Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = durum wheat oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 973 KiB  
Article
Small-Sized Tomato Pomace: Source of Bioactive Compounds and Ingredient for Sustainable Production of Functional Bread
by Selina Brighina, Luana Pulvirenti, Laura Siracusa, Elena Arena, Maria Veronica Faulisi and Cristina Restuccia
Foods 2024, 13(21), 3492; https://doi.org/10.3390/foods13213492 - 31 Oct 2024
Viewed by 1359
Abstract
Tomato processing generates a by-product known as tomato pomace (TP), which contains chemically diverse valuable components such as lycopene, phenols, dietary fibre, proteins, and oil. The aim of this study was to characterize bioactive compounds in small-sized tomato pomace from cherry and date [...] Read more.
Tomato processing generates a by-product known as tomato pomace (TP), which contains chemically diverse valuable components such as lycopene, phenols, dietary fibre, proteins, and oil. The aim of this study was to characterize bioactive compounds in small-sized tomato pomace from cherry and date tomatoes and to evaluate the effects of the addition of 10 and 20% (w/w) of tomato pomace flour (TPF) to durum wheat dough for bread production. Bread containing different amounts of TPF was characterized by physical, chemical, nutritional, and sensory characteristics. TPF is an important source of dietary fibre with a total content of approximately 52.3%, of which 5.3% is soluble and 47% is insoluble. It is also a potential source of natural antioxidants and contains remarkable residual levels of both total carotenoids and polyphenols. TPF addition reduced water loss during baking and significantly affected colour parameters and acidity; furthermore, both fortified TPF breads could use these nutrition and health claims and label the breads as “High Fibre”. The “overall” sensory attribute showed similar values in the control and fortified bread samples, suggesting that the overall quality of the bread remained relatively constant, regardless of the percentage of added TPF. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 2493 KiB  
Article
Lupin as Ingredient in Durum Wheat Breadmaking: Physicochemical Properties of Flour Blends and Bread Quality
by Alfio Spina, Carmine Summo, Nicolina Timpanaro, Michele Canale, Rosalia Sanfilippo, Margherita Amenta, Maria Concetta Strano, Maria Allegra, Martina Papa and Antonella Pasqualone
Foods 2024, 13(5), 807; https://doi.org/10.3390/foods13050807 - 6 Mar 2024
Cited by 7 | Viewed by 2229
Abstract
The popularity of adding pulse flours to baked goods is growing rapidly due to their recognised health benefits. In this study, increasing amounts (3, 7, 10, and 15%) of white lupin flour (Lupinus albus L.) and of protein concentrate from narrow-leaved lupin [...] Read more.
The popularity of adding pulse flours to baked goods is growing rapidly due to their recognised health benefits. In this study, increasing amounts (3, 7, 10, and 15%) of white lupin flour (Lupinus albus L.) and of protein concentrate from narrow-leaved lupin (Lupinus angustifolius L.) were used as replacements for durum wheat semolina to prepare bread, and their effects on the physicochemical properties of the flour blends, as well as the technological and sensory qualities of bread, were evaluated. The addition of protein concentrate from narrow-leaved lupin and white lupin flour increased the water binding capacity and the leavening rate compared to pure semolina. A farinograph test indicated that the dough development time had a slight but significant tendency to increase with the addition of lupin flour and protein concentrate of narrow-leaved lupin, while had a negative effect on the stability of dough. The alveograph strength decreased (225, 108, and 76 × 10−4 J for dough made with semolina, 15% of protein concentrate from narrow-leaved lupin, and 15% of white lupin flour, respectively), whereas there was an upward trend in the P/L ratio. Compared to re-milled semolina, the samples with lupin flour and protein concentrate from narrow-leaved lupin had low amylase activity, with falling number values ranging from 439 s to 566 s. The addition of the two different lupin flours lowered the specific volumes of the breads (2.85, 2.39, and 1.93 cm3/g for bread made from semolina, from 15% of protein concentrate from narrow-leaved lupin, and from 15% of white lupin flour, respectively) and increased their hardness values (up to 21.34 N in the bread with 15% of protein concentrate from narrow-leaved lupin). The porosity of the loaves was diminished with the addition of the two lupin flours (range of 5–8). The sensory analysis showed that the addition of white lupin flour or protein concentrate from narrow-leaved lupin did not impart any unpleasant flavours or odours to the bread. To conclude, the use of lupin in breadmaking requires adjustments to strengthen the gluten network but does not require a deflavouring process. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

