Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = dye-sensitized photoelectrodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1905 KB  
Article
Flexible Copper Mesh Electrodes with One-Step Ball-Milled TiO2 for High-Performance Dye-Sensitized Solar Cells
by Adnan Alashkar, Taleb Ibrahim and Abdul Hai Alami
Sustainability 2025, 17(21), 9478; https://doi.org/10.3390/su17219478 - 24 Oct 2025
Viewed by 698
Abstract
Advancements in flexible, low-cost, and recyclable alternatives to transparent conductive oxides (TCOs) are critical challenges in the sustainability of third-generation solar cells. This work introduces a copper mesh-based transparent electrode for dye-sensitized solar cells, replacing conventional fluorine doped-tin oxide (FTO)-coated glass to simultaneously [...] Read more.
Advancements in flexible, low-cost, and recyclable alternatives to transparent conductive oxides (TCOs) are critical challenges in the sustainability of third-generation solar cells. This work introduces a copper mesh-based transparent electrode for dye-sensitized solar cells, replacing conventional fluorine doped-tin oxide (FTO)-coated glass to simultaneously reduce spectral reflection losses, enhance mechanical flexibility, and enable material recyclability. Titanium dioxide (TiO2) photoanodes were synthesized and directly deposited onto the mesh via a single-step, low-energy ball milling process, which eliminates TiO2 paste preparation and high-temperature annealing while reducing fabrication time from over three hours to 30 min. Structural and surface analyses confirmed the deposition of high-purity anatase-phase TiO2 with strong adhesion to the mesh branches, enabling improved dye loading and electron injection pathways. Optical studies revealed higher visible light absorption for the copper mesh compared to FTO in the visible range, further enhanced upon TiO2 and Ru-based dye deposition. Electrochemical measurements showed that TiO2/Cu mesh electrodes exhibited significantly higher photocurrent densities and faster photo response rates than bare Cu mesh, with dye-sensitized Cu mesh achieving the lowest charge transfer resistance in impedance analysis. Techno–economic and sustainability assessments revealed a decrease of 7.8% in cost and 82% in CO2 emissions associated with the fabrication of electrodes as compared to conventional TCO electrodes. The synergy between high conductivity, transparency, mechanical durability, and a scalable, recyclable fabrication route positions this architecture as a strong candidate for next-generation dye-sensitized solar modules that are both flexible and sustainable. Full article
Show Figures

Figure 1

11 pages, 2040 KB  
Article
Tunable Dye-Sensitized Solar Cells via Co-Sensitization and Energy Transfer from Spiropyran Derivatives to YD2
by Keitaro Ono, Ryuhei Ejima and Michihiro Hara
Energies 2025, 18(17), 4751; https://doi.org/10.3390/en18174751 - 6 Sep 2025
Viewed by 1127
Abstract
We fabricated dye-sensitized solar cells (DSSCs) co-sensitized with the organic dye YD2 and a spiropyran derivative (SPNO2), a photochromic molecule capable of reversible isomerization under light irradiation. Upon UV exposure, SPNO2 converts from its closed spiropyran (SP) form to the [...] Read more.
We fabricated dye-sensitized solar cells (DSSCs) co-sensitized with the organic dye YD2 and a spiropyran derivative (SPNO2), a photochromic molecule capable of reversible isomerization under light irradiation. Upon UV exposure, SPNO2 converts from its closed spiropyran (SP) form to the open photomerocyanine (PMC) form, which absorbs visible light and changes the optical properties of the photoelectrode. Spectroscopic analysis showed an 18% decrease in transmittance at 540 nm after UV irradiation and a 10% increase following visible light exposure. These changes were accompanied by a 0.5% increase in power conversion efficiency (η) after 5 min of UV irradiation, and a 0.83% decrease after 10 min of visible light. Although direct electron injection from PMC into TiO2 appears inefficient, the enhanced performance is attributed to Förster resonance energy transfer (FRET) from PMC to YD2. This photoresponsive behavior highlights a co-sensitization strategy that combines dynamic optical control and efficient energy transfer. Our findings demonstrate a promising approach to designing smart DSSCs with externally tunable photovoltaic properties using photochromic sensitizers. Full article
Show Figures

