Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MRI Acquisition
2.3. Default Mode Network
2.4. DTI
2.5. RSFC
2.6. Multimodal Connectivity Scores (MCS)
2.7. Statistical Analyses
3. Results
3.1. Demographics
3.2. DTI/RSFC(Z) Values and Correlations
3.3. MCS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friston, K.J. The disconnection hypothesis. Schizophr. Res. 1998, 30, 115–125. [Google Scholar] [CrossRef]
- Bullmore, E.T.; Frangou, S.; Murray, R.M. The dysplastic net hypothesis: An integration of developmental and dysconnectivity theories of schizophrenia. Schizophr. Res. 1997, 28, 143–156. [Google Scholar] [CrossRef]
- Buchsbaum, M.S.; Tang, C.Y.; Peled, S.; Gudbjartsson, H.; Lu, D.; Hazlett, E.A.; Downhill, J.; Haznedar, M.; Fallon, J.H.; Atlas, S.W. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport 1998, 9, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.O.; Hadehus, M.; Moseley, M.; de Crespigny, A.; Sullivan, E.V.; Pfefferbaum, A.; Hedehus, M.; Moseley, M.; de Crespigny, A.; Sullivan, E.V.; et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch. Gen. Psychiatry 1999, 56, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, B.A.; Nierenberg, J.; Hoptman, M.J.; Javitt, D.C.; Lim, K.O. MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport 2003, 14, 2025–2029. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.; Jahanshad, N.; Zalesky, A.; Kochunov, P.; Agartz, I.; Alloza, C.; Andreassen, O.A.; Arango, C.; Banaj, N.; Bouix, S.; et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry 2018, 23, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Butler, P.D.; Zemon, V.; Schechter, I.; Saperstein, A.M.; Hoptman, M.J.; Lim, K.O.; Revheim, N.; Silipo, G.; Javitt, D.C. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch. Gen. Psychiatry 2005, 62, 495–504. [Google Scholar] [CrossRef]
- Butler, P.D.; Hoptman, M.J.; Nierenberg, J.; Foxe, J.J.; Javitt, D.C.; Lim, K.O. Visual white matter integrity in schizophrenia. Am. J. Psychiatry 2006, 163, 2011–2013. [Google Scholar] [CrossRef]
- Leitman, D.I.; Hoptman, M.J.; Foxe, J.J.; Saccente, E.; Wylie, G.R.; Nierenberg, J.; Jalbrzikowski, M.; Lim, K.O.; Javitt, D.C. The neural substrates of impaired prosodic detection in schizophrenia and its sensorial antecedents. Am. J. Psychiatry 2007, 164, 474–482. [Google Scholar] [CrossRef]
- Lim, K.O.; Ardekani, B.A.; Nierenberg, J.; Butler, P.D.; Javitt, D.C.; Hoptman, M.J. Voxelwise Correlational Analyses of White Matter Integrity in Multiple Cognitive Domains in Schizophrenia. Am. J. Psychiatry 2006, 163, 2008. [Google Scholar] [CrossRef]
- Bracht, T.; Horn, H.; Strik, W.; Federspiel, A.; Razavi, N.; Stegmayer, K.; Wiest, R.; Dierks, T.; Müller, T.J.; Walther, S. White matter pathway organization of the reward system is related to positive and negative symptoms in schizophrenia. Schizophr. Res. 2014, 153, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Roalf, D.R.; Gur, R.E.; Verma, R.; Parker, W.A.; Quarmley, M.; Ruparel, K.; Gur, R.C. White matter microstructure in schizophrenia: Associations to neurocognition and clinical symptomatology. Schizophr. Res. 2015, 161, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolkin, A.; Choi, S.J.; Szilagyi, S.; Sanfilipo, M.; Rotrosen, J.P.; Lim, K.O. Inferior Frontal White Matter Anisotropy and Negative Symptoms of Schizophrenia: A Diffusion Tensor Imaging Study. Am. J. Psychiatry 2003, 160, 572–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raichle, M.E.; Macleod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Gusnard, D.A.; Akbudak, E.; Shulman, G.L.; Raichle, M.E. Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 4259–4264. [Google Scholar] [CrossRef] [Green Version]
- Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 2003, 100, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Bastos-Leite, A.J.; Ridgway, G.R.; Silveira, C.; Norton, A.; Reis, S.; Friston, K.J. Dysconnectivity within the default mode in first-episode schizophrenia: A stochastic dynamic causal modeling study with functional magnetic resonance imaging. Schizophr. Bull. 2015, 41, 144–153. [Google Scholar] [CrossRef]
- Fox, J.M.; Abram, S.V.; Reilly, J.L.; Eack, S.; Goldman, M.B.; Csernansky, J.G.; Wang, L.; Smith, M.J. Default mode functional connectivity is associated with social functioning in schizophrenia. J. Abnorm. Psychol. 2017, 126, 392–405. [Google Scholar] [CrossRef]
- Öngür, D.; Lundy, M.; Greenhouse, I.; Shinn, A.K.; Menon, V.; Cohen, B.M.; Renshaw, P.F. Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res. Neuroimaging 2010, 183, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Park, I.H.; Kim, J.J.; Chun, J.; Jung, Y.C.; Seok, J.H.; Park, H.J.; Lee, J.D. Medial prefrontal default-mode hypoactivity affecting trait physical anhedonia in schizophrenia. Psychiatry Res. Neuroimaging 2009, 171, 155–165. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ford, J.M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 2012, 8, 49–76. [Google Scholar] [CrossRef] [PubMed]
- Woodward, N.D.; Rogers, B.; Heckers, S. Functional resting-state networks are differentially affected in schizophrenia. Schizophr. Res. 2011, 130, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Lee, D.K.; Park, K.; Kim, C.E.; Ryu, S. Default mode network connectivity is associated with long-term clinical outcome in patients with schizophrenia. NeuroImage Clin. 2019, 22, 101805. [Google Scholar] [CrossRef] [PubMed]
- Camchong, J.; Macdonald, A.W., III; Bell, C.; Mueller, B.A.; Lim, K.O. Altered Functional and Anatomical Connectivity in Schizophrenia. Schizophr. Bull. 2011, 37, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Rotarska-Jagiela, A.; van de Ven, V.; Oertel-Knöchel, V.; Uhlhaas, P.J.; Vogeley, K.; Linden, D.E.J. Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr. Res. 2010, 117, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Bluhm, R.L.; Miller, J.; Lanius, R.A.; Osuch, E.A.; Boksman, K.; Neufeld, R.W.J.; Théberge, J.; Schaefer, B.; Williamson, P. Spontaneous Low-Frequency Fluctuations in the BOLD Signal in Schizophrenic Patients: Anomalies in the Default Network. Schizophr. Bull. 2007, 33, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Supekar, K.; Menon, V.; Dougherty, R.F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 2009, 19, 72–78. [Google Scholar] [CrossRef]
- Honey, C.J.; Sporns, O.; Cammoun, L.; Gigandet, X.; Thiran, J.P.; Meuli, R.; Hagmann, P. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 2009, 106, 2035–2040. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.J.; Wang, Y.F.; Wen, J.; Xu, Q.; Lu, G.M.; Zhang, L.J. Functional–structural relationship in large-scale brain networks of patients with end stage renal disease after kidney transplantation: A longitudinal study. Hum. Brain Mapp. 2020, 41, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Shao, R.; Xu, G.; Lu, W.; Zheng, W.; Miao, Q.; Chen, K.; Gao, Y.; Bi, Y.; Guan, L.; et al. Aberrant brain structural–functional connectivity coupling in euthymic bipolar disorder. Hum. Brain Mapp. 2019, 40, 3452–3463. [Google Scholar] [CrossRef]
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef] [PubMed]
