys. 2016, 595, L7. [Google Scholar] [CrossRef]
- Papachristou, M.; Dasyra, K.M.; Fernández-Ontiveros, J.A.; Audibert, A.; Ruffa, I.; Combes, F.; Polkas, M.; Gkogkou, A. A plausible link between dynamically unsettled molecular gas and the radio jet in NGC 6328. Astron. Astrophys. 2023, 679, A115. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. N. J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V.; Umemura, M. Driving Outflows with Relativistic Jets and the Dependence of Active Galactic Nucleus Feedback Efficiency on Interstellar Medium Inhomogeneity. Astrophys. J. 2012, 757, 136. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V.; Umemura, M.; Sutherland, R.S.; Silk, J. Galaxy-scale AGN feedback—Theory. Astron. Nachrichten 2016, 337, 167. [Google Scholar] [CrossRef]
- Mukherjee, D.; Wagner, A.Y.; Bicknell, G.V.; Morganti, R.; Oosterloo, T.; Nesvadba, N.; Sutherland, R.S. The jet-ISM interactions in IC 5063. Mon. Not. R. Astron. Soc. 2018, 476, 80–95. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback—III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Cielo, S.; Bieri, R.; Volonteri, M.; Wagner, A.Y.; Dubois, Y. AGN feedback compared: Jets versus radiation. Mon. Not. R. Astron. Soc. 2018, 477, 1336–1355. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y. Resolved simulations of jet–ISM interaction: Implications for gas dynamics and star formation. Astron. Nachrichten 2021, 342, 1140–1145. [Google Scholar] [CrossRef]
- Dasyra, K.M.; Bostrom, A.C.; Combes, F.; Vlahakis, N. A Radio Jet Drives a Molecular and Atomic Gas Outflow in Multiple Regions within One Square Kiloparsec of the Nucleus of the nearby Galaxy IC5063. Astrophys. J. 2015, 815, 34. [Google Scholar] [CrossRef]
- Murthy, S.; Morganti, R.; Oosterloo, T.; Schulz, R.; Mukherjee, D.; Wagner, A.Y.; Bicknell, G.; Prandoni, I.; Shulevski, A.a. Feedback from low-luminosity radio galaxies: B2 0258+35. Astron. Astrophys. 2019, 629, A58. [Google Scholar] [CrossRef]
- Alatalo, K.; Blitz, L.; Young, L.M.; Davis, T.A.; Bureau, M.; Lopez, L.A.; Cappellari, M.; Scott, N.; Shapiro, K.L.; Crocker, A.F.; et al. Discovery of an Active Galactic Nucleus Driven Molecular Outflow in the Local Early-type Galaxy NGC 1266. Astrophys. J. 2011, 735, 88. [Google Scholar] [CrossRef]
- Nyland, K.; Alatalo, K.; Wrobel, J.M.; Young, L.M.; Morganti, R.; Davis, T.A.; de Zeeuw, P.T.; Deustua, S.; Bureau, M. Detection of a High Brightness Temperature Radio Core in the Active-galactic-nucleus-driven Molecular Outflow Candidate NGC 1266. Astrophys. J. 2013, 779, 173. [Google Scholar] [CrossRef]
- Murthy, S.; Morganti, R.; Wagner, A.Y.; Oosterloo, T.; Guillard, P.; Mukherjee, D.; Bicknell, G. Cold gas removal from the centre of a galaxy by a low-luminosity jet. Nature Astr. 2022, 6, 488–495. [Google Scholar] [CrossRef]