Figure 1

27 pages, 5530 KB  
Article
Optoelectronic Devices Analytics: MachineLearning-Driven Models for Predicting the Performance of a Dye-Sensitized Solar Cell
by Emeka Harrison Onah, N. L. Lethole and P. Mukumba
Electronics 2025, 14(10), 1948; https://doi.org/10.3390/electronics14101948 - 10 May 2025
Cited by 4 | Viewed by 1267
Abstract
Optoelectronic devices, which combine optics and electronics, are vital for converting light energy into electrical energy. Various solar cell technologies, such as dye-sensitized solar cells (DSSCs), silicon solar cells, and perovskite solar cells, among others, belong to this category. DSSCs have gained significant [...] Read more.
Optoelectronic devices, which combine optics and electronics, are vital for converting light energy into electrical energy. Various solar cell technologies, such as dye-sensitized solar cells (DSSCs), silicon solar cells, and perovskite solar cells, among others, belong to this category. DSSCs have gained significant attention due to their affordability, flexibility, and ability to function under low light conditions. The current research incorporates machine learning (ML) models to predict the performance of a modified Eu3+-doped Y2WO6/TiO2 photo-electrode DSSC. Experimental data were collected from the “Dryad Repository Database” to feed into the models, and a detailed data visualization analysis was performed to study the trends in the datasets. The support vector regression (SVR) and Random Forest regression (RFR) models were applied to predict the short-circuit current density (Jsc) and maximum power (Pmax) output of the device. Both models achieved reasonably accurate predictions, and the RFR model attained a better prediction response, with the percentage difference between the experimental data and model prediction being 0.73% and 1.01% for the Jsc and Pmax respectively, while the SVR attained a percentage difference of 1.22% and 3.54% for the Jsc and Pmax respectively. Full article
(This article belongs to the Special Issue Modeling and Design of Solar Cell Materials)
Show Figures

Graphical abstract

18 pages, 6689 KB  
Review
Classification, Functions, Development and Outlook of Photoanode Block Layer for Dye-Sensitized Solar Cells
by Youqing Wang, Wenxuan Wu and Peiling Ren
Inorganics 2025, 13(4), 103; https://doi.org/10.3390/inorganics13040103 - 27 Mar 2025
Viewed by 1301
Abstract
The block layer situated between the active material and electrode in photoelectrochemical devices serves as a critical component for performance enhancement. Using dye-sensitized solar cells as a representative model, this review systematically examines the strategic positioning and material selection criteria of block layers [...] Read more.
The block layer situated between the active material and electrode in photoelectrochemical devices serves as a critical component for performance enhancement. Using dye-sensitized solar cells as a representative model, this review systematically examines the strategic positioning and material selection criteria of block layers following a concise discussion of their fundamental mechanisms. We categorize block layer architectures into three distinct configurations: single layer, doped layer, and multilayer structures. The electron generation and transport mechanisms to photoelectrodes are analyzed through structural design variations across these configurations. Through representative literature examples, we demonstrate the correlation between material properties and photoconversion efficiency, accompanied by comprehensive performance comparisons. In the single-layer section, we comparatively evaluate the merits and limitations of TiO2- and ZnO-based block layers. The doped layer discussion traces the evolutionary trajectory from single-dopant systems to co-doping strategies. For multilayer architectures, we elaborate on the flexibility of its functional regulation. Finally, we present a forward-looking perspective on the hot issues that need to be urgently addressed in photoelectrochemical device block layers. Full article
(This article belongs to the Special Issue Feature Papers in Inorganic Solid-State Chemistry 2025)
Show Figures