- Baum, G.L.; Cui, Z.; Roalf, D.R.; Ciric, R.; Betzel, R.F.; Larsen, B.; Cieslak, M.; Cook, P.A.; Xia, C.H.; Moore, T.M.; et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl. Acad. Sci. USA 2020, 117, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.Y.; Huang, Y.Y.; Lei, B.Y.; Ke, P.F.; Li, H.H.; Zhou, J.; Xiong, D.S.; Li, G.X.; Chen, J.; Li, X.B.; et al. Divergent alterations of structural-functional connectivity couplings in first-episode and chronic schizophrenia patients. Neuroscience 2021, 460, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Collin, G.; Scholtens, L.H.; Kahn, R.S.; Hillegers, M.H.J.; van den Heuvel, M.P. Affected Anatomical Rich Club and Structural–Functional Coupling in Young Offspring of Schizophrenia and Bipolar Disorder Patients. Biol. Psychiatry 2017, 82, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.G.; Bassett, D.S.; Camchong, J.; Bullmore, E.T.; Lim, K.O. Comparison of large-scale human brain functional and anatomical networks in schizophrenia. NeuroImage Clin. 2017, 15, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Cabral, J.; Fernandes, H.M.; Van Hartevelt, T.J.; James, A.C.; Kringelbach, M.L.; Deco, G. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos 2013, 23, 046111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocchi, L.; Harding, I.H.; Lord, A.; Pantelis, C.; Yucel, M.; Zalesky, A. Disruption of structure-function coupling in the schizophrenia connectome. NeuroImage Clin. 2014, 4, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Fornito, A.; Bullmore, E.T. Reconciling abnormalities of brain network structure and function in schizophrenia. Curr. Opin. Neurobiol. 2015, 30, 44–50. [Google Scholar] [CrossRef]
- Taylor, P.A.; Saad, Z.S. FATCAT: (An Efficient) Functional and Tractographic Connectivity Analysis Toolbox. Brain Connect. 2013, 3, 523–535. [Google Scholar] [CrossRef]
- Taylor, P.A.; Jacobson, S.W.; van der Kouwe, A.; Molteno, C.D.; Chen, G.; Wintermark, P.; Alhamud, A.; Jacobson, J.L.; Meintjes, E.M. A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns. Hum. Brain Mapp. 2015, 36, 170–186. [Google Scholar] [CrossRef] [Green Version]
- Nugent, A.C.; Farmer, C.; Evans, J.W.; Snider, S.L.; Banerjee, D.; Zarate, C.A. Multimodal imaging reveals a complex pattern of dysfunction in corticolimbic pathways in major depressive disorder. Hum. Brain Mapp. 2019, 40, 3940–3950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoptman, M.J.; Antonius, D.; Mauro, C.J.; Parker, E.M.; Javitt, D.C. Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: Relationship to Aggressive attitudes and behavior. Am. J. Psychiatry 2014, 171, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Hoptman, M.J.; Parker, E.M.; Nair-Collins, S.; Dias, E.C.; Ross, M.E.; DiCostanzo, J.N.; Sehatpour, P.; Javitt, D.C. Sensory and cross-network contributions to response inhibition in patients with schizophrenia. NeuroImage Clin. 2018, 18, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Calderone, D.J.; Hoptman, M.J.; Martinez, A.; Nair-Collins, S.; Mauro, C.J.; Bar, M.; Javitt, D.C.; Butler, P.D.; Martínez, A.; Nair-Collins, S.; et al. Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cereb. Cortex 2012, 23, 1849–1858. [Google Scholar] [CrossRef] [Green Version]
- Calderone, D.J.; Martinez, A.; Zemon, V.; Hoptman, M.J.; Hu, G.; Watkins, J.E.; Javitt, D.C.; Butler, P.D. Comparison of psychophysical, electrophysiological, and fMRI assessment of visual contrast responses in patients with schizophrenia. Neuroimage 2013, 67, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Dias, E.C.; Sheridan, H.; Martínez, A.; Sehatpour, P.; Silipo, G.; Rohrig, S.; Hochman, A.; Butler, P.D.; Hoptman, M.J.; Revheim, N.; et al. Neurophysiological, Oculomotor, and Computational Modeling of Impaired Reading Ability in Schizophrenia. Schizophr. Bull. 2020, 47, 97–107. [Google Scholar] [CrossRef]
