Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = dynamic Casimir effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 235 KiB  
Article
Casimir Effect and the Cosmological Constant
by Jaume Giné
Symmetry 2025, 17(5), 634; https://doi.org/10.3390/sym17050634 - 23 Apr 2025
Viewed by 1212
Abstract
Any quantum theory of gravity at the quantum gravity scale has the expectation of the existence of a minimal observable length. It is also expected that this fundamental length has a principal role in nature at the quantum gravity scale. From the uncertainty [...] Read more.
Any quantum theory of gravity at the quantum gravity scale has the expectation of the existence of a minimal observable length. It is also expected that this fundamental length has a principal role in nature at the quantum gravity scale. From the uncertainty principle that influences the quantum measurement process, the existence of a minimal measurable length can be heuristically deduced. The existence of this minimal measurable length leads to an apparent discretization of spacetime, as distinguishing below this minimal length becomes impossible. In topologically non-trivial cosmological models, the Casimir effect is significant since it alters the spectrum of vacuum fluctuations and leads to a non-zero Casimir energy density. This suggests that the topology of the Universe could influence its vacuum energy, potentially affecting its expansion dynamics. In this sense, the Casimir effect could contribute to the observed acceleration of the Universe’s expansion. Here, we use the Casimir effect to determine the value of the electromagnetic zero-point energy in the Universe, applying it to the regions outside and inside the Universe horizon or Hubble horizon and assuming the existence of this minimal length. The Casimir effect is directly related to the boundary conditions imposed by the geometry and symmetries of the Hubble horizon. The agreement of the obtained value with the observed cosmological constant is not exact and therefore the contribution of non-electromagnetic radiation (gravitational effects) must be take into account. Full article
(This article belongs to the Section Physics)
16 pages, 328 KiB  
Review
Dynamical Casimir Effect: 55 Years Later
by Viktor V. Dodonov
Physics 2025, 7(2), 10; https://doi.org/10.3390/physics7020010 - 29 Mar 2025
Viewed by 4840
Abstract
The paper represents a brief review of the publications in 2020 to 2024 related to the phenomena combined under the name of dynamical Casimir effect. Full article
26 pages, 416 KiB  
Perspective
Foundational Issues in Dynamical Casimir Effect and Analogue Features in Cosmological Particle Creation
by Jen-Tsung Hsiang and Bei-Lok Hu
Universe 2024, 10(11), 418; https://doi.org/10.3390/universe10110418 - 7 Nov 2024
Cited by 3 | Viewed by 1355
Abstract
Moving mirrors as analogue sources of Hawking radiation from black holes have been explored extensively but less so with cosmological particle creation (CPC), even though the analogy between the dynamical Casimir effect (DCE) and CPC based on the mechanism of the parametric amplification [...] Read more.
Moving mirrors as analogue sources of Hawking radiation from black holes have been explored extensively but less so with cosmological particle creation (CPC), even though the analogy between the dynamical Casimir effect (DCE) and CPC based on the mechanism of the parametric amplification of quantum field fluctuations has also been known for a long time. This ‘perspective’ essay intends to convey some of the rigor and thoroughness of quantum field theory in curved spacetime, which serves as the theoretical foundation of CPC, to DCE, which enjoys a variety of active experimental explorations. We have selected seven issues of relevance to address, starting from the naively simple ones, e.g., why one should be bothered with ‘curved’ spacetime when performing a laboratory experiment in ostensibly flat space, to foundational theoretical ones, such as the frequent appearance of nonlocal dissipation in the system dynamics induced by colored noises in its field environment, the existence of quantum Lenz law and fluctuation–dissipation relations in the backreaction effects of DCE emission on the moving atom/mirror or the source, and the construction of a microphysics model to account for the dynamical responses of a mirror or medium. The strengthening of the theoretical ground for DCE is not only useful for improving conceptual clarity but needed for the development of the proof-of-concept type of future experimental designs for DCE. The results from the DCE experiments in turn will enrich our understanding of quantum field effects in the early universe because they are, in the spirit of analogue gravity, our best hopes for the verification of these fundamental processes. Full article
(This article belongs to the Special Issue Quantum Physics including Gravity: Highlights and Novelties)
24 pages, 421 KiB  
Article
Supersymmetric Integrable Hamiltonian Systems, Conformal Lie Superalgebras K(1, N = 1, 2, 3), and Their Factorized Semi-Supersymmetric Generalizations
by Anatolij K. Prykarpatski, Volodymyr M. Dilnyi, Petro Ya. Pukach and Myroslava I. Vovk
Symmetry 2024, 16(11), 1441; https://doi.org/10.3390/sym16111441 - 30 Oct 2024
Viewed by 764
Abstract
We successively reanalyzed modern Lie-algebraic approaches lying in the background of effective constructions of integrable super-Hamiltonian systems on functional N=1,2,3- supermanifolds, possessing rich supersymmetries and endowed with suitably related compatible Poisson structures. As an application, we [...] Read more.
We successively reanalyzed modern Lie-algebraic approaches lying in the background of effective constructions of integrable super-Hamiltonian systems on functional N=1,2,3- supermanifolds, possessing rich supersymmetries and endowed with suitably related compatible Poisson structures. As an application, we describe countable hierarchies of new nonlinear Lax-type integrable N=2,3-semi-supersymmetric dynamical systems and constructed their central extended superconformal Lie superalgebra K(1|3) and its finite-dimensional coadjoint orbits, generated by the related Casimir functionals. Moreover, we generalized these results subject to the suitably factorized super-pseudo-differential Lax-type representations and present the related super-Poisson brackets and compatible suitably factorized Hamiltonian superflows. As an interesting point, we succeeded in the algorithmic construction of integrable super-Hamiltonian factorized systems generated by Casimir invariants of the centrally extended super-pseudo-differential operator Lie superalgebras on the N=1,2,3-supercircle. Full article
(This article belongs to the Section Mathematics)
20 pages, 1428 KiB  
Article
First- and Second-Order Forces in the Asymmetric Dynamical Casimir Effect for a Single δδ Mirror
by Matthew J. Gorban, William D. Julius, Patrick M. Brown, Jacob A. Matulevich, Ramesh Radhakrishnan and Gerald B. Cleaver
Physics 2024, 6(2), 760-779; https://doi.org/10.3390/physics6020047 - 14 May 2024
Cited by 4 | Viewed by 1574
Abstract
Here, we consider an asymmetric δδ mirror undergoing time-dependent interactions with a massless scalar field in 1 + 1 dimensions. Using fluctuation-dissipation theory for a mirror in vacuum, we compute the force on a moving δδ mirror [...] Read more.
Here, we consider an asymmetric δδ mirror undergoing time-dependent interactions with a massless scalar field in 1 + 1 dimensions. Using fluctuation-dissipation theory for a mirror in vacuum, we compute the force on a moving δδ mirror with time-dependent material properties. We investigate the first-order forces arising from the two distinct fluctuation sources and calculate the linear susceptibility in each case. We then plot the resulting forces. At the second order, we also find the independent contributions to the total force as well as the force that arises from the interference phenomena between the two fluctuation sources. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