Figure 1

9 pages, 1485 KB  
Article
Hybrids of Deep HOMO Organic Cyanoacrylic Acid Dyes and Graphene Nanomaterials for Water Splitting Photoanodes
by Alejandro Ansón-Casaos, Ana M. Benito, Wolfgang K. Maser, Jesús Orduna, Belén Villacampa and María-Jesús Blesa
Materials 2025, 18(2), 463; https://doi.org/10.3390/ma18020463 - 20 Jan 2025
Cited by 1 | Viewed by 1577
Abstract
Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO2. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen [...] Read more.
Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO2. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations. Both yellow-colored dyes were synthesized and characterized by optical and photoelectrochemical techniques, demonstrating strong light absorption in the visible region, suitable experimental reduction potentials, and adsorption from the organic solvent onto mesoporous TiO2 layers. In addition, to promote immobilization in aqueous electrolytes, the dyes were hybridized with graphene oxide or multi-walled carbon nanotubes. Photoelectrochemical analysis of the dye-sensitized photoelectrodes demonstrated efficient charge transfer from the dyes to the TiO2 photoanode under simulated solar light. While the starting photocurrent notably surpassed the blank TiO2, a subsequent decay points to kinetic obstacles that still need to be overcome. Full article
Show Figures

Figure 1

13 pages, 4527 KB  
Article
Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method
by Yu-Shyan Lin and Wei-Hung Chen
Materials 2025, 18(2), 278; https://doi.org/10.3390/ma18020278 - 9 Jan 2025
Cited by 2 | Viewed by 2496
Abstract
This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other [...] Read more.
This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors’ knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer. Full article
Show Figures

Figure 1

18 pages, 9742 KB  
Article
Physical and Chemical Approaches of Photovoltaic Parameters in Dye-Sensitized Solar Cells to ZnO/ZnS:rGO-Based Photoelectrodes
by Thiago Kurz Pedra, Ramon Dadalto Carvalho, Cristian Dias Fernandes, Luciano Timm Gularte, Carolina Ferreira de Matos Jauris, Eduardo Ceretta Moreira, Mateus Meneghetti Ferrer, Cristiane Wienke Raubach, Sérgio da Silva Cava, Pedro Lovato Gomes Jardim, Elson Longo and Mario Lucio Moreira
Appl. Sci. 2025, 15(1), 291; https://doi.org/10.3390/app15010291 - 31 Dec 2024
Cited by 2 | Viewed by 1834
Abstract
This study proposes an alternative process for obtaining ZnO/ZnS:rGO heterostructures for use in DSSCs and as promising materials for potential applications in other photonic process, such as photocatalysis and photodetection. The compound was obtained through a microwave-assisted hydrothermal method, where the electromagnetic waves [...] Read more.
This study proposes an alternative process for obtaining ZnO/ZnS:rGO heterostructures for use in DSSCs and as promising materials for potential applications in other photonic process, such as photocatalysis and photodetection. The compound was obtained through a microwave-assisted hydrothermal method, where the electromagnetic waves and temperature were crucial points for forming ZnO, ZnO/ZnS and reducing graphene oxide (GO). The XRD, Raman, FT-IR, and FESEM results presented the structural, morphological, and chemical structures, which suggest the conversion of ZnO to ZnS for samples with higher concentrations of reduced graphene oxide (rGO). Additionally, the optical properties were analyzed through photoluminescence and UV-Vis measurements. The electrical behavior of the photoelectrodes was investigated through J-V measurements in light and dark conditions. In addition, electrochemical impedance spectroscopy (EIS) was performed and Bode phase plots were created, analyzing the recombination processes and electron lifetime. The J-V results showed that for smaller amounts of rGO, the dye-sensitized solar cells (DSSC) efficiency improved compared to the ZnO/ZnS single structure. However, it was observed that with more significant amounts of rGO, the photocurrent value decreased due to the presence of charge-trapping centers. On the other hand, the best results were obtained for the ZnO/ZnS:1% rGO sample, which showed an increase of 14.2% in the DSSC efficiency compared to the pure ZnO/ZnS photoelectrode. Full article
Show Figures