- Lee, M.; Sehatpour, P.; Hoptman, M.J.; Lakatos, P.; Dias, E.C.; Kantrowitz, J.T.; Martinez, A.M.; Javitt, D.C. Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol. Psychiatry 2017, 22, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- Kantrowitz, J.T.; Hoptman, M.J.; Leitman, D.I.; Silipo, G.; Javitt, D.C. The 5% difference: Early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder. Psychol. Med. 2014, 44, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Kantrowitz, J.T.; Hoptman, M.J.; Leitman, D.I.; Moreno-Ortega, M.; Lehrfeld, J.M.; Dias, E.; Sehatpour, P.; Laukka, P.; Silipo, G.; Javitt, D.C. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia. J. Neurosci. 2015, 35, 14909–14921. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- White, L.; Harvey, P.D.; Opler, L.; Lindenmayer, J.P. Empirical Assessment of the Factorial Structure of Clinical Symptoms in Schizophrenia: A Multisite, Multimodel Evaluation of the Positive and Negative Syndrome Scale. Psychopathology 1997, 30, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Reese, T.G.; Heid, O.; Weisskoff, R.M.; Wedeen, V.J. Reduction of Eddy-Current-Induced Distortion in Diffusion MRI Using a Twice-Refocused Spin Echo. Magn. Reson. Med. 2003, 49, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Yeo, B.T.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar] [CrossRef] [PubMed]
- Pierpaoli, C.; Walker, L.; Irfanoglu, M.O.; Barnett, A.; Basser, P.; Chang, L.-C.; Koay, C.; Pajevic, S.; Rohde, G.; Sarlis, J.; et al. TORTOISE: An Integrated Software Package for Processing of Diffusion MRI Data. In Proceedings of the ISMRM 18th Annual Meeting, Stockholm, Sweden, 1–7 May 2010. [Google Scholar]
- Avants, B.B.; Epstein, C.L.; Grossman, M.; Gee, J.C. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008, 12, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.A.; Chen, G.; Cox, R.W.; Saad, Z.S. Open Environment for Multimodal Interactive Connectivity Visualization and Analysis. Brain Connect. 2016, 6, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.J.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004, 23, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Pruim, R.H.R.; Mennes, M.; van Rooij, D.; Llera, A.; Buitelaar, J.K.; Beckmann, C.F. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 2015, 112, 267–277. [Google Scholar] [CrossRef]
- Jo, H.J.; Saad, Z.S.; Simmons, W.K.; Milbury, L.A.; Cox, R.W. Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 2010, 52, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Sidak, Z. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. J. Am. Stat. Assoc. 1967, 62, 626–633. [Google Scholar] [CrossRef]
- Saad, Z.S.; Reynolds, R.C.; Argall, B.; Japee, S.; Cox, R.W. SUMA: An Interface for Surface-Based Intra- And Inter-Subject Analysis with AFNI. In Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, Arlington, VA, USA, 18 April 2004; Volume 2, pp. 1510–1513. [Google Scholar]
