Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = dynamic ship stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2667 KB  
Article
Design of a Reinforcement Learning-Based Speed Compensator for Unmanned Aerial Vehicle in Complex Environments
by Guanyu Chen, Pengyu Feng and Xinhua Wang
Drones 2025, 9(10), 705; https://doi.org/10.3390/drones9100705 - 13 Oct 2025
Viewed by 270
Abstract
Due to the complexity of the marine environment and the uncertainty of ship movements, altitude control of UAV is particularly important when approaching and landing on the deck of a ship. This paper focuses on unmanned helicopters as its research subject. Conventional altitude [...] Read more.
Due to the complexity of the marine environment and the uncertainty of ship movements, altitude control of UAV is particularly important when approaching and landing on the deck of a ship. This paper focuses on unmanned helicopters as its research subject. Conventional altitude control systems may have difficulty in ensuring fast and stable landings under certain extreme conditions. Therefore, designing a new UAV altitude control method that can adapt to complex sea conditions has become a current problem to be solved. Designing a reinforcement learning based rotational speed compensator for UAV as a redundant controller to optimise UAV altitude control performance for the above problem. The compensator is capable of adjusting the UAV’s rotational speed in real time to compensate for altitude deviations due to external environmental disturbances and the UAV’s own dynamic characteristics. By introducing reinforcement learning algorithms, especially the DDPG algorithm, this compensator is able to learn the optimal RPM adjustment strategy in a continuous trial-and-error process, which improves the UAV’s rapidity and stability during the landing process. Full article
Show Figures

Figure 1

4 pages, 158 KB  
Editorial
Dynamic Stability and Safety of Ships in Waves
by Se-Min Jeong and Sunho Park
J. Mar. Sci. Eng. 2025, 13(10), 1950; https://doi.org/10.3390/jmse13101950 - 11 Oct 2025
Viewed by 253
Abstract
The study of ship motions and stability in waves has long been a cornerstone of naval architecture and ocean engineering [...] Full article
(This article belongs to the Special Issue Dynamic Stability and Safety of Ships in Waves)
19 pages, 1848 KB  
Article
Adaptive Antidisturbance Stabilization of Active Helideck Systems with Prescribed Performance via Saturation-Triggered Boundaries
by Jian Li, Xin Hu and Jialu Du
J. Mar. Sci. Eng. 2025, 13(10), 1949; https://doi.org/10.3390/jmse13101949 - 11 Oct 2025
Viewed by 234
Abstract
Active helidecks systems (AHS) provide an effective solution scheme for the safe landing of helicopters on ships. This article proposes a novel adaptive antidisturbance prescribed performance control law of AHS subject to input saturation, ship motion-induced external disturbances. Specifically, we develop novel saturation-triggered [...] Read more.
Active helidecks systems (AHS) provide an effective solution scheme for the safe landing of helicopters on ships. This article proposes a novel adaptive antidisturbance prescribed performance control law of AHS subject to input saturation, ship motion-induced external disturbances. Specifically, we develop novel saturation-triggered boundaries to guarantee prescribed tracking error constraints under input saturation. This effectively addresses the control singularity issue inherent in traditional prescribed performance control, which occurs when input saturation causes the control error to exceed prescribed constraint boundaries. Subsequently, we design a continuous auxiliary dynamic system to further mitigate the effects of input saturation. Furthermore, leveraging the internal model principle and the periodic nature of ship motion, external disturbances are treated as the outputs of a linear exosystem with known structure but unknown parameters. These unknown parameters are then estimated using adaptive techniques, enabling asymptotic estimation of external disturbances. Building upon these developments and employing the backstepping design tool, we achieve adaptive antidisturbance stabilization of AHS. Both theoretical analysis and comparative simulations validate the proposed control law. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