Figure 1

8 pages, 3746 KB  
Article
Fabrication and Characterization of Co-Sensitized Dye Solar Cells Using Energy Transfer from Spiropyran Derivatives to SQ2 Dye
by Michihiro Hara and Ryuhei Ejima
Molecules 2024, 29(20), 4896; https://doi.org/10.3390/molecules29204896 - 16 Oct 2024
Cited by 2 | Viewed by 1708
Abstract
We developed dye-sensitized solar cells (DSSCs) using 1,5-carboxy-2-[[3-[(2,3-dihydro-1,1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium and 1,3,3-trimethyl indolino-6′-nitrobenzopyrylospiran. The DSSCs incorporate photochromic molecules to regulate photoelectric conversion properties. We irradiated photoelectrodes adsorbed with SQ2/SPNO2 using both UV and visible light and observed the color changes in these photoelectrodes. Following [...] Read more.
We developed dye-sensitized solar cells (DSSCs) using 1,5-carboxy-2-[[3-[(2,3-dihydro-1,1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium and 1,3,3-trimethyl indolino-6′-nitrobenzopyrylospiran. The DSSCs incorporate photochromic molecules to regulate photoelectric conversion properties. We irradiated photoelectrodes adsorbed with SQ2/SPNO2 using both UV and visible light and observed the color changes in these photoelectrodes. Following UV irradiation, the transmittance at 540 nm decreased by 20%, while it increased by 15% after visible light irradiation. This indicates that SPNO2 on the DSSCs is photoisomerized from the spiropyran form (SP) to the photomerocyanine (PMC) form under UV light. The photoelectric conversion efficiency (η) of the DSSCs increased by 0.15% following 5 min of UV irradiation and decreased by 0.07% after 5 min of visible light irradiation. However, direct electron injection from PMC seems challenging, suggesting that the mechanism for improved photoelectric conversion in these DSSCs is likely due to Förster resonance energy transfer (FRET) from PMC to the SQ2 dye. The findings suggest that the co-sensitization of DSSCs by PMC-SQ2 and SQ2 alone, facilitated by their respective photoabsorption, results in externally responsive and co-sensitized solar cells. This study provides valuable insights into the development of advanced DSSCs with externally controllable photoelectric conversion properties via the strategic use of photochromic molecules and energy transfer mechanisms, advancing future solar energy applications. Full article
(This article belongs to the Special Issue Recent Advances in Dye-Sensitized and Perovskite Solar Cells)
Show Figures

Graphical abstract

16 pages, 4098 KB  
Article
Cyanobacterial Pigments as Natural Photosensitizers for Dye-Sensitized Solar Cells
by Tatiana Montagni, Mauricio Ávila, Sofía Fernández, Sylvia Bonilla and María Fernanda Cerdá
Photochem 2024, 4(3), 388-403; https://doi.org/10.3390/photochem4030024 - 12 Sep 2024
Cited by 2 | Viewed by 2449
Abstract
Three filamentous freshwater cyanobacterial strains were grown at high light intensity to produce lipidic dyes composed of xanthophylls, carotenes, and chlorophyll a. The properties of the pigments were evaluated as suitable natural compounds to be applied in dye-sensitized solar cells (DSSC). The assembled [...] Read more.
Three filamentous freshwater cyanobacterial strains were grown at high light intensity to produce lipidic dyes composed of xanthophylls, carotenes, and chlorophyll a. The properties of the pigments were evaluated as suitable natural compounds to be applied in dye-sensitized solar cells (DSSC). The assembled DSSC were characterized using the density current vs. potential profiles and electrochemical impedance spectroscopy. With an efficiency of 0.127%, our results are higher than those previously reported using similarly structured compounds from natural sources such as algae and cyanobacteria, among others. The best efficiencies were probably related to myxoxanthophyll-like derivates and aphanizophyll are carotenoids with many hydroxyl groups being able to interact with the semiconductor surface. The stability of the bonding between the dyes and the titanium oxide of the photoelectrode is crucial to ensuring the acceptable performance of the DSSC, which was successfully achieved in our experiments with carotenoids with many hydroxyl groups. Our results point to cyanobacterial pigments as a promising source of natural dyes for use in solar cells. Full article
Show Figures

