Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = dysconnectivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1441 KiB  
Review
From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors—A Multimodal Neuroimaging Narrative Review
by Pablo S. Martínez Lozada, Johanna Pozo Neira and Jose E. Leon-Rojas
Cancers 2025, 17(13), 2174; https://doi.org/10.3390/cancers17132174 - 27 Jun 2025
Viewed by 484
Abstract
Intracranial tumors such as gliomas, meningiomas, and brain metastases induce complex alterations in brain function beyond their focal presence. Modern connectomic and neuroimaging approaches, including resting-state functional MRI (rs-fMRI) and diffusion MRI, have revealed that these tumors disrupt and reorganize large-scale brain networks [...] Read more.
Intracranial tumors such as gliomas, meningiomas, and brain metastases induce complex alterations in brain function beyond their focal presence. Modern connectomic and neuroimaging approaches, including resting-state functional MRI (rs-fMRI) and diffusion MRI, have revealed that these tumors disrupt and reorganize large-scale brain networks in heterogeneous ways. In adult patients, diffuse gliomas infiltrate neural circuits, causing both local disconnections and widespread functional changes that often extend into structurally intact regions. Meningiomas and metastases, though typically well-circumscribed, can perturb networks via mass effect, edema, and diaschisis, sometimes provoking global “dysconnectivity” related to cognitive deficits. Therefore, this review synthesizes interdisciplinary evidence from neuroscience, oncology, and neuroimaging on how intracranial tumors disrupt functional brain connectivity pre- and post-surgery. We discuss how functional heterogeneity (i.e., differences in network involvement due to tumor type, location, and histo-molecular profile) manifests in connectomic analyses, from altered default mode and salience network activity to changes in structural–functional coupling. The clinical relevance of these network effects is examined, highlighting implications for pre-surgical planning, prognostication of neurocognitive outcomes, and post-operative recovery. Gliomas demonstrate remarkable functional plasticity, with network remodeling that may correlate with tumor genotype (e.g., IDH mutation), while meningioma-related edema and metastasis location modulate the extent of network disturbance. Finally, we explore future directions, including imaging-guided therapies and “network-aware” neurosurgical strategies that aim to preserve and restore brain connectivity. Understanding functional heterogeneity in brain tumors through a connectomic lens not only provides insights into the neuroscience of cancer but also informs more effective, personalized approaches to neuro-oncologic care. Full article
Show Figures

Figure 1

16 pages, 2029 KiB  
Article
Spatial–Temporal Characterization of Microplastics in the Surface Water of an Urban Ephemeral River
by Andre Felton, Salem Farner, Logan Day, Sue Ellen Gibbs-Huerta, Briaunna Zamarripa and Jeffrey Hutchinson
Microplastics 2025, 4(1), 9; https://doi.org/10.3390/microplastics4010009 - 14 Feb 2025
Cited by 1 | Viewed by 1813
Abstract
Rivers are recognized as major unilateral pathways of microplastic transport between terrestrial and marine ecosystems, yet our understanding of their dispersal patterns over space and through time as they migrate from source to sink is limited. In this study, surface water samples were [...] Read more.
Rivers are recognized as major unilateral pathways of microplastic transport between terrestrial and marine ecosystems, yet our understanding of their dispersal patterns over space and through time as they migrate from source to sink is limited. In this study, surface water samples were collected monthly from 12 sites along an urban ephemeral river (Leon Creek) in San Antonio between June 2021 and May 2022 to characterize and evaluate the spatiotemporal distribution of microplastics. Microplastics were found in all sites throughout the monitoring timeframe. The mean abundance of microplastics varied from 3.21 to 26.8 items/L. Surface waters consistently contained microplastics during months of dysconnectivity, suggesting atmospheric deposition as a considerable contributive variable. Contrary to prior studies of perennial systems, ephemeral pools and reaches showed no correlation between MP concentration and season precipitation. Fibers were the most abundant (~87%) morphology followed by foams (7%). This study is the first to report microplastics in ephemeral streams, suggesting that different environmental variables may be responsible for microplastic dynamics in intermittent river and ephemeral stream systems and headwater tributaries of major rivers. As the global extent of IRES systems is projected to increase with continued climate change, understanding such systems’ influence on MP spatial distribution and fluvial transport regimes constitutes valuable information in assessing MP pathways and their fate as a part of the global “Plastisphere” geochemical cycle in the Anthropocene. Full article
Show Figures