- Saad, Z.S.; Reynolds, R.C. Suma. Neuroimage 2012, 62, 768–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, D.; Wang, Y.; Chang, X.; Luo, C.; Yao, D. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophr. Bull. 2018, 44, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Rodríguez, B.; Suárez, L.E.; Markello, R.D.; Shafiei, G.; Paquola, C.; Hagmann, P.; Van Den Heuvel, M.P.; Bernhardt, B.C.; Spreng, R.N.; Misic, B. Gradients of structure–function tethering across neocortex. Proc. Natl. Acad. Sci. USA 2019, 116, 21219–21227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Kong, R.; Kong, X.; Liégeois, R.; Orban, C.; Deco, G.; Van Den Heuvel, M.P.; Yeo, B.T.T. Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Sci. Adv. 2019, 5, eaat7854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manoliu, A.; Riedl, V.; Zherdin, A.; Mühlau, M.; Schwerthöffer, D.; Scherr, M.; Peters, H.; Zimmer, C.; Förstl, H.; Bäuml, J.; et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr. Bull. 2014, 40, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.S.; Nelson, B.G.; Mueller, B.A.; Camchong, J.; Lim, K.O. Altered resting state complexity in schizophrenia. Neuroimage 2012, 59, 2196–2207. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.C.; Hong, C.-J.; Liou, Y.-J.; Huang, K.-L.; Huang, C.-C.; Liu, M.-E.; Lo, M.-T.; Huang, N.E.; Peng, C.-K.; Lin, C.-P.; et al. Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness. Hum. Brain Mapp. 2015, 36, 2174–2186. [Google Scholar] [CrossRef]
- Kottaram, A.; Johnston, L.A.; Cocchi, L.; Ganella, E.P.; Everall, I.; Pantelis, C.; Kotagiri, R.; Zalesky, A. Brain network dynamics in schizophrenia: Reduced dynamism of the default mode network. Hum. Brain Mapp. 2019, 40, 2212–2228. [Google Scholar] [CrossRef]
- Logothetis, N.K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412, 150–157. [Google Scholar] [CrossRef]
- Logothetis, N.K. The underpinnings of the BOLD functional magnetic resonance imaging signal. J. Neurosci. 2003, 23, 3963–3971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patients | Controls | |||||
---|---|---|---|---|---|---|
Variable | M | SD | M | SD | t/χ2 | p |
Age (years) | 38.8 | 10.5 | 38.2 | 8.0 | −0.22 | 0.83 |
Sex (M/F) | 23/6 | 17/8 | 0.89 | 0.34 | ||
ICV (cc) 1 | 1583.6 | 182.6 | 1547.4 | 151.1 | −0.79 | 0.43 |
PANSS | ||||||
Positive | 12.2 | 3.8 | -- | -- | ||
Negative | 16.1 | 5.3 | -- | -- | ||
Activation | 9.4 | 4.5 | -- | -- | ||
Dysphoric | 11.8 | 4.3 | ||||
Autistic | 12.4 | 2.7 | ||||
Total | 76.3 | 10.8 | -- | -- | ||
Illness duration (years) 2 | 17.87 | 8.07 | -- | -- | ||
CPZ equiv | 1196.7 | 800.8 | -- | -- |
Controls | ||||||||||
Resting State Functional Connectivity | ||||||||||
Fractional Anisotropy | N | PFC-LLTL | PFC-PCC | PFC-RLTL | PFC-RLOFC | LLTL-PCC | PCC-LPHP | PCC-RPHP | RLTL-RIPL | RLTL-RLOFC |
PFC-LLTL | 23 | 0.085 | 0.132 | −0.155 | −0.038 | 0.431 * | 0.435 * | −0.097 | 0.37 | 0.081 |
PFC-PCC | 23 | −0.225 | −0.254 | −0.373 | −0.291 | −0.025 | 0.420 * | −0.07 | −0.002 | 0.101 |
PFC-RLTL | 21 | −0.291 | 0.009 | −0.23 | −0.005 | −0.05 | 0.518 * | 0.34 | −0.105 | 0.038 |
PFC-RLOFC | 22 | 0.079 | 0.347 | 0.021 | 0.168 | 0.406 | 0.399 | 0.107 | 0.394 | 0.249 |
LLTL-PCC | 20 | 0.055 | −0.185 | −0.042 | 0.125 | 0.136 | 0.219 | 0.044 | 0.405 | 0.243 |
PCC-LPHP | 23 | −0.115 | 0.016 | −0.115 | 0.053 | −0.026 | 0.455 * | −0.009 | 0.051 | 0.312 |
PCC-RPHP | 22 | −0.153 | −0.064 | −0.149 | −0.051 | −0.057 | 0.174 | −0.291 | 0.334 | 0.403 |
RLTL-RIPL | 23 | 0.028 | 0.024 | 0.007 | −0.077 | 0.223 | 0.157 | 0 | 0.22 | 0.332 |
RLTL-RLOFC | 23 | −0.017 | −0.131 | −0.13 | 0.21 | 0.096 | 0.038 | 0.003 | 0.125 | 0.291 |
Patients | ||||||||||
Resting State Functional Connectivity | ||||||||||
Fractional Anisotropy | N | PFC-LLTL | PFC-PCC | PFC-RLTL | PFC-RLOFC | LLTL-PCC | PCC-LPHP | PCC-RPHP | RLTL-RIPL | RLTL-RLOFC |
PFC-LLTL | 27 | −0.267 | −0.341 | −0.077 | 0.184 | −0.564 ** | −0.032 | 0.014 | −0.277 | 0.100 |
PFC-PCC | 27 | 0.088 | 0.005 | −0.202 | −0.093 | 0.044 | 0.454 * | 0.098 | −0.367 | −0.199 |
