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Abstract: In this paper, we investigate the bosonic Casimir effect in a Lorentz-violating symmetry
scenario. The theoretical model adopted consists of a real massive scalar quantum field confined
in a region between two large parallel plates, having its dynamics governed by a modified Klein–
Gordon equation that presents a Lorentz symmetry-breaking term. In this context, we admit that the
quantum field obeys specific boundary conditions on the plates. The Lorentz-violating symmetry
is implemented by the presence of an arbitrary constant space-like vector in a CPT-even aether-like
approach, considering a direct coupling between this vector with the derivative of the field in higher
order. The modification of the Klein–Gordon equation produces important corrections on the Casimir
energy and pressure. Thus, we show that these corrections strongly depend on the order of the
higher derivative term and the specific direction of the constant vector, as well as the boundary
conditions considered.
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1. Introduction

The Casimir effect is one of the most important macroscopic consequences of the
existence of the quantum vacuum. Although being theoretically proposed in 1948 by
H. B. Casimir [1], the theoretical result was only verified to be compatible with experiments
10 years later by M. J. Sparnaay [2]. In the 1990s, experiments confirmed the Casimir effect
with a high degree of accuracy [3,4]. In their original work, Casimir predicted that due to
the quantum vacuum fluctuations associated with the electromagnetic field, two parallel
flat neutral (grounded) plates, separated by a distance a, attract each other with a force per
unit area given by:

F
A

= − π2h̄c
240a4 , (1)

where A is the area of the plates.
In general, the Casimir effect is defined as being a force per unit area, when boundary

conditions are imposed on quantum fields. The simplest theoretical device to study the
Casimir effect is constituted by two neutral parallel plates placed in the (classical) vac-
uum. As the quantum vacuum consists of an infinite set of waves that contemplates all
possible wavelengths, when the plates are considered, only a few wavelengths are allowed
between them.

The Lorentz invariance, which is a cornerstone of Quantum Field Theory, was ques-
tioned in a work by V. A. Kostelecky and S. Samuel [5], that describes a mechanism in
string theory that allows the violation of Lorentz symmetry at the Planck energy scale.
According to this mechanism, the violation of the Lorentz symmetry is introduced by the
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emergence of non-vanishing vacuum expectation values of some vector and tensor compo-
nents, which imply preferential directions, providing in this way a space–time anisotropy.
In the quantum gravity context, Hor̆ava–Lifshitz (HL) proposed a theory [6] with the objec-
tive to implement the possible convergence of quantum corrections by imposing different
properties of scales in which the space and time coordinates are set. The HL approach
clearly provides an anisotropy between space and time and can be applied not only to
gravity, but also to other field theory models, including scalar, spinor, and gauge theories.
Among the most important results achieved in these scenarios, one can emphasize the
calculation of the one-loop effective potential in the HL-like QED and HL-like Yukawa
model [7–9] and the study of different issues related to the renormalization of these theo-
ries [10–13]. If there is a violation of the Lorentz symmetry at the Planck energy scale in a
more fundamental theory, the effects of this breakdown must manifest themselves in other
energy scales in different QFT models. Other mechanisms of violation of Lorentz symmetry
are possible, such as space–time noncommutativity [14–18].

The violation of the Lorentz symmetry became of great experimental interest. For in-
stance, in the search for vestiges left by the violation, the high-accuracy experimental
measurements of the Casimir pressure became a great ally in the study of the Lorentz
symmetry breakdown in theoretical models within field theory.

The first analyses of Casimir energy in the Lorentz-violating (LV) theories were devel-
oped in [19–21], considering different Lorentz-breaking extensions of the QED. In addition,
the studies of Casimir effects associated with massless scalar and fermionic quantum fields
confined in the region between two large parallel plates, taking into account HL formalism,
have been investigated in Refs. [22,23], respectively. More recently, the Casimir effect
associated with a massive real scalar field was developed in Ref. [24].

Considering direct coupling between the derivative of the field with an arbitrary
constant four-vector in an aether-like CPT-even Lorentz symmetry breaking, the analysis
of Casimir effects associated with real scalar and fermionic massive fields has been inves-
tigated in Refs. [25,26], respectively. Moreover, local Casimir densities in an LV scenario
have been analyzed in [27,28]. In Ref. [29], the influence of a constant magnetic field on the
Casimir effect in the Lorentz-violating scalar field was considered. The thermal effect on the
Casimir energy and pressure caused by the Lorentz-violating scalar field was investigated
in [30]. The analyses of the Casimir energy and topological mass associated with a massive
scalar field in the LV scenario were considered in Refs. [31,32].

In this paper, we intend to continue in the same line of investigation, i.e., analyzing the
Casimir effect associated with a massive scalar quantum field in an LV scenario; however,
at this time we shall take into consideration that the LV is implemented by a new term
that involves higher order derivatives of the field, coupled to a space-like constant vector.
In this way, we may understand this term as a combination of the HL methodology with
the aether-like CPT-even Lorentz symmetry breaking.

This paper is organized as follows: In Section 2, we briefly introduce the theoretical
model that governs the dynamics of the real scalar field. We present the LV bosonic
action and the corresponding modified Klein–Gordon equation. In Section 3, we develop
the calculation of the Casimir energies in cases where the constant vector is parallel and
orthogonal to the plates. In order to confine the bosonic field between the two parallel
plates, we should impose that the flux of virtual particles crossing the plates is zero. This
can be conducted by imposing Dirichlet, Neumann, or mixed boundary conditions on the
field at the plates. Finally, in Section 4 are conclusions of our most relevant remarks found
in this paper. Here, units are assumed to be h̄ = c = 1, and the metric signature will be
taken as (+,−,−,−).

2. Klein–Gordon Equation in Aether-like Lorentz Symmetry Violation Scenario with
Higher-Order Derivatives

In this section, we introduce the theoretical model that we want to investigate. It is
composed of a massive scalar quantum field in a Lorentz-violating symmetry scenario
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introduced by the presence of a constant space-like vector in an aether-like approach,
considering its direct coupling with the derivative of the field in higher order. In this sense,
the Lorentz violation symmetry is caused by the presence of a constant background vector
and by an anisotropy between space and time coordinates due to scaling transformations.
This model is formally given by the Lagrangian density below:

L =
1
2

[
(∂µφ)(∂µφ)− l2(ε−1)(−1)ε[(uµ∂µ)

εφ]2 −m2φ2
]

. (2)

In the above Lagrangian, the parameter l is of the order of the inverse of the energy scale
where the Lorentz symmetry is broken. The dimensionless constant vector uµ that is
associated with a preferential direction couples to the scalar field through its derivative, as
explained above, and the parameter ε is an integer number.

In this formalism, the modified Klein–Gordon Equation (KG) reads,[
�+ l2(ε−1)(uµ∂µ)

2ε + m2
]
φ = 0 . (3)

For ε = 1, the above equation coincides with the one presented in [25]. In the latter,
the analyses of the Casimir energy and pressure were considered, admitting that the
constant four-vector is both time-like and space-like, separately. Because we are interested
in investigating the behavior of the scalar field in higher order derivatives theory, we
will consider ε ≥ 2. Moreover, to avoid unitarity problems, we will also assume that the
vector uµ is only space-like. Another way to implement a higher-order derivative in an LV
scenario is by considering a higher-order time derivative of the field; however, the presence
of this term may violate unitarity of the theory.