Figure 1

13 pages, 1465 KiB  
Article
Pre-Stack Nonlinear Direct Exact Inversion of Fracture Parameters in Deep Shale Reservoirs
by Meng Wang, Liang Yu, Tianchao Guo, Xiuyan Song, Xiaoxin Zhang and Yurun Rui
Processes 2025, 13(2), 426; https://doi.org/10.3390/pr13020426 - 5 Feb 2025
Viewed by 556
Abstract
A conventional linear pre-stack inversion method under the conventional stationary convolution model is limited by the assumptions of weak formation contrast change and small angle incidence and fails to take into account the amplitude attenuation of seismic wave propagation. Meanwhile, the resolution and [...] Read more.
A conventional linear pre-stack inversion method under the conventional stationary convolution model is limited by the assumptions of weak formation contrast change and small angle incidence and fails to take into account the amplitude attenuation of seismic wave propagation. Meanwhile, the resolution and precision of oil and gas evaluation and fracture characterization of shale reservoirs under complex geological conditions are low because the compaction and non-connectivity characteristics of deep shale reservoirs are not fully considered. Therefore, porous rock pores are divided into connected pores and disconnected pores. Combined with the effect of compaction on dry rock skeleton, a petrophysical model considering the compaction and pore dysconnectivity of deep shale reservoir is developed. The quantitative relationship between transverse isotropy with a vertical axis of symmetry (VTI) stiffness matrix, rock physical properties, and fracture parameters is established in this model. It provides a more accurate scheme for the original physical modeling of deep shale. This relationship is incorporated into the exact VTI reflection coefficient equation, and a nonstationary convolution operator is derived by using the attenuation theory of seismic wave propagation. A nonstationary pre-stack nonlinear direct inversion method of fracture parameters of shale reservoirs with horizontal fractures is proposed, which Improves the resolution and accuracy of shale reservoir gas bearing and fracture characteristics prediction. It provides a new way to accurately characterize the fracture development and oil-bearing property of shale reservoirs. A model test and field data test verify the effectiveness of this method. Full article
Show Figures

Figure 1

33 pages, 1576 KiB  
Review
Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae
by Jaya Prasad, Juliette Van Steenwinckel, Alistair J. Gunn, Laura Bennet, Steven J. Korzeniewski, Pierre Gressens and Justin M. Dean
Int. J. Mol. Sci. 2024, 25(23), 12999; https://doi.org/10.3390/ijms252312999 - 3 Dec 2024
Cited by 1 | Viewed by 2177
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly [...] Read more.
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life. Full article
Show Figures

Figure 1

20 pages, 13981 KiB  
Article
An Algorithm for Creating a Synaptic Cleft Digital Phantom Suitable for Further Numerical Modeling
by Olga A. Zagubnaya and Yaroslav R. Nartsissov
Algorithms 2024, 17(10), 451; https://doi.org/10.3390/a17100451 - 11 Oct 2024
Cited by 1 | Viewed by 1127
Abstract
One of the most significant applications of mathematical numerical methods in biology is the theoretical description of the convectional reaction–diffusion of chemical compounds. Initial biological objects must be appropriately mimicked by digital domains that are suitable for further use in computational modeling. In [...] Read more.
One of the most significant applications of mathematical numerical methods in biology is the theoretical description of the convectional reaction–diffusion of chemical compounds. Initial biological objects must be appropriately mimicked by digital domains that are suitable for further use in computational modeling. In the present study, an algorithm for the creation of a digital phantom describing a local part of nervous tissue—namely, a synaptic contact—is established. All essential elements of the synapse are determined using a set of consistent Boolean operations within the COMSOL Multiphysics software 6.1. The formalization of the algorithm involves a sequence of procedures and logical operations applied to a combination of 3D Voronoi diagrams, an experimentally defined inner synapse area, and a simple ellipsoid under different sets of biological parameters. The obtained digital phantom is universal and may be applied to different types of neuronal synapses. The clear separation of the designed domains reveals that the boundary’s conditions and internal flux dysconnectivity functions can be set up explicitly. Digital domains corresponding to the parts of a synapse are appropriate for further application of the derived numeric meshes, with various capacities of the included elements. Thus, the obtained digital phantom can be effectively used for further modeling of the convectional reaction–diffusion of chemical compounds in nervous tissue. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