- Papachristou, M.; Dasyra, K.M.; Fernández-Ontiveros, J.A.; Audibert, A.; Ruffa, I.; Combes, F. CO kinematics unveil outflows plausibly driven by a young jet in the gigahertz peaked radio core of NGC 6328. Astron. Nachrichten 2021, 342, 1160–1165. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.A.; Oonk, J.B.R.; Frieswijk, W.; Tadhunter, C.N. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063. In Proceedings of the Revolution in Astronomy with ALMA: The Third Year, Tokyo, Japan, 8–11 December 2014; Astronomical Society of the Pacific Conference Series; Iono, D., Tatematsu, K., Wootten, A., Testi, L., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2015; Volume 499, p. 125. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Sutherland, R.; Wagner, A. Relativistic jet feedback in high-redshift galaxies—I. Dynamics. Mon. Not. R. Astron. Soc. 2016, 461, 967–983. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.; Tadhunter, C.N. Taking snapshots of the jet-ISM interplay with ALMA. In Proceedings of the Galaxy Evolution and Feedback across Different Environments, Bento Gonçalves, Brazil, 2–6 March 2020; Storchi Bergmann, T., Forman, W., Overzier, R., Riffel, R., Eds.; Cambridge University Press: Cambridge, UK, 2021; Volume 359, pp. 243–248. [Google Scholar] [CrossRef]
- Oosterloo, T.; Morganti, R.; Murthy, S. Closing the feedback-feeding loop of the radio galaxy 3C 84. Nature Astr. 2024, 8, 256–262. [Google Scholar] [CrossRef]
- Young, L.M.; Scott, N.; Serra, P.; Alatalo, K.; Bayet, E.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Crocker, A.F.; et al. The ATLAS3D project—XXVII. Cold gas and the colours and ages of early-type galaxies. Mon. Not. R. Astron. Soc. 2014, 444, 3408–3426. [Google Scholar] [CrossRef]
- Davis, T.A. A figure of merit for black hole mass measurements with molecular gas. Mon. Not. R. Astron. Soc. 2014, 443, 911–918. [Google Scholar] [CrossRef]
- Combes, F. AGN feedback and its quenching efficiency. Front. Astron. Space Sci. 2017, 4, 10. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.; Tadhunter, C.N. Taking snapshots of the jet-ISM interplay with ALMA. arXiv 2020, arXiv:2005.04765. [Google Scholar] [CrossRef]
- Choi, E.; Ostriker, J.P.; Naab, T.; Oser, L.; Moster, B.P. The impact of mechanical AGN feedback on the formation of massive early-type galaxies. Mon. Not. R. Astron. Soc. 2015, 449, 4105–4116. [Google Scholar] [CrossRef]
- Martig, M.; Crocker, A.F.; Bournaud, F.; Emsellem, E.; Gabor, J.M.; Alatalo, K.; Blitz, L.; Bois, M.; Bureau, M.; Cappellari, M.; et al. The ATLAS3D project—XXII. Low-efficiency star formation in early-type galaxies: Hydrodynamic models and observations. Mon. Not. R. Astron. Soc. 2013, 432, 1914–1927. [Google Scholar] [CrossRef]
- Davis, T.A.; Young, L.M.; Crocker, A.F.; Bureau, M.; Blitz, L.; Alatalo, K.; Emsellem, E.; Naab, T.; Bayet, E.; Bois, M.; et al. The ATLAS3D Project—XXVIII. Dynamically driven star formation suppression in early-type galaxies. Mon. Not. R. Astron. Soc. 2014, 444, 3427–3445. [Google Scholar] [CrossRef]
- Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 1964, 139, 1217–1238. [Google Scholar] [CrossRef]
- Romeo, A.B.; Mogotsi, K.M. What drives gravitational instability in nearby star-forming spirals? The impact of CO and H I velocity dispersions. Mon. Not. R. Astron. Soc. 2017, 469, 286–294. [Google Scholar] [CrossRef]
- Li, Y.; Mac Low, M.M.; Klessen, R.S. Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse. Astrophys. J. 2005, 626, 823–843. [Google Scholar] [CrossRef]
- Wada, K.; Habe, A. Rapid gas supply to a nuclear region by self-gravitational instability in a weak barred potential. Mon. Not. R. Astron. Soc. 1992, 258, 82–94. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. Astron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef]
