Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (169)

Search Parameters:
Keywords = dry land to water field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2222 KB  
Article
Characteristics of Nutrient Transport in Runoff from Different Land-Use Types on Maozhou Island in the Li River Basin
by Huili Liu, Yuxin Sun, Guangyan He, Shuhai Huang, Guibin Huang, Hui Wang, Yanli Ding, Tieguang He, Chengcheng Zeng, Dandan Xu and Yanan Zhang
Toxics 2026, 14(2), 126; https://doi.org/10.3390/toxics14020126 - 29 Jan 2026
Abstract
Non-point source pollution poses a severe threat to the water quality of the Li River. This study conducted field monitoring of pollution loads from different land-use types on Maozhou Island in the Li River during the 2023 rainy season. Runoff water quality from [...] Read more.
Non-point source pollution poses a severe threat to the water quality of the Li River. This study conducted field monitoring of pollution loads from different land-use types on Maozhou Island in the Li River during the 2023 rainy season. Runoff water quality from vegetable plots, orchards, and bamboo forests consistently exceeded standards, with vegetable plots being the primary source of pollution. Their total phosphorus (TP) concentration exceeded standards by nearly 25 times, contributing the highest annual load. The transport of pollutants (TP, total nitrogen(TN), chemical oxygen demand(CODCr)) was closely correlated with suspended solids (SS), with the finest particles (<5 μm) identified as the primary carrier exhibiting the strongest pollutant enrichment capacity (e.g., in vegetable fields, the correlation coefficient r between < 5 μm particles and TP was >0.85, p < 0.01). Rainfall patterns significantly influenced pollutant concentrations; TN and TP levels increased with preceding dry days, while phosphorus output from vegetable plots decreased with rising average rainfall temperature. Compared to bamboo forests, vegetable plots and orchards exhibited lower soil adsorption capacity. This study recommends a connectivity-based strategy prioritizing the interception of heavily enriched fine particulate matter (<5 μm) through runoff control and enhanced wetland retention functions. These findings underscore the importance of controlling fine particulate matter for reducing non-point source pollution and maintaining ecological health in the Lijiang River basin. Full article
Show Figures

Graphical abstract

25 pages, 11789 KB  
Article
Impact of Climate and Land Cover Dynamics on River Discharge in the Klambu Dam Catchment, Indonesia
by Fahrudin Hanafi, Lina Adi Wijayanti, Muhammad Fauzan Ramadhan, Dwi Priakusuma and Katarzyna Kubiak-Wójcicka
Water 2026, 18(2), 250; https://doi.org/10.3390/w18020250 - 17 Jan 2026
Viewed by 304
Abstract
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were [...] Read more.
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were analyzed and projected via linear regression aligned with IPCC scenarios, revealing a marginal temperature decline of 0.21 °C (from 28.25 °C in 2005 to 28.04 °C in 2023) and a 17% increase in rainfall variability. Land cover assessments from Landsat imagery highlighted drastic changes: a 73.8% reduction in forest area and a 467.8% increase in mixed farming areas, alongside moderate fluctuations in paddy fields and settlements. The Thornthwaite-Mather water balance method simulated monthly discharge, validated against observed data with Pearson correlations ranging from 0.5729 (2020) to 0.9439 (2015). Future projections using Cellular Automata-Markov modeling indicated stable volumetric flow but a temporal shift, including a 28.1% decrease in April rainfall from 2000 to 2040, contracting the wet season and extending dry spells. These shifts pose significant threats to agricultural and aquaculture activities, potentially exacerbating water scarcity and economic losses. The findings emphasize integrating dynamic land cover data, climate projections, and empirical runoff corrections for climate-resilient watershed management. Full article
(This article belongs to the Special Issue Water Management and Geohazard Mitigation in a Changing Climate)
Show Figures