13 pages, 1477 KiB  
Article
Functional End-Use of Hemp Seed Waste: Technological, Qualitative, Nutritional, and Sensorial Characterization of Fortified Bread
by Fabiola Sciacca, Nino Virzì, Nicola Pecchioni, Maria Grazia Melilli, Carla Buzzanca, Sonia Bonacci and Vita Di Stefano
Sustainability 2023, 15(17), 12899; https://doi.org/10.3390/su151712899 - 25 Aug 2023
Cited by 15 | Viewed by 2293
Abstract
Due to its multipurpose usability, short production cycle, and low capital requirement in cultivation, hemp represents an excellent material applicable to the Sustainable Development Goals (SDGs) defined by the United Nations Organization as a strategy “to achieve a future better and more sustainable [...] Read more.
Due to its multipurpose usability, short production cycle, and low capital requirement in cultivation, hemp represents an excellent material applicable to the Sustainable Development Goals (SDGs) defined by the United Nations Organization as a strategy “to achieve a future better and more sustainable for all”. Hemp seeds represent the only edible part of Cannabis sativa and have a distinctly different nutritional composition from other representative foods such as rice and wheat (high protein content, low carbohydrate content, polyunsaturated fatty acids, dietary fiber, and gluten-free). Hemp seeds are mainly used for the production of oil; the waste obtained after extraction, reduced to a fine powder and rich in bioactive components, is added to durum wheat flour and used for the preparation of fortified bread. The aim of this study was to use varying percentages of hemp seed flour for bread production and determine the impact of fortification on texture, organoleptic characteristics, crumb color, changes in crumb texture, total polyphenols, the scavenging activity of free radicals, and amino acid content. The solid residue remaining after oil extraction from hemp seeds (generally discarded as waste or added to feed) was triturated and sieved to 0.530 mm (Hemp 1) or 0.236 mm (Hemp 2). Samples of fortified bread were obtained by replacing variable percentages of durum wheat semolina with the two hemp flours (5%, 7.5%, and 10%). The total phenolic content of the fortified bread was between 0.73 and 1.73 mg GAE/g, and the antiradical activity was between 1.17 and 3.18 mmol TEAC/100 g on the basis of the growing fortification. A comparison of Ciclope semolina bread with hemp flour-enriched bread showed a large increase in amino acid content in the fortified samples. In particular, bread enriched with 10% hemp flour 2 showed a higher content of glutamic acid, tyrosine, proline, and essential amino acids such as leucine and isoleucine compared to other samples with the same percentage of substitution. The amount of hemp seed flour influenced the color of the crumb by increasing the yellow index from 18.24 (100% Ciclope) to 21.33 (bread with 5% hemp flour 2). The results of the sensory analysis were very good, demonstrating the high acceptability of fortified breads at higher percentages. Full article
(This article belongs to the Special Issue By-Products of the Agri-Food Industry: Use for Food Fortification)
Show Figures