13 pages, 588 KiB  
Review
Sex-Specific Dysconnective Brain Injuries and Neuropsychiatric Conditions such as Autism Spectrum Disorder Caused by Group B Streptococcus-Induced Chorioamnionitis
by Seline Vancolen, Taghreed Ayash, Marie-Julie Allard and Guillaume Sébire
Int. J. Mol. Sci. 2023, 24(18), 14090; https://doi.org/10.3390/ijms241814090 - 14 Sep 2023
Cited by 6 | Viewed by 2967
Abstract
Global health efforts have increased against infectious diseases, but issues persist with pathogens like Group B Streptococcus (GBS). Preclinical studies have elaborated on the mechanistic process of GBS-induced chorioamnionitis and its impact on the fetal programming of chronic neuropsychiatric diseases. GBS inoculation in [...] Read more.
Global health efforts have increased against infectious diseases, but issues persist with pathogens like Group B Streptococcus (GBS). Preclinical studies have elaborated on the mechanistic process of GBS-induced chorioamnionitis and its impact on the fetal programming of chronic neuropsychiatric diseases. GBS inoculation in rodents demonstrated the following: (i) silent and self-limited placental infection, similar to human chorioamnionitis; (ii) placental expression of chemokines attracting polymorphonuclear (PMN) cells; (iii) in vitro cytokine production; (iv) PMN infiltration in the placenta (histologic hallmark of human chorioamnionitis), linked to neurobehavioral impairments like cerebral palsy and autism spectrum disorders (ASD); (v) upregulation of interleukin-1β (IL-1β) in the placenta and fetal blood, associated with higher ASD risk in humans; (vi) sex-specific effects, with higher IL-1β release and PMN recruitment in male placenta; (vii) male offspring exhibiting ASD-like traits, while female offspring displayed attention deficit and hyperactivity disorder (ADHD)-like traits; (viii) IL-1 and/or NF-kB blockade alleviate placental and fetal inflammation, as well as subsequent neurobehavioral impairments. These findings offer potential therapeutic avenues, including sex-adapted anti-inflammatory treatment (e.g., blocking IL-1; repurposing of FDA-approved IL-1 receptor antagonist (IL-1Ra) treatment). Blocking the IL-1 pathway offers therapeutic potential to alleviate chorioamnionitis-related disabilities, presenting an opportunity for a human phase II RCT that uses IL-1 blockade added to the classic antibiotic treatment of chorioamnionitis. Full article
Show Figures

Figure 1

17 pages, 2420 KiB  
Article
Widespread Intra- and Inter-Network Dysconnectivity among Large-Scale Resting State Networks in Schizophrenia
by Bei Rong, Huan Huang, Guoqing Gao, Limin Sun, Yuan Zhou, Ling Xiao, Huiling Wang and Gaohua Wang
J. Clin. Med. 2023, 12(9), 3176; https://doi.org/10.3390/jcm12093176 - 28 Apr 2023
Cited by 10 | Viewed by 2857
Abstract
Schizophrenia is characterized by the distributed dysconnectivity of resting-state multiple brain networks. However, the abnormalities of intra- and inter-network functional connectivity (FC) in schizophrenia and its relationship to symptoms remain unknown. The aim of the present study is to compare the intra- and [...] Read more.
Schizophrenia is characterized by the distributed dysconnectivity of resting-state multiple brain networks. However, the abnormalities of intra- and inter-network functional connectivity (FC) in schizophrenia and its relationship to symptoms remain unknown. The aim of the present study is to compare the intra- and inter-connectivity of the intrinsic networks between a large sample of patients with schizophrenia and healthy controls. Using the Region of interest (ROI) to ROI FC analyses, the intra- and inter-network FC of the eight resting state networks [default mode network (DMN); salience network (SN); frontoparietal network (FPN); dorsal attention network (DAN); language network (LN); visual network (VN); sensorimotor network (SMN); and cerebellar network (CN)] were investigated in 196 schizophrenia and 169-healthy controls. Compared to the healthy control group, the schizophrenia group exhibited increased intra-network FC in the DMN and decreased intra-network FC in the CN. Additionally, the schizophrenia group showed the decreased inter-network FC mainly involved the SN-DMN, SN-LN and SN-CN while increased inter-network FC in the SN-SMN and SN-DAN (p < 0.05, FDR-corrected). Our study suggests widespread intra- and inter-network dysconnectivity among large-scale RSNs in schizophrenia, mainly involving the DMN, SN and SMN, which may further contribute to the dysconnectivity hypothesis of schizophrenia. Full article
(This article belongs to the Special Issue Advances in Markers of Psychiatric Disorders)
Show Figures