Figure 1

29 pages, 19599 KB  
Article
Interacting Factors Controlling Total Suspended Matter Dynamics and Transport Mechanisms in a Major River-Estuary System
by Zebin Tang, Yeping Yuan, Shuangyan He and Yingtien Lin
Remote Sens. 2026, 18(1), 172; https://doi.org/10.3390/rs18010172 - 5 Jan 2026
Viewed by 247
Abstract
The Changjiang estuary–Hangzhou Bay region is a critical zone of land–sea interaction, where Total Suspended Matter (TSM) dynamics significantly influence coastal ecology and engineering. While previous studies have examined individual factors affecting TSM variability, the synergistic effects of “tide–monsoon–current” interactions and the actual [...] Read more.
The Changjiang estuary–Hangzhou Bay region is a critical zone of land–sea interaction, where Total Suspended Matter (TSM) dynamics significantly influence coastal ecology and engineering. While previous studies have examined individual factors affecting TSM variability, the synergistic effects of “tide–monsoon–current” interactions and the actual pathways of turbid plume transport remain poorly understood. Using GOCI satellite data, in situ buoy measurements, and voyage data from 2020, this study applied Data Interpolating Empirical Orthogonal Functions (DINEOFs) and comprehensive spatio-temporal analysis to reconstruct continuous high-resolution TSM fields and elucidate multi-factor controls on TSM dynamics. Based on this high-resolution dataset of TSM, we found that, during the dry season, elevated TSM concentrations are primarily driven by wind–tide resuspension and transport under the comprehensive forcing of the Jiangsu Alongshore Current (JAC), the Yellow Sea Warm Current (YSWC), and wind–tide-induced flows. Contrary to the conventional understanding, the Jiangsu-origin surface TSM can transport to the outer sea without supplementing the TSM in the Turbidity Maximum Zone (TMZ). The YSWC in autumn can cause either low CTSM gradients or high gradients nearshore depending on whether it is carrying Korean coastal turbid water or not. During the wet season, stratification induced by the Changjiang freshwater discharge suppresses wind–tide resuspension, reducing TSM concentrations in the TMZ and the Qidong water. However, the Changjiang freshwater combined with the Taiwan Warm Current (TWC) dilutes surface TSM in Hangzhou Bay, where the two water masses meet on the 10 m isobath. These insights into factor interactions and TSM plume pathways provide a scientific basis for improved environmental monitoring and coastal management. Full article
Show Figures

Figure 1

20 pages, 1883 KB  
Article
Agrivoltaics in the Tropics: Soybean Yield Stability and Microclimate Buffering Across Wet and Dry Seasons
by Sung Yoon, MinKyoung Kim, SeungYeun Han and Jai-Young Lee
Agronomy 2026, 16(1), 116; https://doi.org/10.3390/agronomy16010116 - 1 Jan 2026
Viewed by 547
Abstract
Agrivoltaics (APV) offers a promising dual land-use solution for food and energy production, yet empirical data regarding its impact on leguminous crops in tropical monsoon climates remain limited. This study evaluated the microclimate, growth, and yield of soybean (Glycine max) under an APV [...] Read more.
Agrivoltaics (APV) offers a promising dual land-use solution for food and energy production, yet empirical data regarding its impact on leguminous crops in tropical monsoon climates remain limited. This study evaluated the microclimate, growth, and yield of soybean (Glycine max) under an APV system compared to an open-field control during the wet and dry seasons in Bogor, Indonesia. The APV structure reduced incident solar radiation by approximately 35%, significantly lowering soil temperatures and maintaining higher soil moisture across both seasons. In the wet season, the APV treatment significantly increased grain yield (3528.8 vs. 1708.3 kg ha−1, +106%) relative to the open field by mitigating excessive heat and radiative loads, which enhanced pod retention. In the dry season, APV maintained a yield advantage (2025.6 vs. 1724.4 kg ha−1, +17%), driven by improved water conservation and a higher harvest index. Notably, shading did not delay phenological development or hinder vegetative growth in either season. These findings demonstrate that APV systems can contribute to sustainably higher yields and stability in tropical environments by buffering against season-specific environmental stresses, suggesting a viable pathway for sustainable agricultural intensification in equatorial regions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