Imposing that the action associated with the Lagrangian (2) is invariant under the
infinitesimal translation, xµ → xµ + δaµ, the obtained energy–momentum tensor (EM)
reads ( our derivation of EM was developed by an induction procedure, i.e, we first
assumed ε = 2, followed by ε = 3, and ε = 4),

Tµν =
∂L

∂(∂µφ)
∂νφ +

∂L
∂(∂µ1 . . .∂µε−1 ∂µφ)

∂µ1 . . .∂µε−1 ∂νφ− ∂µ1

∂L
∂(∂µ1 . . .∂µε−1 ∂µφ)

∂µ2 . . .∂µε−1 ∂νφ

+ ∂µ1 ∂µ2

∂L
∂(∂µ1 . . .∂µε−1 ∂µφ)

∂µ3 . . .∂µε−1 ∂νφ + . . . + (−1)ε−1∂µ1 . . .∂µε−1

∂L
∂(∂µ1 . . .∂µε−1 ∂µφ)

∂νφ− ηµνL . (4)

Substituting the Lagrangian (2) into (4), we obtain:

Tµν = (∂µφ)(∂νφ) + ε!l2(ε−1)uµ

{[
(u · ∂)2ε−1φ

]
(∂νφ)−

[
(u · ∂)2ε−2φ

]
(u · ∂)(∂νφ)

+
[
(u · ∂)2ε−3φ

]
(u · ∂)2(∂νφ) + . . .− (−1)ε[(u · ∂)εφ](u · ∂)ε−1(∂νφ)

}
− ηµνL . (5)

Although by construction, the general expression for the energy–momentum tensor,
Equation (4), satisfies the condition,

∂µTµν = 0 , (6)

we have explicitly shown, for different values of ε, that the above equation is obeyed by
the Lagrangian (2).
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Furthermore, we can see that the energy–momentum tensor is not symmetric; its
anti-symmetric part is given by

Tµν − Tνµ = ε!l2(ε−1)

{[
(u · ∂)2ε−1φ

]
−
[
(u · ∂)2ε−2φ

]
(u · ∂)

+
[
(u · ∂)2ε−3φ

]
(u · ∂)2 + . . .− (−1)ε[(u · ∂)εφ](u · ∂)ε−1

}
[uµ(∂νφ)− uν(∂µφ)] . (7)

This anti-symmetry is typical for Lorentz symmetry violation formalism. Moreover, we
have explicitly checked that ∂νTµν 6= 0.

3. The Casimir Effect in the Context of Higher-Order Derivatives Lorentz
Symmetry Violation

The main objective of this section is to analyze how the LV symmetry represented
by the presence of a higher-order derivative term of the field, along a specific direction,
modifies the dispersion relations responsible for the deviation of the Casimir energy and
pressure when compared with the scenario preserving the Lorentz symmetry. As we have
already mentioned, we will assume that the scalar field operator, φ̂(x), satisfies specific
boundary conditions on the plates exhibited in Figure 1.

Figure 1. Two parallel plates with area L2 separated by a distance a << L.

In order to obtain the Hamiltonian operator, Ĥ, we first calculate the normalized set of
positive/negative energy solutions of Equation (3) that obey specific boundary conditions
on the plates. Performing this, we can calculate the total vacuum energy of the system and
then determine the Casimir energy for each case considered.

3.1. Dirichlet Condition

It has been shown in [25] that the quantum field operator, φ̂(x) is expressed in terms
of the normalized positive/negative energy solution of the Klein–Gordon equation that
satifies Dirichlet boundary condition on the plates, z = 0 and z = a; that is,

φ(x)z=0 = φ(x)z=a = 0 , (8)

has the general form given below,

φ̂(x) =
∫

d2k
∞

∑
n=1

1
[(2π)2a ωk,n]1/2 sin

(nπ

a
z
)
[âk,ne−ikx + â†

k,neikx] , (9)
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where âk,n and â†
k,n correspond to the annihilation and creation operators, respectively.

These operators satisfy the following commutation relations

[âk,n, â†
k′ ,n′ ] = δn,n′δ

2(k− k′),

[âk,n, âk′ ,n′ ] =[â†
k,n, â†

k′ ,n′ ] = 0 ,
(10)

being kx ≡ ωk,nt− kxx− kyy− kzz. The explicit form of ωk,n will depend on the specific
model adopted for the LV term. This subject will be explored in the following subsections.

3.1.1. Vector Parallel to the Plates

The space-like four-vector uµ can be in three different directions, parallel to the plates,
uµ = (0, 1, 0, 0) and uµ = (0, 0, 1, 0), and perpendicular to the plates, uµ = (0, 0, 0, 1).
The dispersion relations associated with the first two vectors are the same. Thereby, here in
this subsection, we will consider a parallel vector as being,

uµ = (0, 1, 0, 0) . (11)

The corresponding dispersion relation is

ω2
k,n = k2

x + k2
y + l2(ε−1)(−1)εk2ε

x +
(nπ

a

)2
+ m2 . (12)

Hence, the Hamiltonian operator Ĥ, resulting from the canonical quantization, reads

Ĥ =
1
2

∫
d2k

∞

∑
n=1

ωk,n

[
2â†

k,n âk,n +
L2

(2π)2

]
. (13)

The vacuum energy is obtained by taking the vacuum expectation value of Ĥ:

E0 = 〈0| Ĥ |0〉 = L2

8π2

∫
d2k

∞

∑
n=1

ωk,n. (14)

Performing a change of coordinates from Cartesian coordinate (kx, ky) to polar one,
(k, θ), and making a change in variable u = ak, we obtain

E0 =
L2

8π2a3

∫ 2π

0
dθ
∫ ∞

0
udu

∞

∑
n=1

[
u2 + (nπ)2 + (ma)2 +

(
l
a

)2(ε−1)
(−1)εu2ε cos2ε θ

] 1
2

. (15)

Because it is our interest to investigate the LV correction on the Casimir energy due
to higher-order space derivative term, we will consider ε ≥ 2. Although for this case
the integral over the variable u can be evaluated, the result is not very enlightening.
Furthermore, we have not found in the literature the integral over θ for general values
of ε, even for ε = 2. Thus, in order to provide a quantitative result for the correction of
the Casimir energy caused by the Lorentz-violating term, we develop an expansion in the
parameter associated with the Lorentz violation. By performing an expansion up to the
first order in the parameter l

a � 1, expression (15) can be written as

E0 ≈ L2

8π2a3

∫ 2π

0
dθ
∫ ∞

0
udu

∞

∑
n=1

{[
u2 + (nπ)2 + (ma)2

] 1
2

+
1
2

(
l
a

)2(ε−1)
(−1)εu2ε cos2ε θ

[
u2 + (nπ)2 + (ma)2

]− 1
2

}
, (16)
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where the first term is associated with the vacuum energy without Lorentz violation. Thus,
after integration over the angular coordinate, the LV term becomes