Figure 1

21 pages, 1525 KiB  
Article
Effects of Partial Replacement of Durum Wheat Re-Milled Semolina with Bean Flour on Physico-Chemical and Technological Features of Doughs and Breads during Storage
by Rosalia Sanfilippo, Michele Canale, Giacomo Dugo, Cinzia Oliveri, Michele Scarangella, Maria Concetta Strano, Margherita Amenta, Antonino Crupi and Alfio Spina
Plants 2023, 12(5), 1125; https://doi.org/10.3390/plants12051125 - 2 Mar 2023
Cited by 9 | Viewed by 2999
Abstract
The ‘Signuredda’ bean is a local genotype of pulse with particular technological characteristics, cultivated in Sicily, Italy. This paper presents the results of a study to evaluate the effects of partial substitutions of durum wheat semolina with 5%, 7.5%, and 10% of bean [...] Read more.
The ‘Signuredda’ bean is a local genotype of pulse with particular technological characteristics, cultivated in Sicily, Italy. This paper presents the results of a study to evaluate the effects of partial substitutions of durum wheat semolina with 5%, 7.5%, and 10% of bean flour to prepare durum wheat functional breads. The physico-chemical properties and the technological quality of flours, doughs, and breads were investigated, as well as their storage process up to six days after baking. With the addition of bean flour, the proteins increased, as did the brown index, while the yellow index decreased. The water absorption and dough stability according to the farinograph increased from 1.45 in FBS 7.5%, to 1.65 in FBS 10%, for both 2020 and 2021, and from 5% to 10% supplementation for water absorption. Dough stability increased from 4.30 in FBS 5%-2021 to 4.75 in FBS 10%-2021. According to the mixograph, the mixing time also increased. The absorption of water and oil, as well as the leavening capacity, were also examined, and results highlighted an increase in the amount of water absorbed and a greater fermentation capacity. The greatest oil uptake was shown with bean flour at 10% supplementation (3.40%), while all bean flour mixes showed a water absorption of approximately 1.70%. The fermentation test showed the addition of 10% bean flour significantly increased the fermentative capacity of the dough. The color of the crumb was darker, while the crust became lighter. During the staling process, compared with the control sample, loaves with greater moisture and volume, and better internal porosity were obtained. Moreover, the loaves were extremely soft at T0 (8.0 versus 12.0 N of the control). In conclusion, the results showed an interesting potential of ‘Signuredda’ bean flour as a bread-making ingredient to obtain softer breads, which are better able to resist becoming stale. Full article
Show Figures

Figure 1

20 pages, 2859 KiB  
Article
Essential Oils and Biological Activities of Eucalyptus falcata, E. sideroxylon and E. citriodora Growing in Tunisia
by Ismail Amri, Marwa Khammassi, Rayda Ben Ayed, Sana Khedhri, Manel Ben Mansour, Oumayma Kochti, Ylenia Pieracci, Guido Flamini, Yassine Mabrouk, Samia Gargouri, Mohsen Hanana and Lamia Hamrouni
Plants 2023, 12(4), 816; https://doi.org/10.3390/plants12040816 - 11 Feb 2023
Cited by 32 | Viewed by 3854
Abstract
Many plants are able to synthesize essential oils (EOs), which play key roles in defense against weeds, fungi and pests. This study aims to analyze the chemical composition and to highlight the antioxidant, antimicrobial and phytotoxic properties of the EOs from Eucalyptus falcata [...] Read more.
Many plants are able to synthesize essential oils (EOs), which play key roles in defense against weeds, fungi and pests. This study aims to analyze the chemical composition and to highlight the antioxidant, antimicrobial and phytotoxic properties of the EOs from Eucalyptus falcata, E. sideroxylon and E. citriodora growing in Tunisia. EOs were analyzed by gas chromatography coupled to mass spectrometry (GC/MS) and their antioxidant properties were determined by total antioxidant capacity (TAC), DPPH and ABTS assays. The phytotoxic potential was assessed against weeds (Sinapis arvensis, Phalaris canariensis) and durum wheat crop (Triticum durum) and compared to chemical herbicide glyphosate. The antifungal activity was investigated in vitro against eight target fungal strains. All EOs displayed a specific richness in oxygenated monoterpenes (51.3–90%) and oxygenated sesquiterpenes (4.8–29.4%), and 1,8-cineole, citronellal, citronellol, trans-pinocarveol, globulol, spathulenol and citronellyl acetate were the main constituents. Eucalyptus EOs exhibited remarkable antioxidant activity and E. citriodora oil exhibited significant activity when compared with E. falcata and E. sideroxylon EOs. The phytotoxic potential of the tested oils had different efficacy on seed germination and the growth of seedlings and varied among tested herbs and their chemical composition variability. Their effectiveness was better than that of glyphosate. At the post-emergence stage, symptoms of chlorosis and necrosis were observed. Furthermore, a decrease in chlorophyll and relative water content, electrolyte leakage and high levels of MDA and proline were indicators of the oxidative effects of EOs and their effectiveness as bioherbicides. Moreover, all the EOs exhibited moderate fungitoxic properties against all the tested fungal strains. Therefore, according to the obtained results, Eucalyptus EOs could have potential application as natural pesticides. Full article
Show Figures