20 pages, 1861 KB  
Article
Application of the Normalized Difference Drought Index (NDDI) for Monitoring Agricultural Drought in Tropical Environments
by Fadli Irsyad, Nurmala Sari, Annisa Eka Putri and Villim Filipović
Land 2025, 14(12), 2431; https://doi.org/10.3390/land14122431 - 16 Dec 2025
Viewed by 533
Abstract
Agricultural regions in humid tropical climates are often assumed to be water secure due to high annual rainfall, yet periodic drought remains a major constraint on production. This study demonstrates the application of the Normalized Difference Drought Index (NDDI) to identify drought-affected agricultural [...] Read more.
Agricultural regions in humid tropical climates are often assumed to be water secure due to high annual rainfall, yet periodic drought remains a major constraint on production. This study demonstrates the application of the Normalized Difference Drought Index (NDDI) to identify drought-affected agricultural land in West Sumatera, Indonesia. Despite mean annual rainfall exceeding 3000 mm, rice yields in the Batang Anai Subdistrict declined from 5.28 t/ha in 2018 to 4.20 t/ha in 2022, suggesting an increased drought stress. A spatial analysis integrated administrative boundaries, land use maps, monthly rainfall records (2014–2023), and MOD09A1 V6 MODIS imagery. The NDDI was derived sequentially from the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI). The results show that 51.65% of agricultural land (7175 ha) exhibited average NDDI values of 0.09–0.14 over 2018–2023, with the highest drought intensity in 2022, when 4441 ha were classified as moderate drought. Land use under drought conditions was dominated by plantations (58.6%), rice fields (39.5%), and dry fields (1.9%). The NDDI method can more effectively capture localized drought impacts, making it valuable for operational drought monitoring systems. These findings highlight the vulnerability of humid tropical agricultural systems to drought and underscore the need for sustainable water management and early warning strategies based on remote sensing. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

21 pages, 7144 KB  
Article
Mangrove Zonation as a Tool to Infer the Freshwater Inflow Regime in the Data-Poor Ruvu Estuary, Tanzania
by Amartya Kumar Saha and Michael Honorati Kimaro
Water 2025, 17(23), 3404; https://doi.org/10.3390/w17233404 - 28 Nov 2025
Viewed by 667
Abstract
Estuaries provide numerous ecosystem services, including fisheries, coastal community livelihoods, and resistance to saltwater intrusion. Despite this knowledge, estuaries worldwide are threatened by decreasing and/or aseasonal freshwater inflows, which negatively affect ecosystem structure and function. Sound estuarine management requires an understanding of the [...] Read more.
Estuaries provide numerous ecosystem services, including fisheries, coastal community livelihoods, and resistance to saltwater intrusion. Despite this knowledge, estuaries worldwide are threatened by decreasing and/or aseasonal freshwater inflows, which negatively affect ecosystem structure and function. Sound estuarine management requires an understanding of the natural freshwater inflow regime and knowledge of the salinity tolerances of local plant and animal communities—data that are completely lacking in most estuaries. This paper describes a 2-week field survey of mangrove zonation in the Ruvu River estuary carried out during the wet–dry season transition to obtain a multi-decadal proxy for the salinity regime within the estuary. Salinity conditions arising from the mixing of freshwater inflows and sea tides influence the species composition of mangroves. The mouth of the estuary (highest salinity −35 ppt) had monospecific stands of Sonneratia alba—the mangrove with the highest salinity tolerance. Salinity decreased going upriver, from 30 ppt to 5 ppt over 13 km, with 7 other mangrove species progressively appearing in the riverbank forests, ultimately transitioning to palms and other trees intolerant of salinity (<5 ppt). The resulting map relating mangrove zonation with salinity can then be used to calibrate estuary salinity mixing models for calculating minimum freshwater inflows necessary to maintain the estuarine ecosystem. Such periodic surveys and maps can also serve to calibrate/validate remote sensing products for continued coastal vegetation monitoring. The study also reviews available information on climate and land use relating to river flow in the Ruvu basin to summarize the hydrologic vulnerability of the Ruvu estuary to climate change, land use change, and river water demands in the Basin. Full article
Show Figures