Ẽ0 =
L2

8πa3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du
∞

∑
n=1

[
u2 + (nπ)2 + (ma)2

]− 1
2 . (17)

The Casimir energy by unit area, associated with a massive scalar quantum field
confined between two large and parallel plates of area L2, separated by a distance a, that
obeys the Dirichlet boundary condition, was obtained in [25] in an integral representation
by,

EC
L2 = − am4

6π2

∫ ∞

1

(v2 − 1)
3
2 dv

e2amv − 1
. (18)

Because our main interest in this research is to investigate the contribution of the
Lorentz symmetry breaking in the Casimir energy, we will focus our analysis on Equation (17).
As our first step to evaluate this contribution, we will use the Abel–Plana summation
formula below [33] to develop the summation over the quantum number n, i.e.,

∞

∑
n=0

F(n) =
1
2

F(0) +
∫ ∞

0
F(t)dt + i

∫ ∞

0

dt
e2πt − 1

[F(it)− F(−it)] . (19)

Then, expression (17) becomes

Ẽ0 =
L2

8πa3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

{
− 1

2
F(0) +

∫ ∞

0
F(t)dt

+ i
∫ ∞

0

F(it)− F(−it)
e2πt − 1

dt

}
, (20)

where

F(n) =
[
u2 + (nπ)2 + (ma)2

]− 1
2 . (21)

Note that the first term on the right side of (20) refers to the vacuum energy in the presence
of only one plate, whereas the second term refers to the vacuum energy without boundary.
Both terms are divergent and do not contribute to the Casimir energy. As a result, the LV
contribution to the Casimir energy per unit area of the plates is given by

ẼC
L2 =

i
8πa3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

×
∫ ∞

0
dt

[u2 + (itπ)2 + (ma)2]−1/2 − [u2 + (−itπ)2 + (ma)2]−1/2

e2πt − 1
. (22)

Performing a change of variable, with tπ = v, we obtain

ẼC
L2 =

i
8π2a3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

×
∫ ∞

0
dv

[u2 + (ma)2 + (iv)2]−1/2 − [u2 + (ma)2 + (−iv)2]−1/2

e2v − 1
. (23)

The integral over the variable v must be considered in two cases, for
[
u2 + (ma)2]1/2

> v

and
[
u2 + (ma)2]1/2

< v, taking into account that we have

• For the case
[
u2 + (ma)2]1/2

> v:
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[u2 + (ma)2 + (±iv)2]−1/2 = [u2 + (ma)2 − v2]−1/2; (24)

• For the case
[
u2 + (ma)2]1/2

< v:

[u2 + (ma)2 + (±iv)2]−1/2 = ∓i
[
v2 − (u2 + (ma)2)

]− 1
2 . (25)

Consequently, the integral in u over the interval [0, (u2 + (ma)2)1/2] vanishes. Thus, it
remains

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

×
∫ ∞

[u2+(ma)2]
1
2

dv
[v2 − (u2 + (ma)2)]−1/2

e2v − 1
. (26)

Furthermore, performing the new change of variable ρ2 = v2 − (u2 + (ma)2) , we find

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

×
∫ ∞

0

dρ

[ρ2 + u2 + (ma)2]
1
2

[
e2(ρ2+u2+(ma)2)

1
2 − 1

] . (27)

Now, by making a change of coordinates from the plane (u, ρ) to the polar one, we obtain

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

∫ ∞

0

σ2(ε+1)dσ

[σ2 + (ma)2]
1
2

[
e2(σ2+(ma)2)

1
2 − 1

] . (28)

For massless field, the above integral becomes,

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

∫ ∞

0

σ2ε+1dσ

e2σ − 1
. (29)

We can further make use of the integral given by [34]

∫ ∞

0

xν−1dx
eµx − 1

=
1

µν
Γ(ν)ζ(ν) , (30)

where Γ(ν) and ζ(ν) correspond to the Gamma and Riemann zeta functions [35], respec-
tively. Thus, we find

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)
Γ(2ε + 2)ζ(2ε + 2)

2(2ε+2)
. (31)

In this case, for instance, we have

• For ε = 2:

ẼC
L2 =

π4

10,080a3

(
l
a

)2
; (32)

• For ε = 3:

ẼC
L2 = − π6

13,440a3

(
l
a

)4
. (33)



Universe 2023, 9, 241 8 of 24

At this point, we would like to emphasize that Equation (31) has been derived consid-
ering ε ≥ 2. For this reason, our results for LV Casimir energies cannot reduce to the
corresponding ones obtained in [26–28,31] by taking its limit ε = 1.

Unfortunately for the massive case, Equation (28) can only be given in terms of an
infinite sum of modified Bessel functions as shown below; let us evaluate its asymptotic
limits for small and large values of the dimensionless parameter ma. In order to perform
this, we make the following change of variables ξ2 = σ2 + (ma)2 and ξ = mav. Thus, it
gives

ẼC
L2 =

(am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

∫ ∞

1

(
v2 − 1

)ε+ 1
2 dv

e2amv − 1
. (34)

Knowing that the geometric series can be represented as

1
e2amv − 1

=
∞

∑
j=1

e−2amvj , (35)

we obtain

ẼC
L2 =

(am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

∞

∑
j=1

∫ ∞

1

(
v2 − 1

)ε+ 1
2 e−2amvjdv . (36)

The integral representation of the modified Bessel function, Kµ(z) [35]

Kν(x) =

( x
2
)νΓ
(

1
2

)
Γ
(

ν + 1
2

) ∫ ∞

1
dt
(

t2 − 1
)ν− 1

2 e−xt , (37)

allows us to put expression (42) in the form

ẼC
L2 =

(am)ε+1Γ
(
ε + 3

2
)
(−1)ε

4(π)
5
2 a3(2ε + 1)

(
l
a

)2(ε−1) ∞

∑
j=1

Kε+1(2amj)
jε+1 . (38)

Let us now consider the expression above in two asymptotic regime cases:

(i) The LV Casimir energy, ẼC, for large values of am >> 1, can be obtained by using the
asymptotic expression for the modified Bessel function for large arguments [35]:

Kν(z) ≈
√

π

2z
e−z . (39)

The dominant contribution is for j = 1. Thus, we obtain

ẼC
L2 ≈

(am)ε+ 1
2 Γ
(
ε + 3

2
)
(−1)ε

8π2a3(2ε + 1)

(
l
a

)2(ε−1)
e−2am . (40)

We can observe that the Casimir energy decays exponentially.