16 pages, 2961 KB  
Article
Adaptive Fuzzy Sliding-Mode Control for Ship Path Tracking Based on a Fixed-Time Disturbance Observer
by Yibu Li, Changchun Bao and Rui Guo
J. Mar. Sci. Eng. 2025, 13(9), 1788; https://doi.org/10.3390/jmse13091788 - 16 Sep 2025
Viewed by 369
Abstract
We propose a control method that integrates adaptive fuzzy sliding-mode control (AF-SMC) with a fixed-time disturbance observer (FTDO) to address modeling errors, external disturbances, and input saturation in ship path tracking. The designed adaptive fuzzy system dynamically adjusts the SMC gain to enhance [...] Read more.
We propose a control method that integrates adaptive fuzzy sliding-mode control (AF-SMC) with a fixed-time disturbance observer (FTDO) to address modeling errors, external disturbances, and input saturation in ship path tracking. The designed adaptive fuzzy system dynamically adjusts the SMC gain to enhance adaptability to parameter variations and modeling errors. Furthermore, the proposed method enables rapid estimation of the total uncertainty term by incorporating an FTDO, ensuring fixed-time estimation and feedforward compensation of the total matched uncertainty without requiring prior knowledge of the disturbance bound. Lyapunov stability analysis was employed to verify the bounded stability of the closed-loop system. Simulation results indicate that the proposed method provides high control accuracy and robustness. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1960 KB  
Article
A GRNN Neural Network-Based Surrogate Model for Ship Dynamic Stability Calculation
by Qiang Sun, Jie Tan and Yaohua Zhou
J. Mar. Sci. Eng. 2025, 13(9), 1777; https://doi.org/10.3390/jmse13091777 - 15 Sep 2025
Viewed by 580
Abstract
The assessment of ship dynamic stability in waves is crucial for navigation safety. To mitigate accidents, the International Maritime Organization (IMO) has formulated corresponding technical standards. However, evaluating the dynamic stability performance of ships involves complex numerical simulation or model experiments based on [...] Read more.
The assessment of ship dynamic stability in waves is crucial for navigation safety. To mitigate accidents, the International Maritime Organization (IMO) has formulated corresponding technical standards. However, evaluating the dynamic stability performance of ships involves complex numerical simulation or model experiments based on hydrodynamic methods, which demands professionalism, substantial time, and significant financial cost. This paper analyzes the feasibility of using the Generalized Regression Neural Network (GRNN) method to build a surrogate model for ship dynamic stability performance calculation. Comparisons with hydrodynamics-based simulations reveal that the surrogate model matches the trends well, yet the root-mean-square error (RMSE) remains non-negligible. Therefore, an improved GRNN surrogate model is proposed to solve this problem. By incorporating enhanced feature preprocessing and clustering techniques, the improved model not only increases predictive accuracy but also achieves significant efficiency gains, reducing the computational time from days or weeks for numerical simulations to seconds or minutes. Experimental results show that the improved surrogate model outperforms the baseline GRNN model, and this framework can serve as a practical surrogate for hydrodynamics-based numerical models to rapidly assess pre-voyage dynamic stability. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
Show Figures