Figure 1

19 pages, 2962 KB  
Article
Effects of Land Use Change on Surface Runoff and Infiltration: The Case of Dhaka City
by Toriqul Bashar and Md Zamal Uddin
Urban Sci. 2025, 9(12), 497; https://doi.org/10.3390/urbansci9120497 - 23 Nov 2025
Cited by 1 | Viewed by 798
Abstract
This study presents an integrated field- and model-based assessment of how rapid urbanization is transforming water infiltration and storm runoff dynamics in Dhaka—a megacity facing escalating flood risks. Unlike conventional studies that rely solely on secondary or modeled datasets, this research combines extensive [...] Read more.
This study presents an integrated field- and model-based assessment of how rapid urbanization is transforming water infiltration and storm runoff dynamics in Dhaka—a megacity facing escalating flood risks. Unlike conventional studies that rely solely on secondary or modeled datasets, this research combines extensive in situ field measurements of soil infiltration with scenario-based hydrological modeling to capture the localized impacts of land use change. Using the SCS Curve Number and Water Balance methods, the study quantifies how variations in land cover under different urban growth trajectories alter surface runoff behavior. Results show that Dhaka’s annual infiltration rates—measured at 2034 mm, 1546 mm, and 1074 mm during wet (2017), normal (2018), and dry (2020) years—could decline by nearly 50% if current urban expansion trends persist. Concurrently, surface runoff volumes are projected to nearly double, amplifying flood hazard potential across the city. By grounding scenario modeling in empirical local data, this work offers a context-specific understanding of the evolving hydrological regime of a rapidly urbanizing South Asian metropolis, providing a framework for flood resilience planning in other data-limited cities. Full article
Show Figures

Figure 1

19 pages, 4546 KB  
Review
Changes in Agricultural Soil Quality and Production Capacity Associated with Severe Flood Events in the Sava River Basin
by Vesna Zupanc, Rozalija Cvejić, Nejc Golob, Aleksa Lipovac, Tihomir Predić and Ružica Stričević
Land 2025, 14(11), 2216; https://doi.org/10.3390/land14112216 - 9 Nov 2025
Viewed by 757
Abstract
Intensifying urbanization in Central Europe is increasingly pushing flood retention areas onto private farmland, yet the agronomic and socio-economic trade-offs remain poorly quantified. We conducted a narrative review of published field data and post-event assessments from 2014–2023 along the transboundary Sava River. Information [...] Read more.
Intensifying urbanization in Central Europe is increasingly pushing flood retention areas onto private farmland, yet the agronomic and socio-economic trade-offs remain poorly quantified. We conducted a narrative review of published field data and post-event assessments from 2014–2023 along the transboundary Sava River. Information was collected from research articles, case studies, and environmental monitoring reports, and synthesized in relation to national and EU regulatory thresholds to evaluate how floods altered soil functions and agricultural viability. Water erosion during floods stripped up to 30 cm of topsoil in torrential reaches, while stagnant inundation deposited 5–50 cm of sediments enriched with potentially toxic elements, occasionally causing food crops to exceed EU contaminant limits due to uptake from the soil. Flood sediments also introduced persistent organic pollutants: 13 modern pesticides were detected post-flood in soils, with several exceeding sediment quality guidelines. Waterlogging reduced maize, pumpkin, and forage yields by half where soil remained submerged for more than three days, with farm income falling by approximately 50% in the most affected areas. These impacts contrast with limited public awareness of long-term soil degradation, raising questions about the appropriateness of placing additional dry retention reservoirs—an example of nature-based solutions—on agricultural land. We argue that equitable flood-risk governance in the Sava River Basin requires: (i) a trans-boundary soil quality monitoring network linking agronomic, hydrological, and contaminant datasets; (ii) compensation schemes for agricultural landowners that account for both immediate crop losses and delayed remediation costs; and (iii) integration of strict farmland protection clauses into spatial planning, favoring compact, greener cities over lateral river expansion. Such measures would balance societal flood-safety gains with the long-term productivity and food security functions of agricultural land. Full article
(This article belongs to the Special Issue The Impact of Extreme Weather on Land Degradation and Conservation)
Show Figures