(ii) For am << 1, it is better to consider Equation (34):

• In the case ε = 2, expression (34) becomes

ẼC
L2 =

(am)6

20π2a3

(
l
a

)2 ∫ ∞

1

(
v2 − 1

) 5
2 dv

e2amv − 1
. (41)
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We can approximate the integrand as shown below and obtain a series expansion, i.e.,

ẼC
L2 ≈ (am)6

20π2a3

(
l
a

)2 ∫ ∞

1

(
v5 − 5

2 v3 + 15
8 v
)

dv

e2amv − 1

≈ 1
10,080π2a3

(
l
a

)2[
π6 − 21

4
π4(am)2 +

315
8

π2(am)4
]

. (42)

The LV Casimir pressure can be obtained through the standard procedure:

P̃C(a) = − 1
L2

∂ẼC
∂a

. (43)

Taking the approximated expression (42), we obtain:

P̃C(a) =
1

80,640a4

(
l
a

)2[
40π4 − 126π2(am)2 + 315(am)4

]
. (44)

• In the case ε = 3, expression (34) becomes:

ẼC
L2 = − (am)8

28π2a3

(
l
a

)4 ∫ ∞

1

(
v2 − 1

) 7
2 dv

e2amv − 1
. (45)

Adopting the same procedure to approximate the integrand as above, the series
expansion is

ẼC
L2 ≈ − (am)8

28π2a3

(
l
a

)4 ∫ ∞

1

(
v7 − 7

2 v5 + 35
8 v3 − 35

16 v
)
dv

e2amv − 1

≈ − 1
13,440π2a3

(
l
a

)4[
π8 − 10

3
π6(am)2 +

35
4

π4(am)4
]

. (46)

Taking (43), the corresponding LV Casimir pressure is

P̃C(a) = − 1
161,280a4

(
l
a

)4[
84π6 − 200π4(am)2 + 315π2(am)4

]
. (47)

In Figure 2, we present the behavior of the Casimir energy per unit area multiplied
by a3, εc =

ẼC
L2 a3, as a function of ma, considering as only an illustrative example l

a = 0.01,
for two distinct values of ε. In the plot on the left we consider ε = 2, whereas on the right
we consider ε = 3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
am

0.000

0.002

0.004

0.006

0.008

0.010

10
4

C

= 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
am

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

10
8

C

= 3

(a) (b)

Figure 2. The Casimir energy per unit area multiplied by a3 as function of ma in case uµ = (0, 1, 0, 0),
and the field obeying Dirichlet boundary condition, for ε = 2 in the left panel and ε = 3 in the right
panel. In both plots we considered l

a = 0.01. (a) For ε = 2; (b) for ε = 3.
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3.1.2. Vector Perpendicular to the Plates

Let us now consider that the four-vector uµ is perpendicular to the plates, i.e.,

uµ = (0, 0, 0, 1) . (48)

The corresponding dispersion relation is

ω2
k,n = k2

x + k2
y +

(nπ

a

)2
+ l2(ε−1)(−1)ε

(nπ

a

)2ε
+ m2 . (49)

For this case, the Hamiltonian operator, Ĥ, has the same structure as (13), and conse-
quently the vacuum energy is given by

E0 = 〈0| Ĥ |0〉 = L2

8π2

∫
d2k

∞

∑
n=1

ωk,n . (50)

Performing a change of coordinates (kx, ky) to polar ones, (k, θ), and also a change of
variable u = ak, we obtain

E0 =
L2

8π2a3

∫ 2π

0
dθ
∫ ∞

0
udu

∞

∑
n=1

[
u2 + (nπ)2 + (ma)2 +

(
l
a

)2(ε−1)
(−1)ε(nπ)2ε

] 1
2

. (51)

For this case, the integral over the angular variable is trivial. However, to obtain the Casimir
energy, we must develop the summation over n. In this sense, by using the Abel–Plana
formula, Equation (19), we have not found in the literature a very enlightening result for the
integral over the variable t, for any value of ε. Thus, by adopting an analogous procedure,
as in the last subsection, we perform an expansion in the parameter l

a � 1 in the integrand
of (51). Performing this, the leading term in the approximated expression for E0 is given by

E0 ≈ L2

8π2a3

∫ 2π

0
dθ
∫ ∞

0
udu

∞

∑
n=1

{[
u2 + (nπ)2 + (ma)2

] 1
2

+
1
2

(
l
a

)2(ε−1)
(−1)ε(nπ)2ε

[
u2 + (nπ)2 + (ma)2

]− 1
2

}
. (52)

Again, the first term is associated with the Casimir energy without Lorentz violation. Thus,
after integration over the angular coordinate, the second term becomes

Ẽ0 =
L2(−1)ε

8πa3

(
l
a

)2(ε−1) ∫ ∞

0
udu

∞

∑
n=1

(nπ)2ε
[
u2 + (nπ)2 + (ma)2

]− 1
2 . (53)

Using the summation Formula (19), we find

Ẽ0 =
L2(−1)ε

8πa3

(
l
a

)2(ε−1) ∫ ∞

0
udu

{
− 1

2
F(0) +

∫ ∞

0
F(t)dt + i

∫ ∞

0

F(it)− F(−it)
e2πt − 1

dt

}
, (54)

where

F(n) = (nπ)2ε
[
u2 + (nπ)2 + (ma)2

]− 1
2 . (55)
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Discarding the divergent contributions coming from the first two terms, the LV Casimir
energy per unit area of the plates is given by

ẼC
L2 =

i
8πa3

(
l
a

)2(ε−1) ∫ ∞

0
udu

×
∫ ∞

0
dv

v2ε

{
[u2 + (iv)2 + (ma)2]−1/2 − [u2 + (−iv)2 + (ma)2]−1/2

}
e2v − 1

, (56)

where we have performed a change of variable tπ = v.
Again, analyzing the integral in the variable v over the two intervals v <

[
u2 + (ma)2]1/2

and v >
[
u2 + (ma)2]1/2, we obtain

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) ∫ ∞

0
udu

∫ ∞

[u2+(ma)2]
1
2

dv
v2ε[v2 − (u2 + (ma)2)]−1/2

e2v − 1
. (57)

Next, performing a changing of variable ρ2 = v2 − (u2 + (ma)2) and also a change of
coordinates in the plane (u, ρ) to polar ones, we are able to rewrite Equation (57) in the form

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) ∫ ∞

0

[
σ2 + (ma)2]ε− 1

2 σ2dσ

e2(σ2+(ma)2)
1
2 − 1

. (58)

For the massless scalar field case we have

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) ∫ ∞

0

σ2ε+1dσ

e2σ − 1
. (59)

Consequently, by using (30), we obtain

ẼC
L2 =

1
4π2a3

(
l
a

)2(ε−1) Γ(2ε + 2)ζ(2ε + 2)
2(2ε+2)

. (60)

Thus, we can analyze two cases:

• For ε = 2:

ẼC
L2 =

π4

2016a3

(
l
a

)2
; (61)

• For ε = 3:

ẼC
L2 =

π6

1920a3

(
l
a

)4
. (62)

The integral in (58) can only be expressed in terms of an infinite series in modified
Bessel functions for m 6= 0, so let us evaluate its asymptotic limits. To perform this, we
make the following change of variables ξ2 = σ2 + (ma)2 and ξ = mav. Thus, we have

ẼC
L2 =

(am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) ∫ ∞

1

v2ε
(
v2 − 1

) 1
2 dv

e2amv − 1
. (63)

Expressing the denominator in terms of a geometric series as shown in (35), we can
rewrite (63) as