Graphical abstract

18 pages, 9164 KB  
Article
Enhancing Photovoltaic Performance with BaTiO3/MWCNTs Composite Photoelectrodes in Dye-Sensitized Solar Cells
by Carlos Armando Polo Bravo, Brayan Yeraldyn Caceres Osnayo, Jesús Alfredo Chacaltana García, Jesús Plácido Medina Salas, Francisco Gamarra Gómez, Hugo Alfredo Torres Muro, Alberto Bacilio Quispe Cohaila, Ramalinga Viswanathan Mangalaraja and Elisban Juani Sacari Sacari
Crystals 2024, 14(6), 489; https://doi.org/10.3390/cryst14060489 - 23 May 2024
Cited by 3 | Viewed by 3111
Abstract
Dye-sensitized solar cells (DSSCs) have attracted renewed research interest as a potential low-cost substitute for conventional silicon photovoltaics. This work aims to improve the photovoltaic performance of the DSSCs by incorporating multi-walled carbon nanotubes (MWCNTs) into the BaTiO3 photoelectrode. The pure BaTiO [...] Read more.
Dye-sensitized solar cells (DSSCs) have attracted renewed research interest as a potential low-cost substitute for conventional silicon photovoltaics. This work aims to improve the photovoltaic performance of the DSSCs by incorporating multi-walled carbon nanotubes (MWCNTs) into the BaTiO3 photoelectrode. The pure BaTiO3 and BaTiO3/MWCNT nanocomposites were sensitized with N719 dye and fabricated into solar cell devices for testing. The structural characterization confirmed the successful formation of the nanocomposite with an optimal dispersion at 6% of MWCNT incorporation, beyond which agglomeration effects manifested. The optical analysis verified the modulation of defect states and bandgap engineering induced by the MWCNT network. The morphological studies revealed irregular nanoparticle clusters with embedded nanotubes. Solar cell testing under AM1.5G-simulated sunlight demonstrated a peak power conversion efficiency of 4.044% for 6% of MWCNT doping, constituting a 6-fold increment versus pure BaTiO3 (0.693%). It originated from the simultaneous enhancements in the open-circuit voltage and short-circuit current enabled by the favorable band structure alterations and percolation-assisted charge transport. However, further increasing MWCNT content deteriorated the device metrics, owing to emerging limitations like trapping. The rational integration of multi-walled carbon nanotubes with lead-free ferroelectric metal oxides can contribute to the development of emerging organic-inorganic hybrid solar platforms. Full article
Show Figures

Figure 1

13 pages, 3585 KB  
Article
Effect of Size and Morphology of Different ZnO Nanostructures on the Performance of Dye-Sensitized Solar Cells
by Sunandan Baruah, Rakesh A. Afre and Diego Pugliese
Energies 2024, 17(9), 2076; https://doi.org/10.3390/en17092076 - 26 Apr 2024
Cited by 12 | Viewed by 2927
Abstract
In this study, the influence of zinc oxide (ZnO) nanostructures with various morphologies on the performance of dye-sensitized solar cells (DSSCs) was investigated. Photo-electrodes were fabricated incorporating ZnO transport layers of distinct nanoscale morphologies—namely nanoparticles, microballs, spiky microballs, belts, and triangles—and their respective [...] Read more.
In this study, the influence of zinc oxide (ZnO) nanostructures with various morphologies on the performance of dye-sensitized solar cells (DSSCs) was investigated. Photo-electrodes were fabricated incorporating ZnO transport layers of distinct nanoscale morphologies—namely nanoparticles, microballs, spiky microballs, belts, and triangles—and their respective current–voltage characteristics were evaluated. It was observed that the DSSCs employing the triangular ZnO nanostructures, with a side length of approximately 30 nm, achieved the highest power conversion efficiency of 2.62%. This was closely followed by the DSSCs using spherical nanoparticles with an average diameter of approximately 20 nm, yielding an efficiency of 2.54%. In contrast, the efficiencies of DSSCs with microball and spiky microball ZnO nanostructures were significantly lower, measuring 0.31 and 1.79%, respectively. The reduction in efficiency for the microball-based DSSCs is attributed to the formation of micro-cracks within the thin film during the fabrication process. All DSSC configurations maintained a uniform active area of 4 mm². Remarkably, the highest fill factor of 59.88% was recorded for DSSCs utilizing the triangular ZnO morphology, with the spherical nanoparticles attaining a marginally lower fill factor of 59.38%. This investigation corroborates the hypothesis that reduced particle size in the transport layer correlates with enhanced DSSC performance, which is further amplified when the nanoparticles possess pointed geometries that induce strong electric fields due to elevated charge concentrations. Full article
Show Figures