PFC-RLTL | 23 | 0.203 | 0.09 | 0.259 | −0.004 | −0.196 | 0.108 | 0.492 * | −0.251 | 0.192 |
PFC-RLOFC | 27 | −0.121 | −0.238 | −0.18 | 0.161 | −0.354 | 0.192 | 0.115 | −0.649 ** | −0.043 |
LLTL-PCC | 27 | −0.145 | −0.042 | 0.26 | 0.054 | −0.153 | 0.024 | 0.314 | −0.261 | 0.213 |
PCC-LPHP | 29 | −0.059 | −0.391 * | −0.26 | −0.123 | −0.294 | 0.064 | 0.278 | −0.514 ** | −0.220 |
PCC-RPHP | 27 | −0.119 | −0.344 | 0.07 | −0.034 | −0.164 | 0.294 | 0.096 | −0.056 | −0.175 |
RLTL-RIPL | 29 | 0.171 | −0.185 | −0.066 | 0.269 | −0.214 | 0.007 | −0.02 | −0.384 * | 0.049 |
RLTL-RLOFC | 28 | 0.451 * | 0.29 | 0.27 | 0.163 | 0.05 | 0.163 | 0.132 | 0.01 | 0.145 |
Controls | ||||||||||
Resting State Functional Connectivity | ||||||||||
Number of Streamlines | N | PFC-LLTL | PFC-PCC | PFC-RLTL | PFC-RLOFC | LLTL-PCC | PCC-LPHP | PCC-RPHP | RLTL-RIPL | RLTL-RLOFC |
PFC-LLTL | 23 | −0.474 * | −0.121 | −0.277 | −0.018 | −0.245 | −0.305 | −0.125 | 0.011 | −0.335 |
PFC-PCC | 23 | −0.161 | −0.280 | −0.349 | −0.244 | −0.302 | 0.111 | −0.107 | −0.115 | −0.203 |
PFC-RLTL | 21 | −0.049 | −0.364 | 0.132 | 0.225 | −0.184 | −0.466 * | −0.096 | 0.327 | 0.253 |
PFC-RLOFC | 22 | −0.147 | −0.197 | 0.057 | −0.010 | −0.359 | −0.234 | −0.080 | −0.134 | 0.411 |
LLTL-PCC | 20 | 0.367 | 0.136 | 0.592 * | 0.320 | 0.045 | 0.024 | 0.305 | −0.008 | 0.238 |
PCC-LPHP | 23 | 0.111 | −0.007 | 0.125 | 0.108 | 0.207 | 0.022 | 0.292 | −0.076 | −0.290 |
PCC-RPHP | 22 | −0.182 | −0.284 | −0.116 | −0.023 | −0.090 | 0.307 | 0.232 | −0.058 | 0.063 |
RLTL-RIPL | 23 | −0.200 | −0.209 | −0.208 | −0.148 | −0.207 | −0.264 | −0.316 | −0.170 | 0.103 |
RLTL-RLOFC | 23 | −0.179 | −0.044 | −0.232 | −0.208 | 0.028 | 0.161 | 0.108 | −−0.040 | −0.147 |
Patients | ||||||||||
Resting State Functional Connectivity | ||||||||||
Number of Streamlines | N | PFC-LLTL | PFC-PCC | PFC-RLTL | PFC-RLOFC | LLTL-PCC | PCC-LPHP | PCC-RPHP | RLTL-RIPL | RLTL-RLOFC |
PFC-LLTL | 27 | 0.330 | 0.505 ** | 0.253 | 0.507 ** | 0.198 | 0.075 | 0.078 | −0.032 | 0.341 |
PFC-PCC | 27 | 0.386 * | 0.524 ** | 0.081 | 0.245 | 0.374 | −0.153 | −0.125 | −0.434 * | 0.383 * |
PFC-RLTL | 23 | 0.123 | 0.292 | 0.367 | 0.160 | 0.236 | 0.113 | 0.235 | 0.267 | 0.109 |
PFC-RLOFC | 27 | 0.028 | 0.375 | 0.216 | −0.105 | 0.416 * | 0.122 | −0.150 | 0.096 | 0.085 |
LLTL-PCC | 27 | 0.278 | −0.053 | 0.128 | −0.031 | −0.171 | 0.039 | 0.104 | 0.011 | −0.005 |
PCC-LPHP | 29 | 0.220 | 0.064 | 0.194 | 0.162 | −0.067 | −0.041 | 0.094 | 0.160 | −0.047 |
PCC-RPHP | 27 | 0.154 | 0.183 | 0.120 | 0.353 | 0.045 | 0.048 | −0.021 | 0.269 | 0.013 |
RLTL-RIPL | 29 | −0.039 | −0.006 | −0.278 | −0.078 | −0.128 | −0.244 | 0.156 | −0.501 ** | −0.086 |
RLTL-RLOFC | 29 | 0.244 | 0.253 | 0.038 | 0.042 | 0.269 | −0.123 | 0.109 | 0.207 | 0.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoptman, M.J.; Tural, U.; Lim, K.O.; Javitt, D.C.; Oberlin, L.E. Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study. Brain Sci. 2022, 12, 156. https://doi.org/10.3390/brainsci12020156
Hoptman MJ, Tural U, Lim KO, Javitt DC, Oberlin LE. Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study. Brain Sciences. 2022; 12(2):156. https://doi.org/10.3390/brainsci12020156
Chicago/Turabian StyleHoptman, Matthew J., Umit Tural, Kelvin O. Lim, Daniel C. Javitt, and Lauren E. Oberlin. 2022. "Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study" Brain Sciences 12, no. 2: 156. https://doi.org/10.3390/brainsci12020156
APA StyleHoptman, M. J., Tural, U., Lim, K. O., Javitt, D. C., & Oberlin, L. E. (2022). Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study. Brain Sciences, 12(2), 156. https://doi.org/10.3390/brainsci12020156