Figure 1

24 pages, 1607 KiB  
Review
Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia
by Florian W. Adraoui, Linda Douw, Gerard J. M. Martens and Dorien A. Maas
Int. J. Mol. Sci. 2023, 24(9), 7680; https://doi.org/10.3390/ijms24097680 - 22 Apr 2023
Cited by 10 | Viewed by 4764
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world’s population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel [...] Read more.
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world’s population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Schizophrenia and Novel Targets 2.0)
Show Figures

Figure 1

45 pages, 1737 KiB  
Systematic Review
Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment
by Giuseppe De Simone, Benedetta Mazza, Licia Vellucci, Annarita Barone, Mariateresa Ciccarelli and Andrea de Bartolomeis
Antioxidants 2023, 12(4), 975; https://doi.org/10.3390/antiox12040975 - 21 Apr 2023
Cited by 17 | Viewed by 6414
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the [...] Read more.
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants’ mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted. Full article
Show Figures

Figure 1

16 pages, 1976 KiB  
Article
Intrinsic Therapeutic Link between Recuperative Cerebellar Con-Nectivity and Psychiatry Symptom in Schizophrenia Patients with Comorbidity of Metabolic Syndrome
by Jingyu Zhou, Xiao Guo, Xiaoli Liu, Yuling Luo, Xin Chang, Hui He, Mingjun Duan, Shicai Li, Qifu Li, Ying Tan, Gang Yao, Dezhong Yao and Cheng Luo
Life 2023, 13(1), 144; https://doi.org/10.3390/life13010144 - 4 Jan 2023
Cited by 5 | Viewed by 2250
Abstract
Components of metabolic syndrome might be predictors of the therapeutic outcome of psychiatric symptom in schizophrenia, whereas clinical results are inconsistent and an intrinsic therapeutic link between weaker psychiatric symptoms and emergent metabolic syndrome remains unclear. This study aims to reveal the relationship [...] Read more.
Components of metabolic syndrome might be predictors of the therapeutic outcome of psychiatric symptom in schizophrenia, whereas clinical results are inconsistent and an intrinsic therapeutic link between weaker psychiatric symptoms and emergent metabolic syndrome remains unclear. This study aims to reveal the relationship and illustrate potential mechanism by exploring the alteration of cerebellar functional connectivity (FC) in schizophrenia patients with comorbidity metabolic syndrome. Thirty-six schizophrenia patients with comorbidity of metabolic syndrome (SCZ-MetS), 45 schizophrenia patients without metabolic syndrome (SCZ-nMetS) and 39 healthy controls (HC) were recruited in this study. We constructed FC map of cerebello-cortical circuit and used moderation effect analysis to reveal complicated relationship among FC, psychiatric symptom and metabolic disturbance. Components of metabolic syndrome were significantly correlated with positive symptom score and negative symptom score. Importantly, the dysconnectivity between cognitive module of cerebellum and left middle frontal gyrus in SCZ-nMetS was recuperative increased in SCZ-MetS, and was significantly correlated with general symptom score. Finally, we observed significant moderation effect of body mass index on this correlation. The present findings further supported the potential relationship between emergence of metabolic syndrome and weaker psychiatric symptom, and provided neuroimaging evidence. The mechanism of intrinsic therapeutic link involved functional change of cerebello-cortical circuit. Full article
(This article belongs to the Section Radiobiology and Nuclear Medicine)
Show Figures