Figure 1

23 pages, 2543 KB  
Article
Research on Power Load Prediction and Dynamic Power Management of Trailing Suction Hopper Dredger
by Zhengtao Xia, Zhanjing Hong, Runkang Tang, Song Song, Changjiang Li and Shuxia Ye
Symmetry 2025, 17(9), 1446; https://doi.org/10.3390/sym17091446 - 4 Sep 2025
Viewed by 611
Abstract
During the continuous operation of trailing suction hopper dredger (TSHD), equipment workload exhibits significant time-varying characteristics. Maintaining dynamic symmetry between power generation and consumption is crucial for ensuring system stability and preventing power supply failures. Key challenges lie in dynamic perception, accurate prediction, [...] Read more.
During the continuous operation of trailing suction hopper dredger (TSHD), equipment workload exhibits significant time-varying characteristics. Maintaining dynamic symmetry between power generation and consumption is crucial for ensuring system stability and preventing power supply failures. Key challenges lie in dynamic perception, accurate prediction, and real-time power management to achieve this equilibrium. To address this issue, this paper proposes and constructs a “prediction-driven dynamic power management method.” Firstly, to model the complex temporal dependencies of the workload sequence, we introduce and improve a dilated convolutional long short-term memory network (Dilated-LSTM) to build a workload prediction model with strong long-term dependency awareness. This model significantly improves the accuracy of workload trend prediction. Based on the accurate prediction results, a dynamic power management strategy is developed: when the predicted total power consumption is about to exceed a preset margin threshold, the Power Management System (PMS) automatically triggers power reduction operations for adjusfigure loads, aiming to maintain grid balance without interrupting critical loads. If the power that the generator can produce is still less than the required power after the power is reduced, and there is still a risk of supply-demand imbalance, the system uses an Improved Grey Wolf Optimization (IGWO) algorithm to automatically disconnect some non-critical loads, achieving real-time dynamic symmetry matching of generation capacity and load demand. Experimental results show that this mechanism effectively prevents generator overloads or ship-wide power failures, significantly improving system stability and the reliability of power supply to critical loads. The research results provide effective technical support for intelligent energy efficiency management and safe operation of TSHDs and other vessels with complex working conditions. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 5512 KB  
Article
Stability Evaluation of a Damaged Ship with Ice Accumulation in Arctic Regions
by Jiabin Tao, Wei Chai, Xiaonan Yang, Wenzhe Zhang, Chong Wang and Jianzhang Qi
J. Mar. Sci. Eng. 2025, 13(9), 1685; https://doi.org/10.3390/jmse13091685 - 1 Sep 2025
Viewed by 683
Abstract
The harsh environment in Arctic regions presents significant challenges to ship stability, particularly when ice accumulation and hull damage occur simultaneously, potentially increasing the risk of instability. This study addresses this critical issue by proposing a comprehensive stability assessment framework for ships operating [...] Read more.
The harsh environment in Arctic regions presents significant challenges to ship stability, particularly when ice accumulation and hull damage occur simultaneously, potentially increasing the risk of instability. This study addresses this critical issue by proposing a comprehensive stability assessment framework for ships operating in Arctic regions. Utilizing the DTMB-5415 ship model, the evaluation integrates both static and dynamic stability under combined ice accumulation and damage conditions. Firstly, an ice accumulation prediction model was developed to estimate ice accumulation over various durations. Subsequently, the static stability of damaged ships with ice accumulation was evaluated. Computational Fluid Dynamics (CFD) simulations were then conducted to calculate roll damping coefficients and analyze the effects of damage location and ice accumulation on free roll decay behavior. A single-degree-of-freedom (SDOF) roll motion model was constructed, incorporating roll damping coefficients and wave excitation moments to simulate roll responses in random wave environments. Extreme value prediction was employed to estimate the short-term extreme response distribution of roll motions. The results indicate that ship stability decreases significantly when ice accumulation and hull damage occur simultaneously. This integrated framework provides a systematic foundation for evaluating ship stability in the Arctic environment, specifically accounting for the combined effects of ice accretion and hull damage. Full article
Show Figures