ẼC

L2 =
(am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) ∞

∑
j=1

∫ ∞

1
v2ε
(

v2 − 1
) 1

2 e−2amvjdv . (64)
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The use of the identity,

1

(2mj)2ε

d2ε
(
e−2amvj)
da2ε

= v2εe−2amvj , (65)

allows us to put Equation (64) in the form

ẼC
L2 =

(am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) 1

(2m)2ε

∞

∑
j=1

1
j2ε

d2ε

da2ε

∫ ∞

1

(
v2 − 1

) 1
2 e−2amvjdv . (66)

Again, by making use of the integral representation for the modified Bessel function,
the above expression reads

ẼC

L2 =
(am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) 1
(2m)2ε+1

∞

∑
j=1

1
j2ε+1

d2ε

da2ε

(
K1(2amj)

a

)
. (67)

Let us now consider the asymptotic limits of the above result for am >> 1 and for
am << 1:

(i) For large values of am >> 1, and using the asymptotic expression (39) for the modified
Bessel function, the dominant term provides,

ẼC
L2 ≈

(am)2(ε+1)

8(π)
3
2 a3m

1
2 (2m)2ε+1

(
l
a

)2(ε−1) d2ε

da2ε

(
e−2am

a
3
2

)
. (68)

In this sense, we have

• For case ε = 2:

ẼC
L2 ≈

(am)
9
2

16(π)
3
2 a3

(
l
a

)2
e−2am ; (69)

• For case ε = 3:

ẼC
L2 ≈

(am)
13
2

16(π)
3
2 a3

(
l
a

)4
e−2am . (70)

(ii) For am << 1, we have to take the integral representation (63)

• In the case ε = 2, Equation (63) becomes:

ẼC
L2 =

(am)6

4π2a3

(
l
a

)2 ∫ ∞

1

v4(v2 − 1
) 1

2 dv
e2amv − 1

. (71)

By approximating the integrand as shown below, we obtain

ẼC
L2 ≈ (am)6

4π2a3

(
l
a

)2 ∫ ∞

1

(
v5 − 1

2 v3 − 1
8 v
)

dv

e2amv − 1

≈ 1
2016π2a3

(
l
a

)2[
π6 − 21

20
π4(am)2 − 21

8
π2(am)4

]
. (72)

For this case, the pressure is given by

P̃C(a) =
1

80,640a4

(
l
a

)2[
200π4 − 126π2(am)2 + 105(am)4

]
. (73)
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• In the case ε = 3, expression (63) becomes:

ẼC

L2 =
(am)8

4π2a3

(
l
a

)4 ∫ ∞

1

v6(v2 − 1
) 1

2 dv
e2amv − 1

. (74)

Thus, the series expansion is now given by

ẼC
L2 ≈ (am)8

4π2a3

(
l
a

)4 ∫ ∞

1

(
v7 − 1

2 v5 − 1
8 v3 − 1

16 v
)

dv

e2amv − 1

≈ 1
1920π2a3

(
l
a

)4[
π8 − 10

21
π6(am)2 − 1

4
π4(am)4

]
. (75)

Consequently, the pressure is found to be

P̃C(a) =
1

161,280a4

(
l
a

)4[
588π6 − 200π4(am)2 + 63π2(am)4

]
. (76)

In Figure 3, we present the behavior of the Casimir energy per unit area multiplied by
a3, εc =

ẼC
L2 a3, as function of ma, considering as an illustrative example l

a = 0.01, for two
distinct values of ε. In the left panel we adopted ε = 2, and in the right panel ε = 3.

0 1 2 3 4 5 6
am

0.00

0.01

0.02

0.03

0.04

0.05

10
4

C

= 2

0 1 2 3 4 5 6 7 8
am

0.0

0.1

0.2

0.3

0.4

0.5

10
8

C

= 3

(a) (b)

Figure 3. The Casimir energy per unit area multiplied by a3, as function of am in the case
uµ = (0, 0, 0, 1) for Dirichlet condition applied on the plates. In the left panel we adopted ε = 2,
whereas in the right panel, ε = 3. For both cases we assume l

a = 0.01. (a) For ε = 2; (b) for ε = 3.

3.2. Neumann Condition

We turn now to the Neumann boundary condition. Thus, the field operator solution
of Equation (3), which obeys the boundary condition below,

∂φ(x)
∂z

∣∣∣
z=0

=
∂φ(x)

∂z

∣∣∣
z=a

= 0 , (77)

has been given in [25]. It reads,

φ̂(x) =
∫

d2k
∞

∑
n=0

cn cos
(nπ

a
z
)
[âk,ne−ikx + â†

k,neikx] , (78)
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where

cn =


1√

2(2π)2a ωk,n

for n = 0,

1√
(2π)2a ωk,n

for n ≥ 0.
(79)

Note that, although the field operator is different from the one presented in the previous
subsection, (9), the Hamiltonian operator and the dispersion relations remain the same
as to the Dirichlet boundary condition for each choice of the space-like four-vector. Thus,
for this reason we decided to not present all the calculations for this case.

3.3. Mixed Boundary Condition

Now, let us consider that the scalar quantum field solution of Equation (3) obeys the
Dirichlet boundary condition on one plate and Neumann on the other. In this case, we
have two different configurations for the scalar quantum field:

• First configuration,

φ(z = 0) =
∂φ(x)

∂z
|z=a = 0 ; (80)

• Second configuration,

∂φ(x)
∂z
|z=0 = φ(z = a) = 0 . (81)

For this case, the field operators are given by

φ̂(i)(x) =
∫

d2k
∞

∑
n=0

1√
(2π)2a ωk,n

sin
(
(n + 1/2)

π

a
z
)
[âk,ne−ikx + â†

k,neikx] (82)

for the first configuration and

φ̂(ii)(x) =
∫

d2k
∞

∑
n=0

1√
(2π)2a ωk,n

cos
(
(n + 1/2)

π

a
z
)
[âk,ne−ikx + â†

k,neikx] , (83)

for the second configuration. However, the field operators φ̂1 and φ̂2 provide the same
Hamiltonian operator and dispersion relations.