Graphical abstract

21 pages, 15683 KiB  
Article
Phenotypical Screening on Neuronal Plasticity in Hippocampal-Prefrontal Cortex Connectivity Reveals an Antipsychotic with a Novel Profile
by Michael Spedding, Claude Sebban, Thérèse M. Jay, Cyril Rocher, Brigitte Tesolin-Decros, Paul Chazot, Esther Schenker, Gabor Szénási, György I. Lévay, Katalin Megyeri, Jozsef Barkóczy, Laszlo G. Hársing, Ian Thomson, Mark O. Cunningham, Miles A. Whittington, Lori-An Etherington, Jeremy J. Lambert, Ferenc A. Antoni and Istvan Gacsályi
Cells 2022, 11(7), 1181; https://doi.org/10.3390/cells11071181 - 31 Mar 2022
Cited by 3 | Viewed by 3544
Abstract
Dysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which [...] Read more.
Dysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which was resistant to atropine and prazosin. EGIS 11150 enhanced H-PFC coherence, and increased the 8–9 Hz theta band of the EEG power spectrum (from 0.002 mg/kg i.p, at >30× lower doses than clozapine, and >100× for olanzapine, risperidone, or haloperidol). EGIS 11150 fully blocked the effects of phencyclidine (PCP) or ketamine on EEG. Inhibition of long-term potentiation (LTP) in H-PFC was blocked by platform stress, but was fully restored by EGIS 11150 (0.01 mg/kg i.p.), whereas clozapine (0.3 mg/kg ip) only partially restored LTP. EGIS 11150 has a unique electrophysiological profile, so phenotypical screening on H-PFC connectivity can reveal novel antipsychotics. Full article
Show Figures

Figure 1

13 pages, 282 KiB  
Review
The Limits between Schizophrenia and Bipolar Disorder: What Do Magnetic Resonance Findings Tell Us?
by Mirona Letitia Dobri, Alexandre Paim Diaz, Sudhakar Selvaraj, Joao Quevedo, Consuelo Walss-Bass, Jair C. Soares and Marsal Sanches
Behav. Sci. 2022, 12(3), 78; https://doi.org/10.3390/bs12030078 - 15 Mar 2022
Cited by 5 | Viewed by 4108
Abstract
Schizophrenia and bipolar disorder, two of the most severe psychiatric illnesses, have historically been regarded as dichotomous entities but share many features of the premorbid course, clinical profile, genetic factors and treatment approaches. Studies focusing on neuroimaging findings have received considerable attention, as [...] Read more.
Schizophrenia and bipolar disorder, two of the most severe psychiatric illnesses, have historically been regarded as dichotomous entities but share many features of the premorbid course, clinical profile, genetic factors and treatment approaches. Studies focusing on neuroimaging findings have received considerable attention, as they plead for an improved understanding of the brain regions involved in the pathophysiology of schizophrenia and bipolar disorder. In this review, we summarize the main magnetic resonance imaging findings in both disorders, aiming at exploring the neuroanatomical and functional similarities and differences between the two. The findings show that gray and white matter structural changes and functional dysconnectivity predominate in the frontal and limbic areas and the frontotemporal circuitry of the brain areas involved in the integration of executive, cognitive and affective functions, commonly affected in both disorders. Available evidence points to a considerable overlap in the affected regions between the two conditions, therefore possibly placing them at opposite ends of a psychosis continuum. Full article
15 pages, 1181 KiB  
Review
Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway
by Alexandre Vallée
Int. J. Mol. Sci. 2022, 23(5), 2810; https://doi.org/10.3390/ijms23052810 - 4 Mar 2022
Cited by 96 | Viewed by 8026
Abstract
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This [...] Read more.
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia. Full article
(This article belongs to the Special Issue New Advance in Neuroinflammation)
Show Figures