Figure 1

19 pages, 9374 KB  
Article
Heading and Path-Following Control of Autonomous Surface Ships Based on Generative Adversarial Imitation Learning
by Jialun Liu, Jianuo Cai, Shijie Li, Changwei Li and Yue Yu
J. Mar. Sci. Eng. 2025, 13(9), 1623; https://doi.org/10.3390/jmse13091623 - 25 Aug 2025
Viewed by 1149
Abstract
Autonomous ship control faces significant challenges due to the diversity of ship types, the complexity of task scenarios, and the uncertainty of dynamic marine environments. These factors limit the effectiveness of traditional control approaches that rely on explicit dynamics modeling and handcrafted control [...] Read more.
Autonomous ship control faces significant challenges due to the diversity of ship types, the complexity of task scenarios, and the uncertainty of dynamic marine environments. These factors limit the effectiveness of traditional control approaches that rely on explicit dynamics modeling and handcrafted control laws. With the rapid advancement of computing and artificial intelligence, imitation learning offers a promising alternative by directly learning expert behaviors from data. This paper proposes a Generative Adversarial Imitation Learning (GAIL) method for heading and path-following control of autonomous surface ships. It employs an adversarial learning structure, in which a generator learns control policies that reproduce expert behavior while a discriminator distinguishes between expert and learned trajectories. In this way, the control strategies can be learned from expert demonstrations without requiring explicit reward design. The proposed method is validated through simulations on a model-scale tug. Compared with a behavioral cloning (BC) baseline controller, the GAIL-based controller achieves superior performance in terms of path-following accuracy, heading stability, and control smoothness, confirming its effectiveness and potential for real-world deployment. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 6902 KB  
Article
CFD Investigation on Effect of Ship–Helicopter Coupling Motions on Aerodynamic Flow Field and Rotor Loads
by Zhouyang Liu, Yang Liu, Yingnan Ma, Zhanyang Chen and Weidong Zhao
J. Mar. Sci. Eng. 2025, 13(8), 1544; https://doi.org/10.3390/jmse13081544 - 12 Aug 2025
Viewed by 606
Abstract
As critical assets for surveillance, reconnaissance, and transport, shipborne helicopters play an indispensable role in modern maritime operations. Ensuring the safety and stability of shipboard landings is therefore of paramount importance, particularly under complex sea conditions. This study presents a comprehensive investigation into [...] Read more.
As critical assets for surveillance, reconnaissance, and transport, shipborne helicopters play an indispensable role in modern maritime operations. Ensuring the safety and stability of shipboard landings is therefore of paramount importance, particularly under complex sea conditions. This study presents a comprehensive investigation into the dynamic interaction between helicopters and moving ships during the landing phase, with a particular emphasis on the influence of ship motions on the unsteady aerodynamic flow field and rotor loads. A coupled numerical–theoretical framework is developed, which overcomes the limitations of traditional models that typically consider static or single-degree-of-freedom (SDOF) ship motions. This work systematically analyzes the effects of multi-degree-of-freedom (MDOF) ship motions—including roll, pitch, and heave—on the coupled aerodynamic environment and rotor dynamic response. The results demonstrate that each motion component imposes a distinct influence on the flow-field characteristics, with pitch identified as the dominant contributor to turbulence intensity, particularly during the mid-to-late landing phase. Furthermore, it is found that a linear superposition of individual motions cannot accurately represent the combined effect of MDOF motions. Instead, their interaction leads to complex nonlinear effects, which may attenuate certain flow instabilities. These findings provide critical insights into ship–helicopter dynamic coupling and offer a scientific basis for improving landing safety under adverse sea conditions. Full article
(This article belongs to the Special Issue Advances in Marine Computational Fluid Dynamics)
Show Figures

Figure 1

26 pages, 6084 KB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Viewed by 627
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 11311 KB  
Article
Shore-Based Constant Tension Mooring System Performance and Configuration Study Based on Cross-Domain Collaborative Analysis Method
by Nan Liu, Peijian Qu, Songgui Chen, Hanbao Chen and Shoujun Wang
J. Mar. Sci. Eng. 2025, 13(8), 1385; https://doi.org/10.3390/jmse13081385 - 22 Jul 2025
Viewed by 687
Abstract
In this paper, a new solution is proposed for the problem of mooring safety of large ships in complex sea conditions. Firstly, a dual-mode mooring system is designed to adaptively switch between active control and passive energy storage, adjusting the mooring strategy based [...] Read more.
In this paper, a new solution is proposed for the problem of mooring safety of large ships in complex sea conditions. Firstly, a dual-mode mooring system is designed to adaptively switch between active control and passive energy storage, adjusting the mooring strategy based on real-time sea conditions. Second, a collaborative analysis platform based on AQWA-Python-MATLAB/Simulink was researched and developed. Thirdly, based on the above simulation platform, the performance of the mooring system and the effects of different configurations on the stability of ship motion and dynamic tension of the cable are emphasized. Finally, by comparing the different mooring positions under various sea conditions with the traditional mooring system, the results show that the constant tension mooring system significantly improves the stability and safety of the ship under both conventional and extreme sea conditions, effectively reducing the fluctuation of cable tension. Through the optimization analysis, it is determined that the configuration of bow and stern cables is the optimal solution, which ensures safety while also improving economic benefits. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

