Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method
Abstract
1. Introduction
2. Experimental
2.1. Preparation of Working Electrode Paste
2.2. Preparation of Scattering Layer Paste
2.3. DSSC Fabrication
3. Results and Discussion
3.1. Material and Device Analyses
3.1.1. X-Ray Diffraction Analysis of the Scattering Layer
3.1.2. Surface Morphology of Scattering Layer
3.1.3. Absorption Spectrum
3.2. Photovoltaic Characterization
3.2.1. Analysis of DSSCs with 1-Layer P25 TiO2 and Single Scattering Layer
3.2.2. Analysis of DSSCs with 5-Layer P25 TiO2 and Single Scattering Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, J.W.; Sumathy, K.; Qiao, Q.Q.; Zhou, Z.P. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 234–246. [Google Scholar] [CrossRef]
- Sekaran, P.D.; Marimuthu, R. An extensive analysis of dye-sensitized solar cell (DSSC). Braz. J. Phys. 2024, 54, 28. [Google Scholar] [CrossRef]
- Di Carlo, V.; Prete, P.; Dubrovskii, V.G.; Berdnikov, Y.; Nico Lovergine, N. CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy. Nano Lett. 2017, 17, 4075–4082. [Google Scholar] [CrossRef] [PubMed]
- Lovergine, N.; Cingolani, R.; Mancini, A.M. Photoluminescence of CVD grown CdS epilayers on CdTe substrates. J. Cryst. Growth 1992, 118, 304–308. [Google Scholar] [CrossRef]
- Kujovic, L.; Liu, X.L.; Abbas, A.; Jones, L.O.; Law, A.M.; Togay, M.; Curson, K.M.; Barth, K.L.; Bowers, J.W.; Walls, J.M.; et al. Achieving 21.4% Efficient CdSeTe/CdTe Solar Cells Using Highly Resistive Intrinsic ZnO Buffer Layers. Adv. Funct. Mater. 2024, 34, 2312528. [Google Scholar] [CrossRef]
- Miccoli, I.; Prete, P.; Marzo, F.; Cannoletta1, D.; Lovergine, N. Synthesis of vertically-aligned GaAs nanowires on GaAs/(111)Si hetero-substrates by metalorganic vapour phase epitaxy. Cryst. Res. Technol. 2011, 46, 795–800. [Google Scholar] [CrossRef]
- Raj, V.; Haggren, T.; Mayon, Y.O.; Jagadish, C.; Tan, H.H. 21.2% GaAs Solar Cell Using Bilayer Electron Selective Contact. Sol. RRL 2024, 8, 2300889. [Google Scholar] [CrossRef]
- Pandikumar, A.; Jothivenkatachalam, K.; Bhojanaa, K.B. Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Lin, Y.-S.; Lu, C.-C. Improved AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with TiO2 gate dielectric annealed in nitrogen. IEEE Trans. Electron Devices 2018, 65, 783–787. [Google Scholar] [CrossRef]
- Wang, Z.S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 2004, 248, 1381–1389. [Google Scholar] [CrossRef]
- Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 1176–1188. [Google Scholar] [CrossRef]
- Park, J.T.; Roh, D.K.; Chi, W.S.; Patel, R.; Kim, J.H. Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells. J. Ind. Eng. Chem. 2012, 18, 449–455. [Google Scholar] [CrossRef]
- Shital, S.; Swami, S.K.; Barnes, P.; Dutta, V. Monte Carlo simulation for optimization of a simple and efficient bifacial DSSC with a scattering layer in the middle. Sol. Energy 2018, 161, 64–73. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Kurokawa, Y.; Taguchi, K. Enhancing DSSC photoanode performance by using Ni-doped TiO2 to fabricate scattering layers. J. Electron. Mater. 2020, 49, 2578–2583. [Google Scholar] [CrossRef]