Figure 1

23 pages, 5274 KB  
Article
Assessing an Optical Tool for Identifying Tidal and Associated Mangrove Swamp Rice Fields in Guinea-Bissau, West Africa
by Jesus Céspedes, Jaime Garbanzo-León, Marina Temudo and Gabriel Garbanzo
Land 2025, 14(11), 2144; https://doi.org/10.3390/land14112144 - 28 Oct 2025
Viewed by 1506
Abstract
An optical remote sensing approach was developed to identify areas with high and low salinity within the mangrove swamp rice system in West Africa. Conducted between 2019 and 2024 in Guinea-Bissau, this study examined two contrasting rice-growing environments, tidal mangrove (TM) and associated [...] Read more.
An optical remote sensing approach was developed to identify areas with high and low salinity within the mangrove swamp rice system in West Africa. Conducted between 2019 and 2024 in Guinea-Bissau, this study examined two contrasting rice-growing environments, tidal mangrove (TM) and associated mangrove (AM), to assess changes in vegetation dynamics, soil salinity concentration, and soil chemical properties. Field sampling was conducted during the dry season to avoid waterlogging, and soil analyses included texture, cation exchange capacity, micronutrients, and electrical conductivity (ECe). Meteorological stations recorded rainfall and environmental conditions over the period. Moreover, orthorectified and atmospherically corrected surface reflectance satellite imagery from PlanetScope and Sentinel-2 was selected due to their high spatial resolution and revisit frequency. From this data, vegetation dynamics were monitored using the Normalized Difference Vegetation Index (NDVI), with change detection calculated as the difference in NDVI between sequential images (ΔNDVI). Thresholds of 0.15 ≤ NDVI ≤ 0.5 and ΔNDVI > 0.1 were tested to identify significant vegetation growth, with smaller polygons (<1000 m2) removed to reduce noise. In this process, at least three temporal images per season were analyzed, and multi-year intersections were done to enhance accuracy. Our parameter optimization tests found that a locally calibrated NDVI threshold of 0.26 improved site classification. Thus, this integrated field–remote sensing approach proved to be a reproducible and cost-effective tool for detecting AM and TM environments and assessing vegetation responses to seasonal changes, contributing to improved land and water management in the salinity-affected mangrove swamp rice system. Full article
Show Figures

Figure 1

17 pages, 2700 KB  
Article
Water Hyacinth Geotextiles as a Nature-Based Solution for Riverbank Protection in the Vietnamese Mekong Delta
by Nguyen Quoc Bang, Dinh Van Duy, Tran Van Ty, Cu Ngoc Thang, Nigel K. Downes and Hitoshi Tanaka
CivilEng 2025, 6(4), 55; https://doi.org/10.3390/civileng6040055 - 19 Oct 2025
Viewed by 1159
Abstract
Riverbank erosion in the Vietnamese Mekong Delta (VMD) poses a serious threat to agricultural lands, infrastructure, and local communities. Conventional protective measures, such as synthetic geotextiles and concrete revetments, are often costly and environmentally disruptive. This study investigates the potential of Eichhornia crassipes [...] Read more.
Riverbank erosion in the Vietnamese Mekong Delta (VMD) poses a serious threat to agricultural lands, infrastructure, and local communities. Conventional protective measures, such as synthetic geotextiles and concrete revetments, are often costly and environmentally disruptive. This study investigates the potential of Eichhornia crassipes, a widely available invasive species, commonly known as water hyacinth (WH), to produce biodegradable geotextiles as a low-cost, nature-based solution (NbS) for small-scale riverbank protection. It is the first to test minimally processed WH mats under simulated tidal conditions in the VMD. Laboratory experiments were conducted to evaluate the geotextile’s (1) sediment retention capacity, (2) wave energy reduction, and (3) mechanical durability under wet–dry cycles. Results show that the WH geotextile effectively reduced sediment resuspension, decreasing turbidity levels from 800 FTU (unprotected scenario) to below 50 FTU. The geotextile also attenuated wave energy, reducing significant wave heights by approximately 35–40%. Mechanical testing revealed that the fish bone weaving pattern with adhesive coating achieved the highest tensile strength (8.36 kN/m after 12 wet–dry cycles), while uncoated samples demonstrated higher elongation (up to 61.67%), providing greater flexibility. These demonstrate the feasibility of WH geotextiles as a scalable nature-based solution for erosion-prone tropical deltas. Future studies should focus on field-scale validation, biodegradation rates, and performance optimization for long-term applications. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