Figure 1

13 pages, 766 KiB  
Article
Psychopathology and Integrity of the Superior Longitudinal Fasciculus in Deficit and Nondeficit Schizophrenia
by Piotr Podwalski, Ernest Tyburski, Krzysztof Szczygieł, Krzysztof Rudkowski, Katarzyna Waszczuk, Wojciech Andrusewicz, Jolanta Kucharska-Mazur, Anna Michalczyk, Monika Mak, Katarzyna Cyranka, Błażej Misiak, Leszek Sagan and Jerzy Samochowiec
Brain Sci. 2022, 12(2), 267; https://doi.org/10.3390/brainsci12020267 - 14 Feb 2022
Cited by 12 | Viewed by 4025
Abstract
The superior longitudinal fasciculus (SLF) is a white matter bundle that connects the frontal areas with the parietal areas. As part of the visuospatial attentional network, it may be involved in the development of schizophrenia. Deficit syndrome (DS) is characterized by primary and [...] Read more.
The superior longitudinal fasciculus (SLF) is a white matter bundle that connects the frontal areas with the parietal areas. As part of the visuospatial attentional network, it may be involved in the development of schizophrenia. Deficit syndrome (DS) is characterized by primary and enduring negative symptoms. The present study assessed SLF integrity in DS and nondeficit schizophrenia (NDS) patients and examined possible relationships between it and psychopathology. Twenty-six DS patients, 42 NDS patients, and 36 healthy controls (HC) underwent psychiatric evaluation and diffusion tensor imaging (DTI). After post-processing, fractional anisotropy (FA) values within the SLF were analyzed. Psychopathology was assessed with the Positive and Negative Syndrome Scale, Brief Negative Symptom Scale, and Self-evaluation of Negative Symptoms. The PANSS proxy for the deficit syndrome was used to diagnose DS. NDS patients had lower FA values than HC. DS patients had greater negative symptoms than NDS patients. After differentiating clinical groups and HC, we found no significant correlations between DTI measures and psychopathological dimensions. These results suggest that changes in SLF integrity are related to schizophrenia, and frontoparietal dysconnection plays a role in its etiopathogenesis. We confirmed that DS patients have greater negative psychopathology than NDS patients. These results are preliminary; further studies are needed. Full article
(This article belongs to the Special Issue Recent Advances in Neuroimaging and Neurophysiology in Psychiatry)
Show Figures

Figure 1

15 pages, 6414 KiB  
Article
Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study
by Matthew J. Hoptman, Umit Tural, Kelvin O. Lim, Daniel C. Javitt and Lauren E. Oberlin
Brain Sci. 2022, 12(2), 156; https://doi.org/10.3390/brainsci12020156 - 25 Jan 2022
Cited by 3 | Viewed by 3867
Abstract
Schizophrenia is widely seen as a disorder of dysconnectivity. Neuroimaging studies have examined both structural and functional connectivity in the disorder, but these modalities have rarely been integrated directly. We scanned 29 patients with schizophrenia and 25 healthy control subjects, and we acquired [...] Read more.
Schizophrenia is widely seen as a disorder of dysconnectivity. Neuroimaging studies have examined both structural and functional connectivity in the disorder, but these modalities have rarely been integrated directly. We scanned 29 patients with schizophrenia and 25 healthy control subjects, and we acquired resting state fMRI and diffusion tensor imaging. We used the Functional and Tractographic Connectivity Analysis Toolbox (FATCAT) to estimate functional and structural connectivity of the default mode network. Correlations between modalities were investigated, and multimodal connectivity scores (MCS) were created using principal component analysis. Of the 28 possible region pairs, 9 showed consistent (>80%) tracts across participants. Correlations between modalities were found among those with schizophrenia for the prefrontal cortex, posterior cingulate, and lateral temporal lobes, with frontal and parietal regions, consistent with frontotemporoparietal network involvement in the disorder. In patients, MCS correlated with several aspects of the Positive and Negative Syndrome Scale, with higher multimodal connectivity associated with outward-directed (externalizing) behavior and lower multimodal connectivity related to psychosis per se. In this preliminary sample, we found FATCAT to be a useful toolbox to directly integrate and examine connectivity between imaging modalities. A consideration of conjoint structural and functional connectivity can provide important information about the network mechanisms of schizophrenia. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

Back to TopTop