- Läsker, R.; Ferrarese, L.; van de Ven, G. Supermassive Black Holes and Their Host Galaxies. I. Bulge Luminosities from Dedicated Near-infrared Data. Astrophys. J. 2014, 780, 69. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. Lett. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; Kormendy, J.; et al. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. Lett. 2000, 539, L13–L16. [Google Scholar] [CrossRef]
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef]
- McConnell, N.J.; Ma, C.P. Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties. Astrophys. J. 2013, 764, 184. [Google Scholar] [CrossRef]
- van den Bosch, R.C.E. Unification of the fundamental plane and Super Massive Black Hole Masses. Astrophys. J. 2016, 831, 134. [Google Scholar] [CrossRef]
- Cappellari, M.; Verolme, E.K.; van der Marel, R.P.; Verdoes Kleijn, G.A.; Illingworth, G.D.; Franx, M.; Carollo, C.M.; de Zeeuw, P.T. The Counterrotating Core and the Black Hole Mass of IC 1459. Astrophys. J. 2002, 578, 787–805. [Google Scholar] [CrossRef]
- Krajnović, D.; McDermid, R.M.; Cappellari, M.; Davies, R.L. Determination of masses of the central black holes in NGC 524 and 2549 using laser guide star adaptive optics. Mon. Not. R. Astron. Soc. 2009, 399, 1839–1857. [Google Scholar] [CrossRef]
- Ferrarese, L.; Ford, H.C.; Jaffe, W. Evidence for a Massive Black Hole in the Active Galaxy NGC 4261 from Hubble Space Telescope Images and Spectra. Astrophys. J. 1996, 470, 444. [Google Scholar] [CrossRef]
- Sarzi, M.; Rix, H.W.; Shields, J.C.; Rudnick, G.; Ho, L.C.; McIntosh, D.H.; Filippenko, A.V.; Sargent, W.L.W. Supermassive Black Holes in Bulges. Astrophys. J. 2001, 550, 65–74. [Google Scholar] [CrossRef]
- Dalla Bontà, E.; Ferrarese, L.; Corsini, E.M.; Miralda-Escudé, J.; Coccato, L.; Sarzi, M.; Pizzella, A.; Beifiori, A. The High-Mass End of the Black Hole Mass Function: Mass Estimates in Brightest Cluster Galaxies. Astrophys. J. 2009, 690, 537–559. [Google Scholar] [CrossRef]
- Walsh, J.L.; Barth, A.J.; Ho, L.C.; Sarzi, M. The M87 Black Hole Mass from Gas-dynamical Models of Space Telescope Imaging Spectrograph Observations. Astrophys. J. 2013, 770, 86. [Google Scholar] [CrossRef]
- Miyoshi, M.; Moran, J.; Herrnstein, J.; Greenhill, L.; Nakai, N.; Diamond, P.; Inoue, M. Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258. Nature 1995, 373, 127–129. [Google Scholar] [CrossRef]
- Greene, J.E.; Peng, C.Y.; Kim, M.; Kuo, C.Y.; Braatz, J.A.; Impellizzeri, C.M.V.; Condon, J.J.; Lo, K.Y.; Henkel, C.; Reid, M.J. Precise Black Hole Masses from Megamaser Disks: Black Hole-Bulge Relations at Low Mass. Astrophys. J. 2010, 721, 26–45. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Braatz, J.A.; Condon, J.J.; Impellizzeri, C.M.V.; Lo, K.Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M.J.; Greene, J.E. The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks. Astrophys. J. 2011, 727, 20. [Google Scholar] [CrossRef]
- Davis, T.A.; Bureau, M.; Cappellari, M.; Sarzi, M.; Blitz, L. A black-hole mass measurement from molecular gas kinematics in NGC4526. Nature 2013, 494, 328–330. [Google Scholar] [CrossRef]
- Barth, A.J.; Boizelle, B.D.; Darling, J.; Baker, A.J.; Buote, D.A.; Ho, L.C.; Walsh, J.L. Measurement of the Black Hole Mass in NGC 1332 from ALMA Observations at 0.044 arcsecond Resolution. Astrophys. J. Lett. 2016, 822, L28. [Google Scholar] [CrossRef]