14 pages, 1977 KB  
Article
Assessing Riparian Evapotranspiration Dynamics in a Water Conflict Region in Nebraska, USA
by Ivo Z. Gonçalves, Burdette Barker, Christopher M. U. Neale, Derrel L. Martin and Sammy Z. Akasheh
Water 2025, 17(20), 2949; https://doi.org/10.3390/w17202949 - 13 Oct 2025
Viewed by 446
Abstract
The escalating pressure on water resources in agricultural regions has become a catalyst for water conflicts. The adoption of innovative approaches to estimate actual evapotranspiration (ETa) offers potential solutions to mitigate conflicts related to water usage. This research presents the application of a [...] Read more.
The escalating pressure on water resources in agricultural regions has become a catalyst for water conflicts. The adoption of innovative approaches to estimate actual evapotranspiration (ETa) offers potential solutions to mitigate conflicts related to water usage. This research presents the application of a remote sensing-based methodology for estimating actual evapotranspiration (ETa) based on a two-source energy balance model (TSEB) for riparian vegetation in Nebraska, US using the Spatial EvapoTranspiration Modeling Interface (SETMI). Estimated results through SETMI and field data using the eddy covariance system (EC) considering the period 2008–2013 were used to validate the energy balance components and ETa. Modeled energy balance components showed a strong correlation to the ground data from EC, with ET presenting R2 equal to 0.96 and RMSE of 0.73 mm.d−1. In 2012, the lowest adjusted crop coefficient (Kcadj) values were observed across all land covers, with a mean value of 0.49. The years 2013 and 2012, due to the dry conditions, recorded the highest accumulated ETa values (706 mm and 664 mm, respectively). Soybeans and corn exhibited the highest ETa values, recording 699 mm and 773 mm, respectively. Corn and soybeans, together accounting for a substantial portion of the land cover at 15% and 3%, respectively, play a significant role. Given that most fields cultivating these crops are irrigated, both pumped groundwater and surface water directly impact the water source of the Republican River. The SETMI model has generated appropriate estimated daily ETa values, thereby affirming the model’s utility as a tool for assisting water management and decision-makers in riparian zones. Full article
(This article belongs to the Special Issue Applied Remote Sensing in Irrigated Agriculture)
Show Figures

Figure 1

25 pages, 4073 KB  
Article
Evaluating Country-Scale Irrigation Demand Through Parsimonious Agro-Hydrological Modeling
by Nike Chiesa Turiano, Marta Tuninetti, Francesco Laio and Luca Ridolfi
Hydrology 2025, 12(9), 240; https://doi.org/10.3390/hydrology12090240 - 18 Sep 2025
Viewed by 960
Abstract
Climate change is expected to reduce water availability during cropping season, while growing populations and rising living standards will increase the global water demand. This creates an urgent need for national water management tools to optimize water allocation. In particular, agriculture requires targeted [...] Read more.
Climate change is expected to reduce water availability during cropping season, while growing populations and rising living standards will increase the global water demand. This creates an urgent need for national water management tools to optimize water allocation. In particular, agriculture requires targeted approaches to improve efficiency. Alongside field measurements and remote sensing, agro-hydrological models have emerged as a particularly valuable resource for assessing and managing agricultural water demand. This study introduces WaterCROPv2, a state-of-the-art agro-hydrological model designed to estimate national-scale irrigation water demand while effectively balancing accuracy with practical data requirements. WaterCROPv2 incorporates innovative features such as hourly time-step computations, advanced rainwater canopy interception modeling, detailed soil-dependent leakage dynamics, and localized daily evapotranspiration patterns based on meteorological data. Through comprehensive analyses, WaterCROPv2 demonstrates significantly enhanced reliability in estimating irrigation water needs across various climatic regions, particularly under contrasting dry and wet conditions. Validation against independent data from the Italian National Institute of Statistics (ISTAT) for maize cultivation in Italy in 2010 confirms the model’s accuracy and underscores its potential for broader international applications. A spatial analysis further reveals that the estimation errors align closely with regional precipitation patterns: the model tends to slightly underestimate irrigation needs in the wetter northern regions, whereas it somewhat overestimates demand in the drier southern areas. WaterCROPv2 has also been used to analyze irrigation water requirements for maize cultivation in Italy from 2005 to 2015, highlighting its significant potential as a strategic decision-support tool. The model identifies optimal cultivation areas, such as the Pianura Padana, where the irrigation requirements do not exceed 200 mm for the entire maize growing period, and unsuitable regions, such as Salentino, where over 500 mm per season are required due to the local climatic conditions. In addition, estimates of the water volumes required for the current extent of maize cultivation show that the Pianura Padana region demands nearly three times the amount of water used in the Salentino area. The model has also been used to identify regions where adopting efficient irrigation technologies could lead to substantial water savings. With micro-irrigation currently covering less than 18% of irrigated land, simulations suggest that a complete transition to this system could reduce the national water demand by 21%. Savings could reach 30–40% in traditionally water-rich regions that rely on inefficient irrigation practices but are expected to be increasingly exposed to temperature increases and precipitation shifts. The analysis shows that those regions currently lacking adequate irrigation infrastructure stand to gain the most from targeted irrigation system investments but also highlights how incentives where micro-irrigation is already widespread can provide further 5–10% savings. Full article
Show Figures