4 pages, 197 KiB  
Correction
Correction: Gorban et al. The Asymmetric Dynamical Casimir Effect. Physics 2023, 5, 398–422
by Matthew J. Gorban, William D. Julius, Patrick M. Brown, Jacob A. Matulevich and Gerald B. Cleaver
Physics 2024, 6(1), 422-425; https://doi.org/10.3390/physics6010028 - 15 Mar 2024
Cited by 1 | Viewed by 1000
Abstract
There was an error in the original paper [1], which occurred in the calculation of the DCE spectrum from the time-dependant perturbations on λ(t) [...] Full article
(This article belongs to the Special Issue Vacuum Fluctuations)
17 pages, 8787 KiB  
Article
Multipole Approach to the Dynamical Casimir Effect with Finite-Size Scatterers
by Lucas Alonso, Guilherme C. Matos, François Impens, Paulo A. Maia Neto and Reinaldo de Melo e Souza
Entropy 2024, 26(3), 251; https://doi.org/10.3390/e26030251 - 12 Mar 2024
Cited by 2 | Viewed by 1609
Abstract
A mirror subjected to a fast mechanical oscillation emits photons out of the quantum vacuum—a phenomenon known as the dynamical Casimir effect (DCE). The mirror is usually treated as an infinite metallic surface. Here, we show that, in realistic experimental conditions (mirror size [...] Read more.
A mirror subjected to a fast mechanical oscillation emits photons out of the quantum vacuum—a phenomenon known as the dynamical Casimir effect (DCE). The mirror is usually treated as an infinite metallic surface. Here, we show that, in realistic experimental conditions (mirror size and oscillation frequency), this assumption is inadequate and drastically overestimates the DCE radiation. Taking the opposite limit, we use instead the dipolar approximation to obtain a simpler and more realistic treatment of DCE for macroscopic bodies. Our approach is inspired by a microscopic theory of DCE, which is extended to the macroscopic realm by a suitable effective Hamiltonian description of moving anisotropic scatterers. We illustrate the benefits of our approach by considering the DCE from macroscopic bodies of different geometries. Full article
(This article belongs to the Special Issue Quantum Nonstationary Systems)
Show Figures