- Chang, W.C.; Tang, B.H.; Lu, Y.W.; Yu, W.C.; Lin, L.Y.; Wu, R.J. Incorporating hydrangea-like titanium dioxide light scatterer with high dye-loading on the photoanode for dye-sensitized solar cells. J. Power Sources 2016, 319, 131–138. [Google Scholar] [CrossRef]
- Chava, R.K.; Yu, Y.T.; Kang, M. Layer-by-layer deposition of hollow TiO2 spheres with enhanced photoelectric conversion efficiency for dye-sensitized solar cell applications. Nanomaterials 2024, 14, 1782. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Zhao, F.Y. Application of bunchy TiO2 hierarchical microspheres as a scattering layer for dye-sensitized solar cells. Front. Energy Res. 2021, 9, 682709. [Google Scholar] [CrossRef]
- Chou, J.C.; Syu, R.H.; Lai, C.H.; Kuo, P.Y.; Yang, P.H.; Nien, Y.H.; Lin, Y.C.; Yong, Z.R.; Wu, Y.T. Optimization and application of TiO2 hollow microsphere modified scattering layer for the photovoltaic conversion efficiency of dye-sensitized solar cell. IEEE Trans. Semicond. Manuf. 2022, 35, 363–371. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, W.; Lv, Y.; Jin, Y.; Chen, K.; Wang, L.; Zhou, X. Anatase TiO2 nanowires with nanoscale whiskers for the improved photovoltaic performance in dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2019, 30, 14036–14044. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Wu, R.J.; Lin, L.Y.; Chang, W.C. Novel synthesis of popcorn-like TiO2 light scatterers using a facile solution method for efficient dye-sensitized solar cells. J. Power Sources 2019, 413, 384–390. [Google Scholar] [CrossRef]
- Ramakrishnan, V.M.; Sandberg, S.; Muthukumarasamy, N.; Kvamme, K.; Balraju, P.; Agilan, S.; Velauthapillai, D. Microwave-assisted solvothermal synthesis of worms-like TiO2 nanostructures in submicron regime as light scattering layers for dye-sensitized solar cells. Mater. Lett. 2019, 236, 747–751. [Google Scholar] [CrossRef]
- Cui, Y.; He, X.; Zhu, M.H.; Li, X. Preparation of anatase TiO2 microspheres with high exposure (001) facets as the light-scattering layer for improving performance of dye-sensitized solar cells. J. Alloys Compd. 2017, 694, 568–573. [Google Scholar] [CrossRef]
- Nemala, S.S.; Mokurala, K.; Bhargava, P.; Mallick, S. Titania nanobelts as a scattering layer with Cu2ZnSnS4 as a counter electrode for DSSC with improved efficiency. Mater. Today Proc. 2018, 5, 23351–23357. [Google Scholar] [CrossRef]
- Chen, C.; Luo, F.; Li, Y.; Sewvandi, G.A.; Feng, Q. Single-crystalline anatase TiO2 nanoleaf: Simple topochemical synthesis and light-scattering effect for dye-sensitized solar cells. Mater. Lett. 2017, 196, 50–53. [Google Scholar] [CrossRef]
- Navarro-Pardo, F.; Benetti, D.; Benavides, J.; Zhao, H.G.; Cloutier, S.G.; Castano, V.M.; Vomiero, A.; Rosei, F. Nanofiber-structured TiO2 nanocrystals as a scattering layer in dye-sensitized solar cells. ECS J. Solid State Sci. Technol. 2017, 6, N32–N37. [Google Scholar] [CrossRef]
- Hu, J.H.; Tong, S.Q.; Yang, Y.P.; Cheng, J.J.; Zhao, L.; Duan, J.X. A composite photoanode based on P25/TiO2 nanotube arrays/flower-like TiO2 for high-efficiency dye-sensitized solar cells. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 840–847. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Sulaiman, Y. Optimization of titanium dioxide decorated by graphene quantum dot as a light scatterer for enhanced dye-sensitized solar cell performance. J. Electroanal. Chem. 2020, 876, 114516. [Google Scholar] [CrossRef]
- Xu, S.X.; Fang, D.; Xiong, F.M.; Ren, Y.X.; Bai, C.; Mi, B.X.; Gao, Z.Q. Electrophoretic deposition of double-layer ZnO porous films for DSSC photoanode. J. Solid State Electrochem. 2024, 28, 589–599. [Google Scholar] [CrossRef]
- Min, K.W.; Chao, S.M.; Yu, M.T.; Ho, C.T.; Chen, P.R.; Wu, T.L. Graphene-TiO2 for scattering layer in photoanodes of dye-sensitized solar cell. Mod. Phys. Lett. B 2021, 35, 2141005. [Google Scholar] [CrossRef]
- Pang, B.L.; Shi, Y.T.; Lin, S.; Chen, Y.J.; Feng, J.G.; Dong, H.Z.; Yang, H.B.; Zhao, Z.X.; Yu, L.Y.; Dong, L.F. Triiodide reduction activity of hydrangea molybdenum sulfide/reduced graphene oxide composite for dye-sensitized solar cells. Mater. Res. Bull. 2019, 117, 78–83. [Google Scholar] [CrossRef]
- Liu, T.C.; Wu, C.C.; Huang, C.H.; Chen, C.M. Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells. J. Electron. Mater. 2016, 45, 6192–6199. [Google Scholar] [CrossRef]
- Zhou, C.H.; Zhao, X.Z.; Yang, B.C.; Zhang, D.; Li, Z.Y.; Zhou, K.C. Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells. J. Colloid Interface Sci. 2012, 374, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ju, K.Y.; Cho, J.M.; Cho, S.J.; Yun, J.J.; Mun, S.S.; Han, E.M. Enhanced efficiency of dye-sensitized solar cells with novel synthesized TiO2. J. Nanosci. Nanotechnol. 2010, 10, 3623–3627. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Nahm, C.; Kim, J.; Moon, J.; Nam, S.; Jung, D.R.; Park, B. The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr. Appl. Phys. 2012, 12, 737–741. [Google Scholar] [CrossRef]
- Lee, S.W.; Anh, K.S.; Zhu, K.; Neale, N.R.; Frank, A.J. Effects of TiCl4 treatment of nanoporous TiO2 films on morphology, Light harvesting, and charge-carrier dynamics in dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 21285–21290. [Google Scholar] [CrossRef]
- Vu, H.H.T.; Atabaev, T.S.; Ahn, J.Y.; Dinh, N.N.; Kim, H.K.; Huang, Y.H. Dye-sensitized solar cells composed of photoactive composite photoelectrodes with enhanced solar energy conversion efficiency. J. Mater. Chem. A 2015, 3, 11130–11136. [Google Scholar] [CrossRef]
- Xu, J.; Zhai, C.W.; Zheng, B.W.; Li, H.W.; Zhu, M.W.; Chen, Y.F. Large efficiency improvement in nanoporous dye-sensitized solar cells via vacuum assistant dye adsorption. Vacuum 2012, 86, 1161–1164. [Google Scholar] [CrossRef]
- Hegazy, A.; Kinadjian, N.; Sadeghimakki, B.; Sivoththaman, S.; Allam, N.K.; Prouzet, E. TiO2 nanoparticles optimized for photoanodes tested in large area dye-sensitized solar cells (DSSC). Sol. Energy Mater. Sol. Cells 2016, 153, 108–116. [Google Scholar] [CrossRef]
- Zhu, K.; Neale, N.R.; Miedaner, A.; Frank, A.J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69–74. [Google Scholar] [CrossRef]