Figure 1

16 pages, 637 KiB  
Article
Hemp Flour Particle Size Affects the Quality and Nutritional Profile of the Enriched Functional Pasta
by Sonia Bonacci, Vita Di Stefano, Fabiola Sciacca, Carla Buzzanca, Nino Virzì, Sergio Argento and Maria Grazia Melilli
Foods 2023, 12(4), 774; https://doi.org/10.3390/foods12040774 - 10 Feb 2023
Cited by 14 | Viewed by 3505
Abstract
The rheological and chemical quality of pasta samples, which were obtained using the durum wheat semolina fortified with the hemp seed solid residue, after oil extraction, sieved at 530 μm (Hemp 1) or 236 μm (Hemp 2) at different percentages of substitution (5%, [...] Read more.
The rheological and chemical quality of pasta samples, which were obtained using the durum wheat semolina fortified with the hemp seed solid residue, after oil extraction, sieved at 530 μm (Hemp 1) or 236 μm (Hemp 2) at different percentages of substitution (5%, 7.5%, and 10%, were evaluated. The total polyphenolic content in hemp flour was quantified in the range of 6.38–6.35 mg GAE/g, and free radical scavenging was included in the range from 3.94–3.75 mmol TEAC/100 g in Hemp 1 and Hemp 2, respectively. The phenolic profiles determined by UHPLC-ESI/QTOF-MS showed that cannabisin C, hydroxycinnamic and protocatechuic acids were the most abundant phenolic compounds in both hemp flours. Among the amino acids, isoleucine, glutamine, tyrosine, proline, and lysine were the most abundant in raw materials and pasta samples. Although the hemp seeds were previously subjected to oil extraction, hemp flours retain about 8% of oil, and the fatty acids present in the largest amount were linoleic acid and α-linolenic acid. Characterization of the minerals showed that the concentration of macro and trace elements increased according to fortification percentage. Sensory evaluation and cooking quality indicated that the best performance in terms of process production and consumer acceptance was obtained using Hemp 2 at 7.5%. Hemp supplementation could be a potential option for producing high-quality, nutritionally rich, low-cost pasta with good color and functionality. Full article
Show Figures

Figure 1

10 pages, 1063 KiB  
Article
Kinetics of Carotenoids Degradation during the Storage of Encapsulated Carrot Waste Extracts
by Vanja Šeregelj, Lorenzo Estivi, Andrea Brandolini, Gordana Ćetković, Vesna Tumbas Šaponjac and Alyssa Hidalgo
Molecules 2022, 27(24), 8759; https://doi.org/10.3390/molecules27248759 - 10 Dec 2022
Cited by 9 | Viewed by 2912
Abstract
The encapsulates of carrot waste oil extract improved the antioxidant properties of durum wheat pasta. The aim of this research was to study the kinetics of carotenoids degradation in the freeze-dried (FDE) and spray-dried (SDE) encapsulates of carrot waste extract during storage at [...] Read more.
The encapsulates of carrot waste oil extract improved the antioxidant properties of durum wheat pasta. The aim of this research was to study the kinetics of carotenoids degradation in the freeze-dried (FDE) and spray-dried (SDE) encapsulates of carrot waste extract during storage at four different temperatures (+4, +21.3, +30, +37 °C) up to 413 days by HPLC. Carotenoids levels decreased as a function of time and temperature, following zero-order kinetics. At 4 °C carotenes were stable for at least 413 days, but their half-lives decreased with increasing temperatures: 8–12 months at 21 °C; 3–4 months at 30 °C; and 1.5–2 months at 37 °C. The freeze-drying technique was more effective against carotenes degradation. An initial lag-time with no or very limited carotenes degradation was observed: from one week at 37 °C up to 3 months (SDE) or more (FDE) at 21 °C. The activation energies (Ea) varied between 66.6 and 79.5 kJ/mol, and Ea values tended to be higher in FDE than in SDE. Full article
(This article belongs to the Special Issue Interesting Applications of Plant Extracts in Food)
Show Figures

Graphical abstract

16 pages, 1028 KiB  
Article
The Use of Durum Wheat Oil in the Preparation of Focaccia: Effects on the Oxidative Stability and Physical and Sensorial Properties
by Francesca Vurro, Carmine Summo, Giacomo Squeo, Francesco Caponio and Antonella Pasqualone
Foods 2022, 11(17), 2679; https://doi.org/10.3390/foods11172679 - 2 Sep 2022
Cited by 16 | Viewed by 3412
Abstract
Durum wheat oil is an innovative oil that could be considered the “second life” of durum wheat milling by-products. In this study, we proposed the use of this oil in the reformulation of a traditional Italian greased flat bread, namely focaccia, whose [...] Read more.
Durum wheat oil is an innovative oil that could be considered the “second life” of durum wheat milling by-products. In this study, we proposed the use of this oil in the reformulation of a traditional Italian greased flat bread, namely focaccia, whose typical sensorial features are due to the presence of relevant amounts of oil in its formulation. The chemical, physical, and sensorial features of focaccia with durum wheat oil (DWO) were compared with those of focaccia prepared with olive oil (OO) and sunflower oil (SO). The results showed the prevalence of polyunsaturated fatty acids in DWO, followed by SO. DWO was more resistant to oxidation than SO (induction time 86.2 and 66.3 min, respectively), due to its higher content of tocotrienols (1020 and 70.2 mg/kg in DWO and SO, respectively), but was less resistant than OO, richer in monounsaturated fatty acids, and contained phenolic compounds. The volatile oxidation markers, namely hexanal and nonanal, were less prevalent in OO and DWO than in SO. Texture and color were positively influenced by the use of durum wheat oil, allowing the nutritional improvement of this flat bread in a sustainable and circular manner. Full article
(This article belongs to the Special Issue Durum Wheat Products - Recent Advances)
Show Figures

Graphical abstract

13 pages, 829 KiB  
Article
Effect of Durum Wheat Oil on the Physico-Chemical and Sensory Features of Biscuits
by Francesca Vurro, Marcello Greco Miani, Carmine Summo, Francesco Caponio and Antonella Pasqualone
Foods 2022, 11(9), 1282; https://doi.org/10.3390/foods11091282 - 28 Apr 2022
Cited by 10 | Viewed by 3187
Abstract
Lipids play an important role in defining the overall quality of biscuits, particularly in terms of resistance to oxidation, as well as for their influence on textural and sensorial properties. The aim of this work was to investigate the effects of durum wheat [...] Read more.
Lipids play an important role in defining the overall quality of biscuits, particularly in terms of resistance to oxidation, as well as for their influence on textural and sensorial properties. The aim of this work was to investigate the effects of durum wheat oil on the physico-chemical and sensory features of biscuits. Control biscuits (C) prepared with the commonly used sunflower oil were compared with samples prepared with durum wheat oil at 50% (D50) and 100% replacement levels (D100). The reformulated biscuits were very rich in tocols, especially tocotrienols (982.9, 635.2, and 64.1 mg/kg on lipid fraction weight in D100, D50, and C, respectively). The higher content of antioxidants extended the resistance to the oxidation of biscuits (induction time = 53.61, 70.87, and 79.92 h in C, D50, and D100, respectively). D100 showed the lowest amounts of triacylglycerol oligopolymers and oxidized triacylglycerols, and the lowest amounts of the volatile markers of lipid oxidation (hexanal and nonanal). The use of durum wheat oil did not affect the sensorial and textural properties, compared to C. This study suggests that durum wheat oil could be effectively used in biscuit-making to decrease the oxidative phenomena and increase the bioactives of the end-products. Full article
(This article belongs to the Special Issue Durum Wheat Products - Recent Advances)
Show Figures

Graphical abstract

9 pages, 258 KiB  
Article
Wheat Germ and Lipid Oxidation: An Open Issue
by Silvia Marzocchi, Maria Fiorenza Caboni, Marcello Greco Miani and Federica Pasini
Foods 2022, 11(7), 1032; https://doi.org/10.3390/foods11071032 - 1 Apr 2022
Cited by 10 | Viewed by 3361
Abstract
Wheat germ (WG)’s shelf life after the milling process is incredibly short because of the presence of enzymes that aggravate the oxidation process; thus, stabilization is required in order to exploit the nutrients and bioactive compounds within WG. The critical point for the [...] Read more.
Wheat germ (WG)’s shelf life after the milling process is incredibly short because of the presence of enzymes that aggravate the oxidation process; thus, stabilization is required in order to exploit the nutrients and bioactive compounds within WG. The critical point for the oxidation process is the mechanical treatment used to separate WG from the kernel, which exposes the lipid fraction to the air. Showing the connection between the quality of durum wheat, considering its storage management, and wheat germ oil (WGO), extracted with a cold press, solvent and supercritical CO2, is the aim of the study. The acidity and peroxide values were analyzed to evaluate lipid oxidation, while fatty acids, tocols, sterols and policosanols were evaluated for WGO characterization. The first fundamental step to control lipid oxidation is raw material management. Subsequently, the tempering phase of durum wheat, which is applied before the degermination process, is the most critical point for oxidation to develop because of the increase in moisture in the caryopsis and the activation of lipase and lipoxygenase. This represents a paradox: in order to stabilize the germ with degermination, first it seems inevitable to carry out a process that destabilizes it. To retains its highest quality, this will lead to a better use of the whole grain by reducing WG and by-product waste. Full article
(This article belongs to the Special Issue Durum Wheat Products - Recent Advances)
12 pages, 813 KiB  
Article
Characterization and Effect of Refining on the Oil Extracted from Durum Wheat By-Products
by Giacomo Squeo, Roccangelo Silletti, Giulia Napoletano, Marcello Greco Miani, Graziana Difonzo, Antonella Pasqualone and Francesco Caponio
Foods 2022, 11(5), 683; https://doi.org/10.3390/foods11050683 - 25 Feb 2022
Cited by 13 | Viewed by 3511
Abstract
Durum wheat is one of the most important cereal grains worldwide, used mostly for pasta making and bakery products. The by-products derived for the milling process, although very abundant, have only limited use. The aim of this work was to characterize the oils [...] Read more.
Durum wheat is one of the most important cereal grains worldwide, used mostly for pasta making and bakery products. The by-products derived for the milling process, although very abundant, have only limited use. The aim of this work was to characterize the oils extracted from the by-products of debranning (DP) and milling processes (MP) of durum wheat and to follow the changes due to the refining process on the minor components. The results showed that DP had significantly higher oil content than MP, but it was characterized by a significantly lower amount of tocols. Polyunsaturated fatty acids content was similar (around 62% of total fatty acids). Consequently, a mixture of DP/MP (60/40 w/w) was chosen as a basis for further studies concerning the refining process. During refining, carotenoids almost disappeared while tocols were reduced by 24% on average. Free fatty acids, peroxide value, and oxidized triacylglycerols were significantly reduced by refining, while triacylglycerol oligopolymers were significantly higher than the crude oil. Durum wheat oil had an outstanding content of phytosterols and policosanols. Overall, the edible oil obtained from durum wheat after refining could be considered a good source of phytochemicals and could represent a valuable strategy to valorize the by-products from durum wheat mills. Full article
Show Figures

Figure 1

17 pages, 2062 KiB  
Article
A Novel Aspect of Essential Oils: Coating Seeds with Thyme Essential Oil induces Drought Resistance in Wheat
by Maissa Ben-Jabeur, Rubén Vicente, Camilo López-Cristoffanini, Noura Alesami, Naceur Djébali, Adrian Gracia-Romero, Maria Dolores Serret, Marta López-Carbonell, Jose Luis Araus and Walid Hamada
Plants 2019, 8(10), 371; https://doi.org/10.3390/plants8100371 - 25 Sep 2019
Cited by 19 | Viewed by 6846
Abstract
Coating seeds with biostimulants is among the promising approaches in crop production to increase crop tolerance to drought stress. In this study, we evaluated the potential of coating durum wheat seeds of the cultivar ‘Karim’ with thyme essential oil on enhancing seed germination [...] Read more.
Coating seeds with biostimulants is among the promising approaches in crop production to increase crop tolerance to drought stress. In this study, we evaluated the potential of coating durum wheat seeds of the cultivar ‘Karim’ with thyme essential oil on enhancing seed germination and seedling growth, and on plant growth promotion and induction of drought resistance. Coated seeds were pre-germinated, grown in hydroponics, and grown in pots under controlled well-watered and progressive water/nutrient stress conditions. Seed coating with thyme oil increased germination rate and enhanced seedling growth development in hydroponics. In the pot experiment, thyme oil increased, when well watered, root and shoot development, chlorophyll, nitrogen balance index (NBI), abscisic acid (ABA), anthocyanins and flavonoids in leaves, decreased nitrogen isotope composition (δ15N) and increased carbon isotope composition (δ13C) of shoots. Increasing water/nutrient stress in control plants induced higher accumulation of ABA and anthocyanins coupled with a transient decrease in chlorophyll and NBI, a decrease in shoot and root development, the Normalized Difference Vegetation Index (NDVI), shoot C content, δ15N, and an increase in δ13C, revealing the avoidance strategy adopted by the cultivar. Thyme oil had the potential to enhance the avoidance strategy by inducing roots elongation, reducing the loss of shoot and roots dry matter and chlorophyll, maintaining balanced NBI, an decreasing anthocyanins, flavonoids, and δ13C via maintaining lower ABA-mediated-stomatal closure. Thyme oil increased shoot N content and δ15N indicating preferential uptake of the 15N enriched NH4+. Coating seeds with thyme oil is suggested as a promising alternative approach to improve plant’s water and nutrient status and to enhance drought resistance. Full article
Show Figures