3.3.1. Vector Parallel to the Plates

Considering uµ = (0, 1, 0, 0), the field presents the following dispersion relation,

ω2
k,n = k2

x + k2
y + l2(ε−1)(−1)εk2ε

x +
[
(n + 1/2)

π

a

]2
+ m2 . (84)

Note that both field operators, φ̂(i)(x) and φ̂(ii)(x), provide the same Hamiltonian opera-
tor, i.e.,

Ĥ =
1
2

∫
d2k

∞

∑
n=0

ωk,n

[
2â†

k,n âk,n +
L2

(2π)2

]
. (85)

Consequently, the corresponding vacuum energy is expressed as

E0 = 〈0| Ĥ |0〉 = L2

8π2

∫
d2k

∞

∑
n=0

ωk,n . (86)
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By performing a change of coordinates in the plane (kx, ky) to the polar ones, making
the change of variable u = ak and performing an expansion in the dimensionless parameter
l
a << 1, up to the first order in this parameter, we find

E0 ≈ L2

8π2a3

∫ 2π

0
dθ
∫ ∞

0
udu

∞

∑
n=0

{[
u2 + [(n + 1/2)π]2 + (ma)2

] 1
2

+
1
2

(
l
a

)2(ε−1)
(−1)εu2ε cos2ε θ

[
u2 + [(n + 1/2)π]2 + (ma)2

]− 1
2

}
. (87)

Note that the first term on the right side of the above expression is associated with the
vacuum energy without Lorentz violation. An integral representation for the corresponding
Casmir energy by unity area for this case [25], reads

EC
L2 =

am4

6π2

∫ ∞

1

(v2 − 1)
3
2

e2amv + 1
dv. (88)

As to the second term, after integration over the angular coordinate, we have

Ẽ0 =
L2

8πa3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du
∞

∑
n=0

[
u2 + [(n + 1/2)π]2 + (ma)2

]− 1
2 . (89)

In order to develop the summation over the half-integer number, we will use the
Abel–Plana formula below [33]:

∞

∑
n=0

F
(

n +
1
2

)
=
∫ ∞

0
F(t)dt− i

∫ ∞

0

dt
e2πt + 1

[F(it)− F(−it)] . (90)

Then, the expression (89) becomes

Ẽ0 =
L2

8πa3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

{ ∫ ∞

0
F(t)dt− i

∫ ∞

0

F(it)− F(−it)
e2πt + 1

dt

}
, (91)

where

F
(

n +
1
2

)
=
[
u2 + [(n + 1/2)π]2 + (ma)2

]− 1
2 . (92)

The first term on the right side of (91) refers to the free vacuum energy, so it is discarded in
the renormalization process. Then, the LV Casimir energy will be given by

ẼC
L2 = − i

8πa3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

×
∫ ∞

0
dt

[u2 + (itπ)2 + (ma)2]−1/2 − [u2 + (−itπ)2 + (ma)2]−1/2

e2πt + 1
. (93)

Performing a change of variable, where tπ = v, we can rewrite Equation (93) in
the form

ẼC
L2 = − i

8π2a3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

×
∫ ∞

0
dv

[u2 + (ma)2 + (iv)2]−1/2 − [u2 + (ma)2 + (−iv)2]−1/2

e2v + 1
. (94)
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Now, carrying out the same analysis as in the previous cases, for the interval of the integral
in v, we obtain

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

×
∫ ∞

[u2+(ma)2]
1
2

dv
[v2 − (u2 + (ma)2)]−1/2

e2v + 1
. (95)

Additionally, the new change of variable ρ2 = v2 − (u2 + (ma)2) provides

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1) (−1)ε(2ε− 1)!!
(2ε)!!

∫ ∞

0
u
(2ε+1)

du

×
∫ ∞

0

dρ

[ρ2 + u2 + (ma)2]
1
2

[
e2(ρ2+u2+(ma)2)

1
2 + 1

] . (96)

Finally, by changing the coordinates in the plane (u, ρ) to polar ones, we find

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

∫ ∞

0

σ2(ε+1)dσ

[σ2 + (ma)2]
1
2

[
e2(σ2+(ma)2)

1
2 + 1

] . (97)

The vacuum energy above provides the massless scalar field case by setting m = 0.
This gives

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

∫ ∞

0

σ2ε+1dσ

e2σ + 1
. (98)

Using the result of the integral below [34]

∫ ∞

0

xν−1dx
eµx + 1

=
1

µν

(
1− 21−ν

)
Γ(ν)ζ(ν) , (99)

where Γ(ν) corresponds to the Gamma function and ζ(ν) is the Riemann zeta function, we
arrive at

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

(
1− 2−(2ε+1)

)
Γ(2ε + 2)ζ(2ε + 2)

2(2ε+2)
. (100)

Consequently, we can exhibit two cases:

• For ε = 2:

ẼC
L2 = − 31π4

322,560a3

(
l
a

)2
; (101)

• For ε = 3:

ẼC

L2 =
127π6

1,720,320a3

(
l
a

)4
. (102)
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Because the integral in (97) cannot be expressed in terms of elementary functions,
let us evaluate its asymptotic limits. To perform this, we make the following changes of
variables ξ2 = σ2 + (ma)2 and ξ = mav; thus, we have

ẼC
L2 = − (am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

∫ ∞

1

(
v2 − 1

)ε+ 1
2 dv

e2amv + 1
. (103)

Knowing that the geometric series can be represented as

1
e2amv + 1

=
∞

∑
j=1

(−1)j+1e−2amvj , (104)

we obtain,

ẼC

L2 = − (am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) (−1)ε

(2ε + 1)

∞

∑
j=1

(−1)j+1
∫ ∞

1

(
v2 − 1

)ε+ 1
2 e−2amvjdv . (105)

Finally, by using the integral representation of the modified Bessel function, the expression
above becomes

ẼC
L2 = −

(am)ε+1Γ
(
ε + 3

2
)
(−1)ε

4(π)
5
2 a3(2ε + 1)

(
l
a

)2(ε−1) ∞

∑
j=1

(−1)j+1

jε+1 Kε+1(2amj) . (106)

We can now examine the asymptotic limits ma >> 1 and ma << 1. They are:

(i) For large arguments, am >> 1, the modified Bessel can be expressed in an exponential
form as shown in (39); consequently the dominant term, j = 1, provides

ẼC
L2 ≈ −

(am)ε+ 1
2 Γ
(
ε + 3

2
)
(−1)ε

8π2a3(2ε + 1)

(
l
a

)2(ε−1)
e−2am ; (107)

(ii) In order to analyze the case for am << 1, let us consider ε = 2, 3:

• In the case ε = 2, expression (103) becomes

ẼC
L2 = − (am)6

20π2a3

(
l
a

)2 ∫ ∞

1

(
v2 − 1

) 5
2 dv

e2amv + 1
. (108)

By expanding the integrand in a series of positive powers of v, we can obtain an
approximated expression for the LV Casimir energy per unity area, as shown below:

ẼC
L2 ≈ − (am)6

20π2a3

(
l
a

)2 ∫ ∞

1

(
v5 − 5

2 v3 + 15
8 v
)

dv

e2amv + 1

≈ − 31
322,560π2a3

(
l
a

)2[
π6 − 147

31
π4(am)2 +

630
31

π2(am)4
]

. (109)

As for the pressure, we have,

P̃C(a) = − 1
322,560a4

(
l
a

)2[
155π4 − 441π2(am)2 + 630(am)4

]
. (110)

• In the case ε = 3, expression (103) becomes:

ẼC
L2 =

(am)8

28π2a3

(
l
a

)4 ∫ ∞

1

(
v2 − 1

) 7
2 dv

e2amv + 1
. (111)
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Adopting a similar procedure as above, we have:

ẼC
L2 ≈ (am)8

28π2a3

(
l
a

)4 ∫ ∞

1

(
v7 − 7

2 v5 + 35
8 v3 − 35

16 v
)
dv

e2amv + 1

≈ 127
1,720,320π2a3

(
l
a

)4[
π8 − 1240

381
π6(am)2 +

980
127

π4(am)4
]

. (112)

In this case, the pressure is given by

P̃C(a) =
1

5,160,960a4

(
l
a

)4[
2667π6 − 6200π4(am)2 + 8820π2(am)4

]
. (113)

In Figure 4 we present the behavior of the Casimir energy per unit area as function of ma,
considering again as an illustrative example l

a = 0.01, for two distinct values of ε. We
consider ε = 2 in the left plot and ε = 3 in the right plot.
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C
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(a) (b)

Figure 4. The Casimir energy in the case uµ = (0, 1, 0, 0) as a function of am, for mixed boundary
condition. In this graph εc = ẼC

L2 a3, ε is equal to 2 and 3, in the left and right plots, respectively.
For both plots we consider l

a = 0.01. (a) For ε = 2; (b) for ε = 3.