Figure 1

9 pages, 1012 KB  
Communication
Enhancing Dye-Sensitized Solar Cell Performance with Different Sizes of ZnO Nanorods Grown Using Multi-Step Growth
by Fang-I Lai, Jui-Fu Yang, Wei-Chun Chen, Yu-Chao Hsu and Shou-Yi Kuo
Catalysts 2023, 13(9), 1254; https://doi.org/10.3390/catal13091254 - 30 Aug 2023
Cited by 7 | Viewed by 2205
Abstract
In this study, we employed a chemical solution method to grow zinc oxide (ZnO) nanorods on SnO2:F (FTO) substrates as photoelectrodes for dye-sensitized solar cells (DSSCs). The influence of varying ZnO nanorod dimensions on cell performance was investigated. Specifically, we explored [...] Read more.
In this study, we employed a chemical solution method to grow zinc oxide (ZnO) nanorods on SnO2:F (FTO) substrates as photoelectrodes for dye-sensitized solar cells (DSSCs). The influence of varying ZnO nanorod dimensions on cell performance was investigated. Specifically, we explored the effects of nanorod length and diameter on dye adsorption capacity and photovoltaic conversion efficiency. Characterization techniques such as electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) were utilized to analyze the ZnO nanorods. Our results demonstrate that the sequential growth technique allows for control over the length and diameter of ZnO nanorods, thereby modulating their optoelectronic properties. XRD and FE-SEM analyses revealed that the surface morphology of the ZnO nanorods impacts dye adsorption capacity and photovoltaic conversion efficiency. EIS measurements further indicated a significant influence of dye adsorption on the electron lifetime of ZnO nanorods. Overall, this study highlights the potential of multi-step growth of ZnO nanorods to optimize the performance of dye-sensitized solar cells by tuning their morphology and surface properties. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Graphical abstract

14 pages, 1045 KB  
Review
Alternative Sources of Natural Photosensitizers: Role of Algae in Dye-Sensitized Solar Cell
by Eddie Nahúm Armendáriz-Mireles, Carlos Adrián Calles-Arriaga, Wilian Pech-Rodríguez, Adalberto Castillo-Robles and Enrique Rocha-Rangel
Colorants 2023, 2(1), 137-150; https://doi.org/10.3390/colorants2010010 - 17 Mar 2023
Cited by 9 | Viewed by 4588
Abstract
In this paper, the potential of marine algae to act as sensitizers is systematically studied and presented. We aim to find a feasible financial strategy to enhance the global efficiency of dye-sensitized solar cells (DSSC). Algae are mainly composed of chlorophylls, carotenoids, flavonoids, [...] Read more.
In this paper, the potential of marine algae to act as sensitizers is systematically studied and presented. We aim to find a feasible financial strategy to enhance the global efficiency of dye-sensitized solar cells (DSSC). Algae are mainly composed of chlorophylls, carotenoids, flavonoids, and Betalains, which are essential pigments that confer unique characteristics that are required in natural sensitizers. Therefore, this review aims to unveil and understand the underlying mechanism between algae pigments and photoelectrodes and to conduct a comprehensive analysis to determine the effect of algae dye on light absorption efficiency and electron transport. The structural, morphological, optical, and electrochemical impedance properties are deeply analyzed, and we show the current opportunities for natural dyes to be used in energy technologies through DSSC. A comparison of several bibliographic sources dealing with DSSC based on algae provided a general overview of the improvements in factors such as the recombination times, the filling factor, and the Voc values. The contributions of this paper relate to the conversion efficiency and future applications in the DSSC field. Finally, this review exemplifies that the nature of the pigment affects the photophysical properties of the cell. Thus, this paper may contribute to future investigations of DSSC when choosing efficient natural dyes according to their optical and electronic properties. Therefore, this work provides the knowledge required to efficiently merge materials and dyes, in which photovoltaic energy systems’ reproducibility and scalability still represent a challenge. Lastly, this document discusses the natural pigments’ stability and the approaches to improve their chemical stability. Full article
(This article belongs to the Special Issue Recent Progress on Functional Dyes and Their Applications)
Show Figures