33 pages, 5578 KB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 2050
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

33 pages, 7555 KB  
Article
A Quasi-Bonjean Method for Computing Performance Elements of Ships Under Arbitrary Attitudes
by Kaige Zhu, Jiao Liu and Yuanqiang Zhang
Systems 2025, 13(7), 571; https://doi.org/10.3390/systems13070571 - 11 Jul 2025
Viewed by 446
Abstract
Deep-sea navigation represents the future trend of maritime navigation; however, complex seakeeping conditions often lead to unconventional ship attitudes. Conventional calculation methods are insufficient for accurately assessing hull performance under heeled or extreme trim conditions. Drawing inspiration from Bonjean curve principles, this study [...] Read more.
Deep-sea navigation represents the future trend of maritime navigation; however, complex seakeeping conditions often lead to unconventional ship attitudes. Conventional calculation methods are insufficient for accurately assessing hull performance under heeled or extreme trim conditions. Drawing inspiration from Bonjean curve principles, this study proposes a Quasi-Bonjean (QB) method to compute ship performance elements in arbitrary attitudes. Specifically, the QB method first constructs longitudinally distributed hull sections from the Non-Uniform Rational B-Spline (NURBS) surface model, then simulates arbitrary attitudes through dynamic waterplane adjustments, and finally calculates performance elements via sectional integration. Furthermore, an Adaptive Surface Tessellation (AST) method is proposed to optimize longitudinal section distribution by minimizing the number of stations while maintaining high geometric fidelity, thereby enhancing the computational efficiency of the QB method. Comparative experiments reveal that the AST-generated 100-station sections achieve computational precision comparable to 200-station uniform distributions under optimal conditions, and the performance elements calculated by the QB method under multi-attitude conditions meet International Association of Classification Societies accuracy thresholds, particularly excelling in the displacement and vertical center of buoyancy calculations. These findings confirm that the QB method effectively addresses the critical limitations of traditional hydrostatic tables, providing a theoretical foundation for analyzing damaged ship equilibrium and evaluating residual stability. Full article
Show Figures