Figure 1

16 pages, 509 KiB  
Article
The Normal Casimir Force for Lateral Moving Planes with Isotropic Conductivities
by Nail Khusnutdinov and Natalia Emelianova
Physics 2024, 6(1), 148-163; https://doi.org/10.3390/physics6010011 - 26 Jan 2024
Cited by 5 | Viewed by 1304
Abstract
We consider the two planes at zero temperature with isotropic conductivity that are in relative lateral motion with velocity v and interplane distance a. Two models of conductivity are taken into account—the constant and frequency-dependent Drude models. The normal (perpendicular to planes) [...] Read more.
We consider the two planes at zero temperature with isotropic conductivity that are in relative lateral motion with velocity v and interplane distance a. Two models of conductivity are taken into account—the constant and frequency-dependent Drude models. The normal (perpendicular to planes) Casimir force is analyzed in detail for two systems—(i) two planes with identical conductivity and (ii) one plane that is a perfect metal. The velocity correction to the Casimir energy, ΔvEv2, for small enough velocities is used for all considered cases. In the case of constant conductivity, η, the energy correction is ΔvEη/a3v/η2 for vη1. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

13 pages, 3174 KiB  
Article
Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer
by Fatemeh Tajik and George Palasantzas
Physics 2023, 5(4), 1081-1093; https://doi.org/10.3390/physics5040070 - 21 Nov 2023
Cited by 2 | Viewed by 1546
Abstract
Here, we investigate the actuation dynamics of a micro device with different intervening liquids between the actuating components under the influence of Casimir and dissipative hydrodynamic forces. This is enabled via phase space portraits, which demonstrate that by increasing the dielectric response of [...] Read more.
Here, we investigate the actuation dynamics of a micro device with different intervening liquids between the actuating components under the influence of Casimir and dissipative hydrodynamic forces. This is enabled via phase space portraits, which demonstrate that by increasing the dielectric response of the intervening layer the autonomous device may not come into stiction due to the decreasing in magnitude Casmir force. Unlike the micro devices that are placed in vacuum with an intervening liquid, the phase portraits show only a spiral trajectory which eventually stops at a rest position due to the strong energy dissipation by the position dependent hydrodynamic drag forces, even when considering sufficiently strong restoring forces. Moreover, it is feasible to expand the area of motion using intervening liquids with lower dynamic viscosity or increasing the slip length of the intervening fluid. Finally, under the influence of an external driven force, which is the realistic case for possible applications, the system can reach stable oscillation at larger separations with an amplitude higher for the liquid that led to lower Casimir and hydrodynamic forces. Hence, the results presented in this study are essential for studying the dynamical behavior of MEMS and their design in liquid environments. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

17 pages, 1053 KiB  
Article
Larmor Temperature, Casimir Dynamics, and Planck’s Law
by Evgenii Ievlev and Michael R. R. Good
Physics 2023, 5(3), 797-813; https://doi.org/10.3390/physics5030050 - 18 Jul 2023
Cited by 6 | Viewed by 2026
Abstract
Classical radiation from a single relativistically accelerating electron is investigated where the temperature characterizing the system highlights the dependence on acceleration. In the context of the dynamic Casimir effect with Planck-distributed photons and thermal black hole evaporation, we demonstrate analytic consistency between the [...] Read more.
Classical radiation from a single relativistically accelerating electron is investigated where the temperature characterizing the system highlights the dependence on acceleration. In the context of the dynamic Casimir effect with Planck-distributed photons and thermal black hole evaporation, we demonstrate analytic consistency between the ideas of constant acceleration and equilibrium thermal radiation. For ultra-relativistic speeds, we demonstrate a long-lasting constant peel acceleration and constant power emission, which is consistent with the idea of balanced equilibrium of Planck-distributed particle radiation. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

20 pages, 3093 KiB  
Article
Ancilla-Assisted Generation of Photons from Vacuum via Time-Modulation of Extracavity Qubit
by Marcos V. S. de Paula, William W. T. Sinesio and Alexandre V. Dodonov
Entropy 2023, 25(6), 901; https://doi.org/10.3390/e25060901 - 6 Jun 2023
Cited by 3 | Viewed by 1961
Abstract
We propose a scheme for the generation of photons from a vacuum via time-modulation of a quantum system indirectly coupled to the cavity field through some ancilla quantum subsystem. We consider the simplest case when the modulation is applied to an artificial two-level [...] Read more.
We propose a scheme for the generation of photons from a vacuum via time-modulation of a quantum system indirectly coupled to the cavity field through some ancilla quantum subsystem. We consider the simplest case when the modulation is applied to an artificial two-level atom (we call ‘t-qubit’, that can be located even outside the cavity), while the ancilla is a stationary qubit coupled via the dipole interaction both to the cavity and t-qubit. We find that tripartite entangled states with a small number of photons can be generated from the system ground state under resonant modulations, even when the t-qubit is far detuned from both the ancilla and the cavity, provided its bare and modulation frequencies are properly adjusted. We attest our approximate analytic results by numeric simulations and show that photon generation from vacuum persists in the presence of common dissipation mechanisms. Full article
Show Figures

Figure 1

24 pages, 492 KiB  
Article
Bosonic Casimir Effect in an Aether-like Lorentz-Violating Scenario with Higher Order Derivatives
by Robson A. Dantas, Herondy F. Santana Mota and Eugênio R. Bezerra de Mello
Universe 2023, 9(5), 241; https://doi.org/10.3390/universe9050241 - 20 May 2023
Cited by 10 | Viewed by 1328
Abstract
In this paper, we investigate the bosonic Casimir effect in a Lorentz-violating symmetry scenario. The theoretical model adopted consists of a real massive scalar quantum field confined in a region between two large parallel plates, having its dynamics governed by a modified Klein–Gordon [...] Read more.
In this paper, we investigate the bosonic Casimir effect in a Lorentz-violating symmetry scenario. The theoretical model adopted consists of a real massive scalar quantum field confined in a region between two large parallel plates, having its dynamics governed by a modified Klein–Gordon equation that presents a Lorentz symmetry-breaking term. In this context, we admit that the quantum field obeys specific boundary conditions on the plates. The Lorentz-violating symmetry is implemented by the presence of an arbitrary constant space-like vector in a CPT-even aether-like approach, considering a direct coupling between this vector with the derivative of the field in higher order. The modification of the Klein–Gordon equation produces important corrections on the Casimir energy and pressure. Thus, we show that these corrections strongly depend on the order of the higher derivative term and the specific direction of the constant vector, as well as the boundary conditions considered. Full article
(This article belongs to the Special Issue Quantum Field Theory)
Show Figures

Figure 1

25 pages, 714 KiB  
Article
The Asymmetric Dynamical Casimir Effect
by Matthew J. Gorban, William D. Julius, Patrick M. Brown, Jacob A. Matulevich and Gerald B. Cleaver
Physics 2023, 5(2), 398-422; https://doi.org/10.3390/physics5020029 - 11 Apr 2023
Cited by 4 | Viewed by 3981 | Correction
Abstract
A mirror with time-dependent boundary conditions will interact with the quantum vacuum to produce real particles via a phenomenon called the dynamical Casimir effect (DCE). When asymmetric boundary conditions are imposed on the fluctuating mirror, the DCE produces an asymmetric spectrum of particles. [...] Read more.
A mirror with time-dependent boundary conditions will interact with the quantum vacuum to produce real particles via a phenomenon called the dynamical Casimir effect (DCE). When asymmetric boundary conditions are imposed on the fluctuating mirror, the DCE produces an asymmetric spectrum of particles. We call this the asymmetric dynamical Casimir effect (ADCE). Here, we investigate the necessary conditions and general structure of the ADCE through both a waves-based and a particles-based perspective. We review the current state of the ADCE literature and expand upon previous studies to generate new asymmetric solutions. The physical consequences of the ADCE are examined, as the imbalance of particles produced must be balanced with the subsequent motion of the mirror. The transfer of momentum from the vacuum to macroscopic objects is discussed. Full article
(This article belongs to the Special Issue Vacuum Fluctuations)
Show Figures

Figure 1

16 pages, 334 KiB  
Article
Stochastic Particle Creation: From the Dynamical Casimir Effect to Cosmology
by Matías Mantiñan, Francisco D. Mazzitelli and Leonardo G. Trombetta
Entropy 2023, 25(1), 151; https://doi.org/10.3390/e25010151 - 11 Jan 2023
Cited by 4 | Viewed by 1772
Abstract
We study a stochastic version of the dynamical Casimir effect, computing the particle creation inside a cavity produced by a random motion of one of its walls. We first present a calculation perturbative in the amplitude of the motion. We compare the stochastic [...] Read more.
We study a stochastic version of the dynamical Casimir effect, computing the particle creation inside a cavity produced by a random motion of one of its walls. We first present a calculation perturbative in the amplitude of the motion. We compare the stochastic particle creation with the deterministic counterpart. Then, we go beyond the perturbative evaluation using a stochastic version of the multiple scale analysis, that takes into account stochastic parametric resonance. We stress the relevance of the coupling between the different modes induced by the stochastic motion. In the single-mode approximation, the equations are formally analogous to those that describe the stochastic particle creation in a cosmological context, that we rederive using multiple scale analysis. Full article
(This article belongs to the Special Issue Quantum Nonstationary Systems)
16 pages, 2372 KiB  
Article
Shaping Dynamical Casimir Photons
by Diego A. R. Dalvit and Wilton J. M. Kort-Kamp
Universe 2021, 7(6), 189; https://doi.org/10.3390/universe7060189 - 6 Jun 2021
Cited by 6 | Viewed by 2764
Abstract
Temporal modulation of the quantum vacuum through fast motion of a neutral body or fast changes of its optical properties is known to promote virtual into real photons, the so-called dynamical Casimir effect. Empowering modulation protocols with spatial control could enable the shaping [...] Read more.
Temporal modulation of the quantum vacuum through fast motion of a neutral body or fast changes of its optical properties is known to promote virtual into real photons, the so-called dynamical Casimir effect. Empowering modulation protocols with spatial control could enable the shaping of spectral, spatial, spin, and entanglement properties of the emitted photon pairs. Space–time quantum metasurfaces have been proposed as a platform to realize this physics via modulation of their optical properties. Here, we report the mechanical analog of this phenomenon by considering systems in which the lattice structure undergoes modulation in space and in time. We develop a microscopic theory that applies both to moving mirrors with a modulated surface profile and atomic array meta-mirrors with perturbed lattice configuration. Spatiotemporal modulation enables motion-induced generation of co- and cross-polarized photon pairs that feature frequency-linear momentum entanglement as well as vortex photon pairs featuring frequency-angular momentum entanglement. The proposed space–time dynamical Casimir effect can be interpreted as induced dynamical asymmetry in the quantum vacuum. Full article
(This article belongs to the Special Issue The Casimir Effect: From a Laboratory Table to the Universe)
Show Figures

Figure 1

Back to TopTop