- Onishi, K.; Iguchi, S.; Davis, T.A.; Bureau, M.; Cappellari, M.; Sarzi, M.; Blitz, L. WISDOM project—I. Black hole mass measurement using molecular gas kinematics in NGC 3665. Mon. Not. R. Astron. Soc. 2017, 468, 4663–4674. [Google Scholar] [CrossRef]
- Smith, M.D.; Bureau, M.; Davis, T.A.; Cappellari, M.; Liu, L.; Onishi, K.; Iguchi, S.; North, E.V.; Sarzi, M.; Williams, T.G. WISDOM project—VII. Molecular gas measurement of the supermassive black hole mass in the elliptical galaxy NGC 7052. Mon. Not. R. Astron. Soc. 2021, 503, 5984–5996. [Google Scholar] [CrossRef]
- Cohn, J.H.; Walsh, J.L.; Boizelle, B.D.; Barth, A.J.; Gebhardt, K.; Gültekin, K.; Yıldırım, A.; Buote, D.A.; Darling, J.; Baker, A.J.; et al. An ALMA Gas-dynamical Mass Measurement of the Supermassive Black Hole in the Local Compact Galaxy UGC 2698. Astrophys. J. 2021, 919, 77. [Google Scholar] [CrossRef]
- Zhang, H.; Bureau, M.; Smith, M.D.; Cappellari, M.; Davis, T.A.; Dominiak, P.; Elford, J.S.; Liang, F.H.; Ruffa, I.; Williams, T.G. WISDOM Project—XIX. Figures of merit for supermassive black hole mass measurements using molecular gas and/or megamaser kinematics. Mon. Not. R. Astron. Soc. 2024, 530, 3240–3251. [Google Scholar] [CrossRef]
- Onishi, K.; Iguchi, S.; Sheth, K.; Kohno, K. A Measurement of the Black Hole Mass in NGC 1097 Using ALMA. Astrophys. J. 2015, 806, 39. [Google Scholar] [CrossRef]
- van den Bosch, R.C.E.; Gebhardt, K.; Gültekin, K.; van de Ven, G.; van der Wel, A.; Walsh, J.L. An over-massive black hole in the compact lenticular galaxy NGC 1277. Nature 2012, 491, 729–731. [Google Scholar] [CrossRef] [PubMed]
- Oosterloo, T.; Morganti, R.; Crocker, A.; Jütte, E.; Cappellari, M.; de Zeeuw, T.; Krajnović, D.; McDermid, R.; Kuntschner, H.; Sarzi, M.; et al. Early-type galaxies in different environments: An HI view. Mon. Not. R. Astron. Soc. 2010, 409, 500–514. [Google Scholar] [CrossRef]
- Serra, P.; Oosterloo, T.; Morganti, R.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Cappellari, M.; Crocker, A.F.; et al. The ATLAS3D project—XIII. Mass and morphology of H I in early-type galaxies as a function of environment. Mon. Not. R. Astron. Soc. 2012, 422, 1835–1862. [Google Scholar] [CrossRef]
- Maccagni, F.M.; Serra, P.; Gaspari, M.; Kleiner, D.; Morokuma-Matsui, K.; Oosterloo, T.A.; Onodera, M.; Kamphuis, P.; Loi, F.; Thorat, K.; et al. AGN feeding and feedback in Fornax A. Kinematical analysis of the multi-phase ISM. Astron. Astrophys. 2021, 656, A45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruffa, I.; Davis, T.A. Molecular Gas Kinematics in Local Early-Type Galaxies with ALMA. Galaxies 2024, 12, 36. https://doi.org/10.3390/galaxies12040036
Ruffa I, Davis TA. Molecular Gas Kinematics in Local Early-Type Galaxies with ALMA. Galaxies. 2024; 12(4):36. https://doi.org/10.3390/galaxies12040036
Chicago/Turabian StyleRuffa, Ilaria, and Timothy A. Davis. 2024. "Molecular Gas Kinematics in Local Early-Type Galaxies with ALMA" Galaxies 12, no. 4: 36. https://doi.org/10.3390/galaxies12040036
APA StyleRuffa, I., & Davis, T. A. (2024). Molecular Gas Kinematics in Local Early-Type Galaxies with ALMA. Galaxies, 12(4), 36. https://doi.org/10.3390/galaxies12040036