3.3.2. Vector Perpendicular to the Plates

Now, let us consider the four-vector uµ as being perpendicular to the plates by choosing

uµ = (0, 0, 0, 1) . (114)

For this case, the corresponding dispersion relation is

ω2
k,n = k2

x + k2
y +

[
(n + 1/2)

π

a

]2
+ l2(ε−1)(−1)ε

[
(n + 1/2)

π

a

]2ε
+ m2 . (115)

Consequently, the Hamiltonian operator, Ĥ, is now given by

Ĥ =
1
2

∫
d2k

∞

∑
n=0

ωk,n

[
2â†

k,n âk,n +
L2

(2π)2

]
. (116)

The corresponding vacuum energy in this case is given by

E0 = 〈0| Ĥ |0〉 = L2

8π2

∫
d2k

∞

∑
n=0

ωk,n . (117)
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Performing a change of coordinates in the plane (kx, ky) to polar ones, a change of
variable u = ak and performing an expansion in l

a << 1, we obtain

E0 ≈ L2

8π2a3

∫ 2π

0
dθ
∫ ∞

0
udu

∞

∑
n=0

{[
u2 + [(n + 1/2)π]2 + (ma)2

] 1
2

+
1
2

(
l
a

)2(ε−1)
(−1)ε[(n + 1/2)π]2ε

[
u2 + [(n + 1/2)π]2 + (ma)2

]− 1
2

}
. (118)

The first term on the right side is associated with energy without Lorentz violation. Thus,
after integration over the angular coordinate, the second term becomes

Ẽ0 =
L2(−1)ε

8πa3

(
l
a

)2(ε−1) ∫ ∞

0
udu

∞

∑
n=0

[(n + 1/2)π]2ε
[
u2 + [(n + 1/2)π]2 + (ma)2

]− 1
2 . (119)

By using Formula (90) again, we find

Ẽ0 =
L2(−1)ε

8πa3

(
l
a

)2(ε−1) ∫ ∞

0
udu

{ ∫ ∞

0
F(t)dt− i

∫ ∞

0

F(it)− F(−it)
e2πt + 1

dt

}
, (120)

where

F
(

n +
1
2

)
= [(n + 1/2)π]2ε

[
u2 + [(n + 1/2)π]2 + (ma)2

]− 1
2 . (121)

Note that the integral in the first term on the right side of Equation (120) is the free vacuum
contribution, whereas the integral in the second term gives the renormalized vacuum
energy per unit area, i.e.,

ẼC
L2 = − i

8πa3

(
l
a

)2(ε−1) ∫ ∞

0
udu

×
∫ ∞

0
dt

(tπ)2ε[u2 + (itπ)2 + (ma)2]−1/2 − (tπ)2ε[u2 + (−itπ)2 + (ma)2]−1/2

e2πt + 1
. (122)

By making the change of variable tπ = v, we find

ẼC
L2 = − i

8πa3

(
l
a

)2(ε−1) ∫ ∞

0
udu

×
∫ ∞

0
dt

v2ε

{
[u2 + (iv)2 + (ma)2]−1/2 − [u2 + (−iv)2 + (ma)2]−1/2

}
e2v + 1

. (123)

Again, analyzing the integral on the variable v over the two intervals:
[
u2 + (ma)2]1/2

> v

and
[
u2 + (ma)2]1/2

< v, we obtain

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1) ∫ ∞

0
udu

∫ ∞

[u2+(ma)2]
1
2

dv
v2ε[v2 − (u2 + (ma)2)]−1/2

e2v + 1
. (124)

By making an additional change of variable ρ2 = v2 − (u2 + (ma)2), and transforming the
coordinates in the plane (u, ρ) to polar ones, we arrive at

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1) ∫ ∞

0

[
σ2 + (ma)2]ε− 1

2 σ2dσ

e2(σ2+(ma)2)
1
2 + 1

. (125)
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For the case of the massless field, we take m = 0. In this case, the integral reads,

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1) ∫ ∞

0

σ2ε+1dσ

e2σ + 1
. (126)

By considering the same integral as in the last subsection, we find

ẼC
L2 = − 1

4π2a3

(
l
a

)2(ε−1)
(

1− 2−(2ε+1)
)

Γ(2ε + 2)ζ(2ε + 2)

2(2ε+2)
. (127)

Let us analyze the cases for which ε = 2, 3:

• For ε = 2:

ẼC

L2 = − 31π4

64,512a3

(
l
a

)2
; (128)

• For ε = 3:

ẼC
L2 = − 127π6

245,760a3

(
l
a

)4
. (129)

Once again, let us evaluate the integral in (125) in its asymptotic limits. To conduct
this, we make the following changes of variables ξ2 = σ2 + (ma)2 and ξ = mav; thus, we
obtain

ẼC
L2 = − (am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) ∫ ∞

1

v2ε
(
v2 − 1

) 1
2 dv

e2amv + 1
. (130)

Expressing the denominator in a geometric series as given in (104), we obtain

ẼC
L2 = − (am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) ∞

∑
j=1

(−1)j+1
∫ ∞

1
v2ε
(

v2 − 1
)ε+ 1

2 e−2amvjdv . (131)

In addition, using the identity below,

1

(2mj)2ε

d2ε
(
e−2amvj)
da2ε

= v2εe−2amvj , (132)

the LV Casimir energy can be expressed as

ẼC
L2 = − (am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) 1

(2m)2ε

∞

∑
j=1

(−1)j+1

j2ε

d2ε

da2ε

∫ ∞

1

(
v2 − 1

) 1
2 e−2amvjdv . (133)

Using the integral representation for the modified Bessel function, the above expres-
sion becomes

ẼC
L2 = − (am)2(ε+1)

4π2a3

(
l
a

)2(ε−1) 1
(2m)2ε+1

∞

∑
j=1

(−1)j+1

j2ε+1
d2ε

da2ε

(
K1(2amj)

a

)
. (134)

Let us now analyze the asymptotic limits for ma >> 1 and ma << 1:

(i) For large arguments, am >> 1, we can use the asymptotic form for the modified
Bessel function, Equation (39), and taking the dominant term, j = 1, we obtain that

ẼC

L2 ≈ −
(am)2(ε+1)

8(π)
3
2 a3m

1
2 (2m)2ε+1

(
l
a

)2(ε−1) d2ε

da2ε

(
e−2am

a
3
2

)
. (135)
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We additionally want to consider the two cases ε = 2, 3:

• For case ε = 2:

ẼC
L2 ≈ −

(am)
9
2

16(π)
3
2 a3

(
l
a

)2
e−2am ; (136)

• For case ε = 3:

ẼC

L2 ≈ −
(am)

13
2

16(π)
3
2 a3

(
l
a

)4
e−2am . (137)

(ii) For am << 1:

• In the case ε = 2, expression (130) becomes:

ẼC
L2 = − (am)6

4π2a3

(
l
a

)2 ∫ ∞

1

v4(v2 − 1
) 1

2 dv
e2amv + 1

. (138)

Expanding the integrand in powers of v, we obtain an expression that allows us to
evaluate the integral:

ẼC
L2 ≈ − (am)6

4π2a3

(
l
a

)2 ∫ ∞

1

(
v5 − 1

2 v3 − 1
8 v
)

dv

e2amv + 1

≈ − 31
64,512π2a3

(
l
a

)2[
π6 − 147

155
π4(am)2 − 42

31
π2(am)4

]
. (139)

As for the pressure, we have,

P̃C(a) = − 1
322,560a4

(
l
a

)2[
775π4 − 441π2(am)2 − 210(am)4

]
. (140)

• In the case ε = 3, expression (130) becomes:

ẼC

L2 = − (am)8

4π2a3

(
l
a

)4 ∫ ∞

1

v6(v2 − 1
) 1

2 dv
e2amv + 1

, (141)

the series expansion in this case provides

ẼC
L2 ≈ − (am)8

4π2a3

(
l
a

)4 ∫ ∞

1

(
v7 − 1

2 v5 − 1
8 v3 − 1

16 v
)

dv

e2amv + 1

≈ − 127
245,760π2a3

(
l
a

)4[
π8 − 1240

2667
π6(am)2 − 28

127
π4(am)4

]
. (142)

Consequently, the pressure reads,

P̃C(a) = − 1
5,160,960a4

(
l
a

)4[
18, 669π6 − 6200π4(am)2 − 1764π2(am)4

]
. (143)

Once more, as an illustrative example, in Figure 5 we present the behavior of the Casimir
energy per unit of area as function of ma, considering l

a = 0.01, for two distinct values of ε.
In the left panel, we consider ε = 2, whereas in the right panel ε = 3.
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Figure 5. The Casimir energy in the case uµ = (0, 0, 0, 1) as a function of am, considering the mixed
boundary condition obeyed by the fields. In this graph εc =

ẼC
L2 a3 and l

a = 0.01. (a) For ε = 2; (b) for
ε = 3.

4. Concluding Remarks

In this work, we investigated the influence of the Lorentz symmetry violation on the
Casimir energy associated with a real massive scalar quantum field. We considered the
situation in which the field is confined between two parallel plates and assumed that the
field obeys boundary conditions of the types of Dirichlet and Neumann, and is mixed on
the plates of area L2 separated by the distance a (a� L).

The Lorentz symmetry violation is implemented, admitting a direct coupling between
a constant space-like four-vector, uµ, in a scenario aether-like CPT-even theoretical model,
with higher-order derivative of the field, represented by l2(ε−1)(u∂)2εφ(x), as exhibited in
the modified Klein–Gordon equation, Equation (3), being ε an integer greater or equal to 2,
and l is a parameter of order inverse the energy scale where the Lorentz symmetry is broken.
As for the constant four-vector, two distinct directions are considered: the vector parallel
to the plates and the vector perpendicular to them. We have verified that the combined
modifications in the dynamic of the quantum field produce important corrections on the
corresponding dispersion relations, and consequently on the Casimir energies. In the
calculation of the Casimir energy, we have to develop an integral over the bidimensional
space in the ~k plane associated with the momentum of the field parallel to the plates,
and a sum over discrete momentum orthogonal to them, as exhibited in Equation (14),
for example. To develop the summation over the discrete momentum, we adopted the
Abel–Plana summation formula for integer, Equation (19), and half-integer, Equation (90);
quantum numbers, respectively. Because the integrals involved in the obtainment of the
Casimir energy do not provide very enlightening results, in our analysis we decided to
develop an expansion on the parameter l

a << 1 in the integrand, keeping up to the first
order term. Adopting this procedure, we were able to provide the corrections on the Casimir
energy and pressure due to the LV term, caused by specific boundary conditions obeyed by
the quantum field on the plates, the direction of the space-like constant vector, and the order
of the derivative. Because the dispersion relation for the Neumann boundary condition is
analogous to the one in the Dirichlet condition, we only provide a brief discussion for this
case. By our results for the Casimir pressures induced by the LV term, P̃c(a), we would like
to emphasize that negative values that correspond to attracted forces between the plates,
and positive values that correspond to repulsive forces between the plates, depend on the
direction of the constant vector, uµ, with respect to the plates, on the value assumed for the
parameter ε and also depend on the boundary condition imposed on the field at the plates.

In our analysis, the LV Casimir energy is expressed in terms of an integral representa-
tion for a massive field. Thus, in order to furnish some quantitative information about this
energy, we provided its asymptotic expressions for am >> 1 and am << 1. In the former,



Universe 2023, 9, 241 23 of 24

the Casimir energy decays exponentially as e−2am, whereas in the opposite limit, it presents
a term that corresponds to the massless case with additional corrections proportional to
some power of the product am. In addition, we also presented four graphs for the Casimir
energies as a function of am considering ε equal to 2 and 3, contemplating all the possible
scenarios. Of course, the intensity of the LV Casimir energy depends on the order of the
higher-derivative term. It is smaller for a higher value of ε. Considering the Dirichlet
condition, and the vector parallel to the plates, the LV Casimir energy and pressure are
positive for ε = 2 and negative for ε = 3; however, for vector perpendicular to the plates,
the LV Casimir energy and pressure present the same positive sign for both values of ε.
For a mixed boundary condition, the same behavior related to the sign of the LV Casimir
energies and pressure is observable. We would like to say that there are changes in the sign
for the Casimir energies when the field obeys the Dirichlet boundary condition and mixed
one for each specific situation.

To finish this section, we want to make a few comments about the results obtained
in Sections 3.1 and 3.3. The corrections induced by the Lorentz violation in the Casimir
pressure never vanish. Accepting that the Lorentz violation is part of the source in the 1%
experimental error estimated in [36], it is possible to infer an upper bound for the parameter
l. Considering that the distance a between the parallel plates are of order 10−8m, the upper
limit for l is of order 10−9m for the case of ε = 2 and of order 10−8m for the case of ε = 3. In
this paper, we have analyzed the Casimir effect associated with the scalar field in a general
scenario of LV. In this sense, the results obtained for the LV Casimir energies include two
different ingredients: the presence of a background constant vector and spatial higher-order
derivative terms. The analysis of the Casimir energy associated with electromagnetic fields
in an LV scenario was developed in [37]. In this work, the corrections on the standard
Casimir energy due to two different LV approaches are discussed.
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