Figure 1

22 pages, 6603 KB  
Article
Vibration Characterization of Ship Propulsion System Including Stern-Bearing Installation Errors
by Jianhua Zhou, Shidong Fan, Hanhua Zhu, Yulei Zhu, Hailong Weng, Junlang Yuan and Taiwei Yang
J. Mar. Sci. Eng. 2025, 13(7), 1241; https://doi.org/10.3390/jmse13071241 - 27 Jun 2025
Viewed by 995
Abstract
During the operation and service of a ship, its power system will affect the stability, reliability, and safety of the ship’s power system and the ship’s vitality if there are typical problems, such as unstable operation and vibration of the shaft system. If [...] Read more.
During the operation and service of a ship, its power system will affect the stability, reliability, and safety of the ship’s power system and the ship’s vitality if there are typical problems, such as unstable operation and vibration of the shaft system. If the tail bearing is not properly installed, it will lead to increased vibration at its support during operation, which will cause the propulsion system components to come loose and even produce destructive accidents. This paper combines the theory of multi-degree-of-freedom system dynamics to study the propulsion system vibration modeling technology based on the bearing–mounting error, analyze the mapping law between the bearing–mounting error and the shaft system vibration, construct a shaft system vibration model with the bearing–mounting error included, and analyze the influence of the bearing vertical mounting error and lateral mounting error on the vibration performance of the shaft system. This paper establishes the equations of motion of the shaft system with bearing–mounting errors and analyzes the relationship between the bearing vertical mounting errors and lateral mounting errors and the amplitude, speed, and acceleration of the paddle shaft system. The analyzed results show that the vibration response of the shaft system gradually increases with the increase in the bearing–mounting error. With the increase in the bearing vertical mounting error, the increase in vibration amplitude and the transient response of vibration acceleration in the vertical direction is larger than that in the horizontal direction, and the sensitivity of the transient response of vibration acceleration in the vertical direction to the bearing vertical mounting error is larger than that in the horizontal direction. With the increase in the bearing lateral mounting error, the increase in the vibration acceleration transient response value of the paddle shaft system in the horizontal direction is larger than that in the vertical direction, and the sensitivity of the vibration amplitude and vibration acceleration transient response to the bearing lateral mounting error in the horizontal direction is larger than that in the vertical direction. The bearing vertical installation error has a greater effect on the vibration of the paddle shaft system in the vertical direction than in the horizontal direction, and the bearing lateral installation error has a greater effect on the vibration of the paddle shaft system in the horizontal direction than in the vertical direction. The results of this paper can provide a theoretical basis and technical reference for the installation and calibration of ship propulsion system. Full article
(This article belongs to the Special Issue Safety and Reliability of Ship and Ocean Engineering Structures)
Show Figures

Figure 1

29 pages, 3895 KB  
Article
Numerical Study on Ammonia Dispersion and Explosion Characteristics in Confined Space of Marine Fuel Preparation Room
by Phan Anh Duong, Jin-Woo Bae, Changmin Lee, Dong Hak Yang and Hokeun Kang
J. Mar. Sci. Eng. 2025, 13(7), 1235; https://doi.org/10.3390/jmse13071235 - 26 Jun 2025
Cited by 2 | Viewed by 1313
Abstract
Ammonia is emerging as a promising zero-carbon marine fuel due to its high hydrogen density, low storage pressure, and long-term stability, making it well-suited for supporting sustainable maritime energy systems. However, its adoption introduces serious safety challenges, as its toxic, flammable, and corrosive [...] Read more.
Ammonia is emerging as a promising zero-carbon marine fuel due to its high hydrogen density, low storage pressure, and long-term stability, making it well-suited for supporting sustainable maritime energy systems. However, its adoption introduces serious safety challenges, as its toxic, flammable, and corrosive properties pose greater risks than many other alternative fuels, necessitating rigorous risk assessment and safety management. This study presents a comprehensive investigation of potential ammonia leakage scenarios that may arise during the fuel gas supply process within confined compartments of marine vessels, such as the fuel preparation room and engine room. The simulations were conducted using FLACS-CFD V22.2, a validated computational fluid dynamics tool specialized for flammable gas dispersion and explosion risk analysis in complex geometries. The model enables detailed assessment of gas concentration evolution, toxic exposure zones, and overpressure development under various leakage conditions, providing valuable insights for emergency planning, ventilation design, and structural safety reinforcement in ammonia-fueled ship systems. Prolonged ammonia exposure is driven by three key factors: leakage occurring opposite the main ventilation flow, equipment layout obstructing airflow and causing gas accumulation, and delayed sensor response due to recirculating flow patterns. Simulation results revealed that within 1.675 s of ammonia leakage and ignition, critical impact zones capable of causing fatal injuries or severe structural damage were largely contained within a 10 m radius of the explosion source. However, lower overpressure zones extended much further, with slight damage reaching up to 14.51 m and minor injury risks encompassing the entire fuel preparation room, highlighting a wider threat to crew safety beyond the immediate blast zone. Overall, the study highlights the importance of targeted emergency planning and structural reinforcement to mitigate explosion risks in ammonia-fueled environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop