Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = ductile tearing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3031 KiB  
Article
Mechanical Properties and Microstructure of Ramie Fiber-Reinforced Natural Rubber Composites
by Ajith Kuriakose Mani, Aju Zachariah Mani, Abin Varghese Jacob, Anantha Krishnan, Alen Shibu Paul, Akash V. Krishnan, Sivasubramanian Palanisamy, Sathiyalingam Kannaiyan and Song-Jeng Huang
J. Compos. Sci. 2025, 9(7), 332; https://doi.org/10.3390/jcs9070332 - 27 Jun 2025
Viewed by 511
Abstract
The pressing issue of global warming has prompted industries to seek sustainable and renewable materials that can reduce the use of petroleum-based products. Natural fibers, as bio-based and environmentally friendly materials, offer a promising solution. In this study, ramie fiber, which is one [...] Read more.
The pressing issue of global warming has prompted industries to seek sustainable and renewable materials that can reduce the use of petroleum-based products. Natural fibers, as bio-based and environmentally friendly materials, offer a promising solution. In this study, ramie fiber, which is one of the strongest natural fibers, is used as reinforcement, and the mechanical properties of natural rubber composites are evaluated. The composites were fabricated using a vulcanizing technique at 150 °C, and the fibers were cut into different lengths (5 mm, 10 m, and 15 mm) and weights (15 g, 30 g, and 60 g). Mechanical performance tests, including tensile and tear strength and hardness, were conducted. The results showed that as fiber concentration increased, so did the curing time. Moreover, the composites with higher fiber concentration had higher strength. The composite with a 10 mm fiber length and 60 g weight showed the highest tensile strength (10.35 MPa). Maximum tear strength (52.51 kN/m) was achieved with 5 mm fiber length and 60 g weight. Hardness values reached up to 88 Shore A (10 mm fiber length and 60 g weight), indicating excellent wear resistance. The specimen with the highest tensile strength was subjected to scanning electron microscope analysis. The SEM analysis revealed that the composite had a ductile type of fracture with appreciable plastic deformation, confirming good fiber–matrix interaction. These findings underscore the potential of ramie fiber–reinforced natural rubber composites as sustainable, high-performance alternatives to petroleum-based materials in structural and vibration-damping applications. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

21 pages, 3134 KiB  
Article
Determination of Constraint-Independent Crack Tip Opening Angle for Stable Crack Growth in High-Strength Ductile Steels
by Xian-Kui Zhu
Materials 2025, 18(5), 1051; https://doi.org/10.3390/ma18051051 - 27 Feb 2025
Cited by 1 | Viewed by 1167
Abstract
The crack tip opening angle (CTOA) is one of fracture toughness parameters that has been used for decades in describing large stable crack growth in thin-walled aerospace structures under the low-constraint conditions. Recently, the pipeline industry has developed a growing interest in using [...] Read more.
The crack tip opening angle (CTOA) is one of fracture toughness parameters that has been used for decades in describing large stable crack growth in thin-walled aerospace structures under the low-constraint conditions. Recently, the pipeline industry has developed a growing interest in using the CTOA parameter to serve as the minimum required fracture toughness to arrest dynamic crack propagation in modern gas transmission pipelines made of high-strength ductile steel. To meet this industrial need, the CTOA test standard ASTM E3039 was therefore developed for measuring the constant critical CTOA. ASTM E3039 recommends a drop weight tearing test (DWTT) specimen with a shallow crack for standard CTOA testing, but its CTOA may depend on the low constraint condition of the DWTT specimen at the crack tip. Verifying the constraint independence of the DWTT-measured CTOA thus becomes indispensable for applying CTOA toughness to the running fracture control in the pipeline design. For this purpose, the present paper evaluates critical CTOA values in a set of fracture toughness tests on single-edge notched bend (SENB) specimens with shallow and deep cracks, based on four CTOA estimation models. Among these, the Ln(P)-LLD linear fit model is similar to that recommended by ASTM E3039 for CTOA calculation. Fracture test data for X80 pipeline steel and HY80 structural steel were considered in the CTOA evaluation. The results showed that the four CTOA models were able to determine a constraint independent CTOA value for stable crack growth in the SENB specimens. As a result, a single, reliable, constant CTOA value could be determined regardless of the specimen geometry or the crack-tip constraint conditions. Therefore, the CTOA measured using ASTM E3039 is constraint-independent and transferable to use in cases of actual cracks propagating in gas transmission pipelines. Full article
Show Figures

Figure 1

16 pages, 3323 KiB  
Article
Experimental Investigation of Seismic Behavior of Traditional and Eccentric RHS X-Joints Under Brace Axial Cyclic Loading
by Shaoqi Zhong, Bida Zhao and Lianglin Liu
Buildings 2025, 15(1), 91; https://doi.org/10.3390/buildings15010091 - 30 Dec 2024
Viewed by 601
Abstract
This study investigates the seismic behavior of traditional and eccentric rectangular hollow section (RHS) X-joints through a comprehensive experimental program. Four X-joint specimens, including two traditional and two eccentric joints with brace-to-chord width ratios (β) of 0.83 and 1.0, were subjected to quasi-static [...] Read more.
This study investigates the seismic behavior of traditional and eccentric rectangular hollow section (RHS) X-joints through a comprehensive experimental program. Four X-joint specimens, including two traditional and two eccentric joints with brace-to-chord width ratios (β) of 0.83 and 1.0, were subjected to quasi-static cyclic axial loading. Test results revealed that joints with β = 0.83 primarily failed due to chord face tearing, while those with β = 1.0 exhibited failure modes, including chord face tearing and significant sidewall buckling. Eccentric joints further experienced tearing of brace wall near the intersection. Increasing β enhanced axial strength but reduced ductility, deformability, and energy dissipation capacity. Eccentric joints with β = 0.83 showed improved strength, ductility, and energy dissipation compared to traditional joints, whereas eccentric joints with β = 1.0 displayed superior ductility but comparable strength and energy dissipation. The findings that current design codes underestimate the compressive strength of traditional joints with medium β and confirm that tensile strength exceeds compressive strength for all tested joints. Additionally, cyclic compressive strength closely static compressive strength. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 7674 KiB  
Article
Fatigue Experiment and Failure Mechanism Analysis of Aircraft Titanium Alloy Wing–Body Connection Joint
by Xianmin Chen, Shanshan Li, Yuanbo Liang, Shuo Wang, Liang Yan and Shichang Du
Sensors 2025, 25(1), 150; https://doi.org/10.3390/s25010150 - 30 Dec 2024
Viewed by 1166
Abstract
Taking the titanium alloy wing–body connection joint at the rear beam of a certain type of aircraft as the research object, this study analyzed the failure mechanism and verified the structural safety of the wing–body connection joint under actual flight loads. Firstly, this [...] Read more.
Taking the titanium alloy wing–body connection joint at the rear beam of a certain type of aircraft as the research object, this study analyzed the failure mechanism and verified the structural safety of the wing–body connection joint under actual flight loads. Firstly, this study verified the validity of the loading system and the measuring system in the test system through the pre-test, and the repeatability of the test was analyzed for error to ensure the accuracy of the experimental data. Then, the test piece was subjected to 400,000 random load tests of flight takeoffs and landings, 100,000 Class A load tests, and ground–air–ground load tests, and the test piece fractured under the ground–air–ground load tests. Lastly, the mechanism analysis and structural safety verification of the fatigue fracture of the joints were carried out by using a stereo microscope and scanning electron microscope. The results show that fretting fatigue is the main driving force for crack initiation, and the crack shows significant fatigue damage characteristics in the stable growth stage and follows Paris’ law. Entering the final fracture region, the joint mainly experienced ductile fracture, with typical plastic deformation features such as dimples and tear ridges before fracture. The fatigue crack growth behavior of the joint was quantitatively analyzed using Paris’ law, and the calculated crack growth period life was 207,374 loadings. This result proves that the crack initiation life accounts for 95.19% of the full life cycle, which is much higher than the design requirement of 400,000 landings and takeoffs, indicating that the structural design of this test piece is on the conservative side and meets the requirements of aircraft operational safety. This research is of great significance in improving the safety and reliability of aircraft structures. Full article
(This article belongs to the Special Issue Applications of Manufacturing and Measurement Sensors: 2nd Edition)
Show Figures

Figure 1

20 pages, 12886 KiB  
Article
Microstructural Analysis, Compressive Strength, and Wear Properties of Spark-Plasma-Sintered Al–Mg–PPA Composites
by Osarue Osaruene Edosa, Francis Kunzi Tekweme, Peter A. Olubambi and Kapil Gupta
Quantum Beam Sci. 2024, 8(4), 32; https://doi.org/10.3390/qubs8040032 - 17 Dec 2024
Cited by 2 | Viewed by 1121
Abstract
One technique for sintering green compacts and imparting the required qualities to meet the specific application requirements is spark plasma sintering (SPS). This study examines the effects of SPS parameters (sintering temperature and pressure, holding time, and heating rate) and plantain peel ash [...] Read more.
One technique for sintering green compacts and imparting the required qualities to meet the specific application requirements is spark plasma sintering (SPS). This study examines the effects of SPS parameters (sintering temperature and pressure, holding time, and heating rate) and plantain peel ash (PPA) reinforcement concentrations (0, 5 wt%, 10 wt%, 15 wt%, and 20 wt%) on the microstructure, compressive strength, and wear characteristics of the fabricated Al–Mg–PPA composites. As a result of the ball milling machine’s high efficiency, the PPA reinforcement was evenly dispersed throughout the aluminum matrix after 90 min of milling. At lower sintering temperatures and pressures, microstructural flaws such as weak grain boundaries, micro-pores, and micro-cracks were more noticeable than at higher ones. The PPA reinforcement and magnesium powder (wetting agent) increased the composites’ compressive strength by improving the wettability between the PPA reinforcement and the Al matrix. At a weight fraction of 5 wt% PPA, the maximum compressive strength of 432 MPa was attained for the sintered composites, which is a 222% improvement over the sintered aluminum matrix. Additionally, the PPA reinforcement enhanced the wear properties of the sintered Al–Mg–PPA composites by reducing the wear loss. Increasing the wear load resulted in a higher wear rate. The COF for the sintered composites ranges from 0.049 to 0.727. The most consistent correlation between the wear rate and the COF is that as the wear rate decreases, the COF decreases, and vice versa. Abrasive wear was the dominant wear mechanism observed. Tear ridges, shear steps, micro-voids, and cleavages were seen on the composites’ fracture surfaces, an indication of a ductile-brittle fracture. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2024)
Show Figures

Figure 1

22 pages, 595 KiB  
Article
Numerical Investigation of Fracture Behaviour of Polyurethane Adhesives under the Influence of Moisture
by Siva Pavan Josyula and Stefan Diebels
Polymers 2024, 16(18), 2676; https://doi.org/10.3390/polym16182676 - 23 Sep 2024
Cited by 1 | Viewed by 1111
Abstract
The mechanical behaviour of polymer adhesives is influenced by the environmental conditions leading to ageing and affecting the integrity of the material. The polymer adhesives have hygroscopic behaviour and tend to absorb moisture from the environment, causing the material to swell without applying [...] Read more.
The mechanical behaviour of polymer adhesives is influenced by the environmental conditions leading to ageing and affecting the integrity of the material. The polymer adhesives have hygroscopic behaviour and tend to absorb moisture from the environment, causing the material to swell without applying external load. The focus of the work is to investigate the viscoelastic material behaviour under ageing conditions. The constitutive equations and the governing equations to numerically investigate the fracture in swollen viscoelastic material are discussed to describe the numerical implementation. Phase-field damage modelling has been used in numerical studies of ductile and brittle materials for a long time. The finite-strain phase-field damage model is used to investigate the fracture behaviour in aged viscoelastic polymer adhesives. The finite-strain viscoelastic model is formulated based on the continuum rheological model by combining spring and Maxwell elements in parallel. Commercially available post-cured crosslinked polyurethane adhesives are used in the current investigation. Post-cured samples of crosslinked polyurethane adhesives are prepared for different humidity conditions under isothermal conditions. These aged samples are used to perform tensile and tear tests and the test data are used to identify the material parameters from the curve fitting process. The experiment and simulation are compared to relate the findings and are the first step forward to improve the method to model crosslinked polymers. Full article
(This article belongs to the Special Issue Mechanical and Failure Behavior of Polymeric Composites)
Show Figures

Figure 1

17 pages, 12728 KiB  
Article
Effect of an Ultrasonic Vibration on the Microstructure and Properties of Al Alloy/Steel Laser Welding-Brazing Joints
by Chao Zhang, Daozhong Du, Ziqian Wu, Yubo Sun, Xiaoyang Wang, Weimin Long and Juan Pu
Coatings 2024, 14(9), 1219; https://doi.org/10.3390/coatings14091219 - 21 Sep 2024
Cited by 3 | Viewed by 1649
Abstract
This study analyzes the influence of different ultrasonic amplitudes on the microstructure composition, microhardness, tensile strength, and corrosion resistance of Al alloy/steel laser welding-brazing joints assisted by ultrasonic vibration. The application of ultrasonic vibration did not change the microstructure composition of the joints [...] Read more.
This study analyzes the influence of different ultrasonic amplitudes on the microstructure composition, microhardness, tensile strength, and corrosion resistance of Al alloy/steel laser welding-brazing joints assisted by ultrasonic vibration. The application of ultrasonic vibration did not change the microstructure composition of the joints but refined them. The joints were all composed of θ-Fe(Al, Si)3 and τ5-Al7.2Fe1.8Si formed at the interface reaction zone, as well as an α-Al solid solution and Al-Si eutectic phase generated in the weld seam zone. Meanwhile, the thickness of the IMCs at the interface decreased with an increase in the ultrasonic amplitude. When the ultrasonic amplitude was 8 μm, the IMCs thickness was a minimum of 1.62 μm. In this condition, the reduction of the IMCs thickness and the refined grain of joints made the microhardness and tensile strength reach the maximum. The fracture of joints with ultrasonic amplitudes of 0 and 4.8 μm began at the weld seam and extended to the interface reaction zone at the steel side, while the fracture of joints was located in the heat-affected zone (HAZ) of the Al alloy side when the ultrasonic amplitude was 8.0 and 11.2 μm. The fracture mode of the former presented a typical mixed fracture with cleavage steps and tearing edges, and that of the latter showed ductile fracture with uniform and fine ductile dimples. The corrosion resistance of the joints was improved by adding ultrasonic vibration. When the ultrasonic amplitude was 8 μm, its corrosion resistance was optimum; it was ascribed to a dense oxide film formed on the surface of the metal under the action of ultrasonic vibration. Full article
(This article belongs to the Special Issue Tribology and Mechanical Characteristics of Films)
Show Figures

Figure 1

21 pages, 41754 KiB  
Article
Study on Fracture Behavior and Toughening Mechanisms of Ultra-High-Strength Pipeline Steel
by Ba Li, Xiaoshun Zhou, Shujun Jia, Xiaoping Chen, Song Fu, Dongliang Zhao, Haonan Zhang and Jie Guo
Metals 2024, 14(6), 666; https://doi.org/10.3390/met14060666 - 4 Jun 2024
Cited by 5 | Viewed by 1991
Abstract
In this paper, a series of low-temperature CVN (Charpy V-notch impact test) and DWTT (drop-weight tear test) experiments were carried out to deal with the intensifying contradiction of strength and toughness of ultra-high-strength pipeline steel. The fracture behavior and toughening mechanisms of ultra-high-strength [...] Read more.
In this paper, a series of low-temperature CVN (Charpy V-notch impact test) and DWTT (drop-weight tear test) experiments were carried out to deal with the intensifying contradiction of strength and toughness of ultra-high-strength pipeline steel. The fracture behavior and toughening mechanisms of ultra-high-strength pipeline steel were investigated using scanning electron microscopy, transmission electron microscopy and backscattered electron diffraction systems. The results show that DWTT fractures in ultra-high-strength pipeline steel had a variety of unconventional morphological features compared to CVN fractures, including ridge protrusion in ductile fracture conditions and a large-size fracture platform in brittle fracture conditions. Therefore, DWTT fractures contained more information about the material fracturing process, and could better reflect the actual process of material fracturing. In ultra-high-strength pipeline steel, fine-grained granular bainite caused cracks to undergo large deflections or frequent small transitions, which consumed additional energy and improved toughness. In contrast, large-sized granular bainite, which consisted of low-angle grain boundaries, did not effectively prevent crack propagation when it encountered cracks, which was not conducive to improved toughness. Moreover, the M/A constituents in large-sized granular bainite aggregated, cracked, or fell off, which could easily lead to the formation of microcracks and was also detrimental to toughening. Full article
(This article belongs to the Special Issue Design, Preparation and Properties of High Performance Steels)
Show Figures

Figure 1

14 pages, 7823 KiB  
Article
Experimental Study on Plastic Deformation of EH690 Steel with the V-Notch during Falling Weight Impact Based on DIC
by Xinfeng Xu, Jian Shi and Yuanjing Zhao
Processes 2024, 12(4), 751; https://doi.org/10.3390/pr12040751 - 8 Apr 2024
Cited by 2 | Viewed by 1605
Abstract
In this study, a falling weight impact test was conducted on EH690 steel specimens with V-notches using Digital Imaging Correlation (DIC). In conjunction with scanning electron microscopy (SEM), the plastic deformation and crack initiation processes were examined at the notch of the specimen [...] Read more.
In this study, a falling weight impact test was conducted on EH690 steel specimens with V-notches using Digital Imaging Correlation (DIC). In conjunction with scanning electron microscopy (SEM), the plastic deformation and crack initiation processes were examined at the notch of the specimen under different impact energies (90 J, 120 J, 135 J and 150 J). ABAQUS was used to simulate the plastic deformation of an EH690 specimen. The results show that the strain at the notch tip experienced some elasticity and yielding as the load increased under different impact energies. The load remains unchanged or decreases slightly when a plastic hinge forms at the tip of the notch. According to the microscopic images, there are three areas on the fracture surface: a fiber area, a radiation area, and a shear lip area. With increasing deformation, a crack source forms in the middle of the V-shaped notch and propagates to the inside and outside surfaces of the sample. Cracks are primarily caused by ductile tears. The use of DIC to analyze the surface strain of EH690 steel specimens was verified by comparing DIC with finite element analysis. Both curves have the same trend and the maximum error in the load-time curve is 9.42%, the maximum error in the displacement–time curve is 5.61%, and the maximum error in the strain-time curve is 10.68%. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

17 pages, 7924 KiB  
Article
Morphology Distribution in Injection Molded Parts
by Sara Liparoti, Rita Salomone, Vito Speranza and Roberto Pantani
Polymers 2024, 16(3), 337; https://doi.org/10.3390/polym16030337 - 26 Jan 2024
Cited by 2 | Viewed by 2557
Abstract
A more sustainable use of plastic parts makes it necessary to replace current plastic parts with recyclable components, also allowing the modulation of the part properties through the process. Injection molding is one of the most widely used technologies for obtaining rigid plastic [...] Read more.
A more sustainable use of plastic parts makes it necessary to replace current plastic parts with recyclable components, also allowing the modulation of the part properties through the process. Injection molding is one of the most widely used technologies for obtaining rigid plastic parts, so it is crucial to understand how to tailor properties by adopting the correct processing conditions. One way is to perform annealing steps directly inside the mold: in-mold annealing improves the structural integrity and durability of the material, reduces defects, increases the resistance of parts against certain chemicals, reduces wear and tear, increases ductility, and lowers brittleness. In this work, several in-mold annealing steps were conducted, changing the mold temperature and annealing duration selected on the basis of the half crystallization time of the adopted isotactic polypropylene. The typical molded part morphology, composed of oriented layers at the surface, transition zones, and spherulitic core, is strongly affected by in-mold annealing. In particular, the thickness of the oriented layer, which forms in the early phase of the process, decreases, and the spherulites increase in size. Concerning mechanical behavior, the orientation degree mostly determines the elastic modulus value close to the surface, whereas the conditions under which crystallization occurs determine the modulus in the core. Full article
Show Figures

Figure 1

16 pages, 23770 KiB  
Article
Effect of Vanadium Addition on Solidification Microstructure and Mechanical Properties of Al–4Ni Alloy
by Xu Chen, Ji Chen, Weiguo Xi, Qizhou Cai, Jingfan Cheng and Wenming Jiang
Materials 2024, 17(2), 332; https://doi.org/10.3390/ma17020332 - 9 Jan 2024
Cited by 3 | Viewed by 1478
Abstract
The effects of vanadium addition on the solidification microstructure and mechanical properties of Al–4Ni alloy were investigated via thermodynamic computation, thermal analysis, microstructural observations, and mechanical properties testing. The results show that the nucleation temperature of primary α-Al increased with increased vanadium addition. [...] Read more.
The effects of vanadium addition on the solidification microstructure and mechanical properties of Al–4Ni alloy were investigated via thermodynamic computation, thermal analysis, microstructural observations, and mechanical properties testing. The results show that the nucleation temperature of primary α-Al increased with increased vanadium addition. A transition from columnar to equiaxed growth took place when adding vanadium to Al–4Ni alloys, and the average grain size of primary α-Al was reduced from 1105 μm to 252 μm. When the vanadium addition was 0.2 wt%, the eutectic nucleation temperature increased from 636.2 °C for the Al–4Ni alloy to 640.5 °C, and the eutectic solidification time decreased from 310 s to 282 s. The average diameter of the eutectic Al3Ni phases in the Al–4Ni–0.2V alloy reduced to 0.14 μm from 0.26 μm for the Al–4Ni alloy. As the vanadium additions exceeded 0.2 wt%, the eutectic nucleation temperature had no obvious change and the eutectic solidification time increased. The eutectic Al3Ni phases began to coarsen, and the number of lamellar eutectic boundaries increased. The mechanical properties of Al–4Ni alloys gradually increased with vanadium addition (0–0.4 wt%). The Al–4Ni–0.4V alloy obtained the maximum tensile strength and elongation values, which were 136.4 MPa and 23.5%, respectively. As the vanadium addition exceeded 0.4 wt%, the strength and elongation decreased, while the hardness continued to increase. Fracture in the Al–4Ni–0.4V alloy exhibited ductile fracture, while fracture in the Al–4Ni–0.6V alloy was composed of dimples, tear edges, and cleavage planes, demonstrating mixed ductile–brittle fracture. The cleavage planes were caused by the primary Al10V and coarse Al3Ni phases at the boundary of eutectic cells. Full article
(This article belongs to the Special Issue Advances in Metal Cutting, Casting, Forming and Heat Treatment)
Show Figures

Figure 1

18 pages, 35624 KiB  
Article
Research on Cold Roll Forming Process of Strips for Truss Rods for Space Construction
by Xingwen Yang, Jingtao Han and Ruilong Lu
Materials 2023, 16(24), 7608; https://doi.org/10.3390/ma16247608 - 12 Dec 2023
Cited by 1 | Viewed by 1408
Abstract
In this paper, a new technology for on-orbit cold forming of space truss rods is proposed. For the cold roll forming process of asymmetric cross sections of thin strips, the effects of roll gap and roll spacing on the forming of asymmetric cross [...] Read more.
In this paper, a new technology for on-orbit cold forming of space truss rods is proposed. For the cold roll forming process of asymmetric cross sections of thin strips, the effects of roll gap and roll spacing on the forming of asymmetric cross sections of strips were investigated using ABAQUS simulation + experiments. The study shows the following. When forming a strip with a specific asymmetric cross section, the stresses are mainly concentrated in corners 2/4/6, with the largest strain value in corner 2. With increasing forming passes, when the roll gap is 0.3 mm, the maximum equivalent strain values are 0.09, 0.24, 0.64 sequentially. Roll gaps of 0.4 mm and 0.5 mm equivalent strain change amplitude are relatively similar, and their maximum equivalent strain values are approximately 0.07,0.15, 0.44. From the analysis of the stress–strain history of the characteristic nodes in corners 2/4/6, it can be seen that the stress and strain changes in the deformation process mainly occur at the moment of interaction between the upper and lower rollers, where the stress type of node 55786 shows two tensile types and one compressive type, the stress type of nodes 48594 and 15928 shows two compressive and one tensile type, and the strain of the three nodes is in accordance with the characteristics of plane strain. When the roll gap is about 0.4 mm, the forming of the strip is relatively good. With increased roll spacing, the strip in the longitudinal stress peak through the rollers shows a small incremental trend, but the peak stresses are 380 Mpa or so. When the roll spacing is 120 mm, the longitudinal strain fluctuation of the strip is the most serious, followed by the roll spacing at 100 mm, and the minimum at 140 mm. Combined with the fluctuation in strip edges under different roll spacings, manufacturing cost and volume and other factors, a roll spacing of 100 mm is more reasonable. It is experimentally verified that when the roll gap is 0.4 mm and the roll spacing is 100 mm, the strip is successfully prepared in accordance with the cross-section requirements. When the rolling gap is 0.3 mm, due to stress–strain concentration, the strip is prone to edge waves in forming. The top of corner 2 of the flange triangular region is susceptible to intermittent tear defects, and the crack extension mechanism is mainly based on the cleavage fracture + ductile fracture. Full article
(This article belongs to the Special Issue Progress in Plastic Deformation of Metals and Alloys (Second Volume))
Show Figures

Figure 1

12 pages, 3237 KiB  
Article
Phase-Specific Damage Tolerance of a Eutectic High Entropy Alloy
by Shristy Jha, Rajiv S. Mishra and Sundeep Mukherjee
Entropy 2023, 25(12), 1604; https://doi.org/10.3390/e25121604 - 30 Nov 2023
Cited by 1 | Viewed by 1637
Abstract
Phase-specific damage tolerance was investigated for the AlCoCrFeNi2.1 high entropy alloy with a lamellar microstructure of L12 and B2 phases. A microcantilever bending technique was utilized with notches milled in each of the two phases as well as at the phase [...] Read more.
Phase-specific damage tolerance was investigated for the AlCoCrFeNi2.1 high entropy alloy with a lamellar microstructure of L12 and B2 phases. A microcantilever bending technique was utilized with notches milled in each of the two phases as well as at the phase boundary. The L12 phase exhibited superior bending strength, strain hardening, and plastic deformation, while the B2 phase showed limited damage tolerance during bending due to micro-crack formation. The dimensionalized stiffness (DS) of the L12 phase cantilevers were relatively constant, indicating strain hardening followed by increase in stiffness at the later stages and, therefore, indicating plastic failure. In contrast, the B2 phase cantilevers showed a continuous drop in stiffness, indicating crack propagation. Distinct differences in micro-scale deformation mechanisms were reflected in post-compression fractography, with L12-phase cantilevers showing typical characteristics of ductile failure, including the activation of multiple slip planes, shear lips at the notch edge, and tearing inside the notch versus quasi-cleavage fracture with cleavage facets and a river pattern on the fracture surface for the B2-phase cantilevers. Full article
(This article belongs to the Special Issue Advances in High-Entropy Alloys)
Show Figures

Figure 1

18 pages, 5389 KiB  
Article
Seismic Performance of Rectangular Hollow Section X-Joints Subjected to In-Plane Bending Moment
by Bida Zhao, Chuhao Lin, Rong Wang and Shikang Lin
Buildings 2023, 13(10), 2503; https://doi.org/10.3390/buildings13102503 - 2 Oct 2023
Cited by 2 | Viewed by 1741
Abstract
This paper presents a study on the seismic performance of rectangular hollow section (RHS) X-joints subjected to in-plane bending moment (IPBM). The study began by testing two RHS joint specimens with varying brace-to-chord width ratios (β) under quasi-static cyclic IPBM loading. [...] Read more.
This paper presents a study on the seismic performance of rectangular hollow section (RHS) X-joints subjected to in-plane bending moment (IPBM). The study began by testing two RHS joint specimens with varying brace-to-chord width ratios (β) under quasi-static cyclic IPBM loading. The results showed that the final failure mode of the specimen with the large β value (β = 1.0) is the tearing of the weld near the brace root, while the specimen with the medium β value (β = 0.83) failed due to the tearing of both the weld and the adjacent chord face. The seismic performance of the X-joints depended considerably on the β value. The increase in β remarkably improved the strength of the X-joints but at the cost of energy dissipation capability, deformability and ductility. Our experimental results also demonstrated that the current code equations remarkably underestimate the flexural strength of RHS X-joints, while the modified equations that take the weld size into account can predict it well. In addition, the reason behind the experimental observation can be further explained by FE analysis and the proposed elastic-support plate analytical model. Full article
(This article belongs to the Special Issue Advances in Steel Structures: Testing, Modelling and Design)
Show Figures

Figure 1

20 pages, 5428 KiB  
Article
Comparison of Mechanical Properties of Ductile/Brittle Epoxy Resin BFRP-AL Joints under Different Immersion Solutions
by Haichao Liu, Ziyang Ding, Yisa Fan, Yang Luo and Yang Yang
Polymers 2023, 15(19), 3892; https://doi.org/10.3390/polym15193892 - 26 Sep 2023
Cited by 1 | Viewed by 2361
Abstract
The bonding properties of BFRP composites have been demonstrated in previous studies, satisfying the strength and durability criteria. In this paper, a further in-depth study is carried out to bond Basalt Fibre Reinforced Polymer (BFRP) to Aluminum Alloy 5052 using two bonding agents, [...] Read more.
The bonding properties of BFRP composites have been demonstrated in previous studies, satisfying the strength and durability criteria. In this paper, a further in-depth study is carried out to bond Basalt Fibre Reinforced Polymer (BFRP) to Aluminum Alloy 5052 using two bonding agents, Aralite® 2012 and Aralite® 2015, respectively. The salt sprays under 80 °C, 3.5% NaCl environment; 80 °C, 5% NaCl environment; and pure water environment are also considered for comparison. Experimental results show that joints created with Araldite® 2012 adhesives show higher average breaking strength (10.66 MPa at 720 h) and better ductility in a 5% NaCl environment. While the Araldite® 2015 adhesive joint exhibits a combination of tear failure and interface failure, along with thin-layer cohesion failure. In the SEM images of the two adhesive joints’ failure, fiber pullout due to tension and damage at the interface between fiber and resin is apparent. To validate the experimental outcomes, water absorption testing, DSC, TGA-DTG, and FTIR experiments were conducted on dog-bone-shaped adhesive specimens to elucidate the results. Full article
(This article belongs to the Special Issue New Research on Fiber-Reinforced Polymer Composites: 2nd Edition)
Show Figures

Figure 1

Back to TopTop