Figure 1

17 pages, 5013 KB  
Article
Nanoparticle/Core-Shell Composite Structures with Superior Optical and Electrochemical Properties in a Dye-Sensitized Solar Cell
by Siti Nur Azella Zaine, Norani Muti Mohamed, Mehboob Khatani and Muhammad Umair Shahid
Nanomaterials 2022, 12(18), 3128; https://doi.org/10.3390/nano12183128 - 9 Sep 2022
Cited by 5 | Viewed by 2353
Abstract
The dynamics of competition between kinetic electron generation and recombination have restricted the development of a higher-performance dye-sensitized solar cells (DSSC). The key to minimizing the competition is optimizing the nanostructures and thickness of the photoelectrode film. It has been reported that the [...] Read more.
The dynamics of competition between kinetic electron generation and recombination have restricted the development of a higher-performance dye-sensitized solar cells (DSSC). The key to minimizing the competition is optimizing the nanostructures and thickness of the photoelectrode film. It has been reported that the optimum thickness of photoelectrode film to achieve high-performance efficiency is about 12–14 µm. In this study, a photoelectrode film, which is approximately 4 µm thinner compared with those previously reported and has improved performance efficiency, was successfully developed by using composite nanoparticles and core-shell structures. The fabricated DSSC shows an enhanced light scattering, improved dye absorption capability, and reduced electron recombination rate despite the thinner photoelectrode film. The synthesized elongated nanoparticle structure provides a larger surface area for anchoring more dye molecules. In addition, the micron-sized core-shell structures with different refractive indexes of the inner and outer material resulted in multiple refractions and closed-loop light confinement. The successful development of a high-performance thin photoelectrode film will lead to material and cost savings. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Harvesting)
Show Figures

Figure 1

15 pages, 4259 KB  
Article
Enhancement of Charge Transport of a Dye-Sensitized Solar Cell Utilizing TiO2 Quantum Dot Photoelectrode Film
by Siti Nur Azella Zaine, Norani Muti Mohamed, Mehboob Khatani and Muhammad Umair Shahid
Coatings 2021, 11(12), 1442; https://doi.org/10.3390/coatings11121442 - 24 Nov 2021
Cited by 5 | Viewed by 2689
Abstract
A dye-sensitized solar cell (DSC) is the third generation of solar technology, utilizing TiO2 nanoparticles with sizes of 20–30 nm as the photoelectrode material. The integration of smaller nanoparticles has the advantage of providing a larger surface area, yet the presence of [...] Read more.
A dye-sensitized solar cell (DSC) is the third generation of solar technology, utilizing TiO2 nanoparticles with sizes of 20–30 nm as the photoelectrode material. The integration of smaller nanoparticles has the advantage of providing a larger surface area, yet the presence of grain boundaries is inevitable, resulting in a higher probability of electron trapping. This study reports on the improvement of charge transport through the integration of quantum dot (QD) TiO2 with a size of less than 10 nm as the dye absorption photoelectrode layer. The QD TiO2 samples were synthesized through sol–gel and reflux methods in a controlled pH solution without surfactants. The synthesized samples were analyzed using microscopic, diffraction, absorption, as well as spectroscopic analyses. A current–voltage and impedance analysis was used to evaluate the performance of a DSC integrated with synthesized TiO2 as the photoelectrode material. The sample with smaller crystallite structures led to a large surface area and exhibited a higher dye absorption capability. Interestingly, a DSC integrated with QD TiO2 showed a higher steady-state electron density and a lower electron recombination rate. The shallow distribution of the trap state led to an improvement of the electron trapping/de-trapping process between the Fermi level and the conduction band of oxide photoelectrode material, hence improving the lifetime of generated electrons and the overall performance of the DSC. Full article
(This article belongs to the Special Issue Electrochemical Surface Science: From Fundamentals to Applications)
Show Figures

Figure 1

Back to TopTop