- Ding, Y.; Mo, L.E.; Tao, L.; Ma, Y.M.; Hu, L.H.; Huang, Y.; Fang, X.Q.; Yao, J.X.; Xi, X.W.; Dai, S.Y. TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells. J. Power Sources 2014, 272, 1046–1052. [Google Scholar] [CrossRef]
Light Scattering Layer | Jsc (mA/cm2) | Voc (V) | FF | η (%) | References |
---|---|---|---|---|---|
H-TiO2:P25 TiO2 = 3:7 (5-layer P25 TiO2) | 15.26 | 0.77 | 0.71 | 8.33 | This work |
Coral-like TiO2 | 13.28 | 0.71 | 0.71 | 6.7 | [15] |
Hydrangea-likeTiO2 | 14.03 | 0.74 | 0.72 | 7.5 | [15] |
Hollow TiO2 nanoparticles (HTNPs) | 16.26 | 0.68 | 0.72 | 8.08 | [16] |
TiO2 hierarchical micro-spheres and nanobelts | 17.86 | 0.72 | 0.63 | 8.08 | [17] |
TiO2 hollow microspheres (THS) (1 wt%) | 12.02 | 0.69 | 0.59 | 5.01 | [18] |
Anatase TiO2 nanowires with nanoscale whiskers | 12.72 | 0.74 | 0.63 | 5.98 | [19] |
popcorn-like TiO2 | 13.95 | 0.77 | 0.7 | 7.56 | [20] |
worms-like TiO2 nanostructures | 14.77 | 0.77 | 0.62 | 7.05 | [21] |
TiO2 microspheres | 13.32 | 0.78 | 0.63 | 6.49 | [22] |
TiO2 nanobelts | 16.1 | 0.69 | 0.63 | 7.85 | [23] |
TiO2 nanoleaf | 14.00 | 0.69 | 0.53 | 5.12 | [24] |
Nanofiber-structured TiO2 | 12.6 | 0.7 | 0.69 | 6.00 | [25] |
Flower-like TiO2 | 16.07 | 0.65 | 0.62 | 6.48 | [26] |
TiO2/graphene quantum dot (GQD) | 14.22 | 0.69 | 0.51 | 5.01 | [27] |
50-nm ZnO/30-nm ZnO | 18.99 | 0.67 | 0.46 | 5.87 | [28] |
TiO2/7.5% graphene | 15.64 | 0.71 | 0.63 | 7.08 | [29] |
Symbols of Scattering Paste | (H-TiO2):Commercial P25 TiO2 Ratio |
---|---|
9H1C | 9:1 |
7H3C | 7:3 |
5H5C | 5:5 |
3H7C | 3:7 |
1H9C | 1:9 |
Sample | Dye Loading Amount(nmol/cm2) |
---|---|
H-TiO2 | 162.0 |
9H1C | 162.3 |
7H3C | 168.3 |
5H5C | 169.5 |
3H7C | 184.3 |
1H9C | 182.5 |
Photoanode | Jsc (mA/cm2) | Voc (V) | FF | η (%) |
---|---|---|---|---|
1-layer P25/1-layer P25 | 8.54 | 0.76 | 0.74 | 4.82 |
1-layer P25/1-layer H-TiO2 | 8.68 | 0.83 | 0.71 | 5.09 |
1-layer P25/1-layer 9H1C | 9.31 | 0.80 | 0.7 | 5.22 |
1-layer P25/1-layer 7H3C | 9.47 | 0.79 | 0.71 | 5.29 |
1-layer P25/1-layer 5H5C | 9.49 | 0.83 | 0.69 | 5.46 |
1-layer P25/1-layer 3H7C | 9.93 | 0.77 | 0.73 | 5.58 |
1-layer P25/1-layer 1H9C | 9.63 | 0.83 | 0.69 | 5.51 |
Photoanode | Jsc (mA/cm2) | Voc (V) | FF | η (%) |
---|---|---|---|---|
5-layer P25/1-layer H-TiO2 | 13.94 | 0.74 | 0.68 | 7.03 |
5-layer P25/1-layer 9H1C | 14.31 | 0.74 | 0.69 | 7.29 |
5-layer P25/1-layer 7H3C | 14.81 | 0.76 | 0.68 | 7.62 |
5-layer P25/1-layer 5H5C | 15.13 | 0.76 | 0.68 | 7.84 |
5-layer P25/1-layer 3H7C | 15.26 | 0.77 | 0.71 | 8.33 |
5-layer P25/1-layer 1H9C | 15.06 | 0.76 | 0.7 | 7.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-S.; Chen, W.-H. Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method. Materials 2025, 18, 278. https://doi.org/10.3390/ma18020278
Lin Y-S, Chen W-H. Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method. Materials. 2025; 18(2):278. https://doi.org/10.3390/ma18020278
Chicago/Turabian StyleLin, Yu-Shyan, and Wei-Hung Chen. 2025. "Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method" Materials 18, no. 2: 278. https://doi.org/10.3390/ma18020278
APA StyleLin, Y.-S., & Chen, W.-H. (2025). Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method. Materials, 18(2), 278. https://doi.org/10.3390/ma18020278