Figure 1

15 pages, 1090 KiB  
Article
Use of Olive Oil Industrial By-Product for Pasta Enrichment
by Lucia Padalino, Isabella D’Antuono, Miriana Durante, Amalia Conte, Angela Cardinali, Vito Linsalata, Giovanni Mita, Antonio F. Logrieco and Matteo Alessandro Del Nobile
Antioxidants 2018, 7(4), 59; https://doi.org/10.3390/antiox7040059 - 16 Apr 2018
Cited by 47 | Viewed by 6705
Abstract
Background: During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. Objective: The goal of the study was to optimize, from both sensory and nutritional points of view, the [...] Read more.
Background: During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. Objective: The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Methods: Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% (w/w). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Results: Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. Conclusions: The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products. Full article
Show Figures

Graphical abstract

19 pages, 616 KiB  
Article
Evaluation of Post-Harvest Organic Carbon Amendments as a Strategy to Minimize Nitrogen Losses in Cole Crop Production
by Katelyn A. Congreves, Richard J. Vyn and Laura L. Van Eerd
Agronomy 2013, 3(1), 181-199; https://doi.org/10.3390/agronomy3010181 - 18 Feb 2013
Cited by 18 | Viewed by 6834
Abstract
Cole crops (Brassica vegetables) can pose a significant risk for N losses during the post-harvest period due to substantial amounts of readily mineralizable N in crop residues. Amending the soil with organic C has the potential to immobilize N and thereby reduce [...] Read more.
Cole crops (Brassica vegetables) can pose a significant risk for N losses during the post-harvest period due to substantial amounts of readily mineralizable N in crop residues. Amending the soil with organic C has the potential to immobilize N and thereby reduce the risk for N losses. Four field trials were conducted to determine the effects of organic C amendments (OCA) on N dynamics and spring wheat (Triticum durum L.) harvest parameters proceeding early- and late-broccoli (Brassica olecerea var italica L.) systems in 2009 and 2010. The experimental controls represented the traditional grower practice of incorporated broccoli crop residue (CR-control) and the pre-plant application of N fertilizer (CRN-control) to subsequent spring wheat. Alternative practices were compared to the controls, which included broccoli crop residue removal (CR-removal), an oat (Avena sativa L.) cover crop (CC-oat), and three different OCA of wheat straw (OCA-straw), yard waste (OCA-yard), or used cooking oil (OCA-oil). The treatments, which demonstrated reduced autumn soil mineral N (SMN) concentrations after broccoli harvest, relative to the CR-control, were CR-removal, OCA-straw, and OCA-oil. Although CR-removal and OCA-straw indicated a reduced potential for autumn soil N losses in the early-broccoli system, these practices are not recommended for growers because subsequent spring wheat yield and profit margins were reduced compared to the CR- and CRN-controls. The OCA-oil reduced autumn SMN concentrations by 53 to 112 kg N ha−1 relative to the CR-control after both early- and late-broccoli harvest, suggesting a larger potential for reduced autumn soil N losses, compared to all other treatments. No detrimental effects resulted from the OCA-oil treatment on the subsequent spring yield or grain N. The OCA-oil reduced spring wheat profit margins relative to the CR-control, like the OCA-straw and CR-removal treatments, however profit margins were similar between the OCA-oil and the CRN-control. Therefore, in areas with a high risk of environmental N contamination, growers should consider the OCA-oil practice after cole crop harvest to minimize the risk of N losses. Full article
(This article belongs to the Special Issue Sustainable Crop Production)
Show Figures

Figure 1

Back to TopTop