Figure 1

22 pages, 6844 KB  
Article
Legume Green Manure Further Improves the Effects of Fertilization on the Long-Term Yield and Water and Nitrogen Utilization of Winter Wheat in Rainfed Agriculture
by Xiushuang Li, Juan Chen, Jianglan Shi and Xiaohong Tian
Plants 2025, 14(16), 2476; https://doi.org/10.3390/plants14162476 - 9 Aug 2025
Cited by 2 | Viewed by 949
Abstract
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating [...] Read more.
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating with optimized water and fertilizer management. Objectives: We conducted a field experiment to determine the positive effects of planting legume GM in the summer fallow on the yield, WUE, and nitrogen uptake efficiency (NupE) of subsequent winter wheat, which was grown with plastic film mulching and integrated fertilization in the Loess Plateau of China. Methods: A split-plot-designed experiment was arranged with two main treatments, namely (1) wheat planting followed by GM planting in the summer fallow (GM) and (2) conventional wheat monoculture followed by bare land summer fallow (BL), and three sub-treatments: (1) control treatment without any chemical fertilizer (Ct), (2) application of chemical N, P, and K as basal fertilizer (B), and (3) application of basal fertilizer plus wheat straw return (BS). Results: In the initial two years, even in a dry year, GM did not decrease the soil water content and storage (0–200 cm layer) during the subsequent winter wheat season, relative to BL. But in the third and fourth years, GM increased the grain yield of winter wheat by 3.2% and 3.8%, respectively. B and BS increased the grain yield of winter wheat by 14.4% and 22.2%, respectively, during the third experimental year, and by 12.7% and 19.4% during the fourth experimental year, primarily through increasing the population density of winter wheat. The increase in the grain yield contributed to a higher WUE of winter wheat. In the third year, GM increased the water consumption (WC) and WUE of wheat by 2.4% and 1.7%, respectively, though they were far lower than B (8.3% and 5.6%) and BS (10.4% and 10.7%). B and BS resulted in a higher yield and N nutrition than GM alone, but GM combined with B and BS resulted in the highest yield and N nutrition, thus greatly decreasing the NupE and increasing N productivity. Conclusions: Planting legume GM in the fallow can further increase the long-term yield, WUE, and N utilization of winter wheat when integrated with chemical fertilization and wheat straw return in rainfed agriculture. Implications: Our study yields new insights into the agronomic benefits of legume GM application in semi-arid or analogous rainfed agroecosystems and underscores the critical role of water conservation in ensuring dryland agricultural production, particularly in regions undergoing optimization of fertilization. Full article
Show Figures

Figure 1

24 pages, 4903 KB  
Article
Dynamic Wetland Evolution in the Upper Yellow River Basin: A 30-Year Spatiotemporal Analysis and Future Projections Under Multiple Protection Scenarios
by Zheng Liu, Chunlin Huang, Ting Zhou, Tianwen Feng and Qiang Bie
Land 2025, 14(6), 1219; https://doi.org/10.3390/land14061219 - 5 Jun 2025
Cited by 1 | Viewed by 1015
Abstract
Wetland monitoring is a key means of protecting wetland ecosystems. In order to achieve continuous monitoring of wetlands and predict future patterns, this paper analyzes the spatiotemporal evolution characteristics of wetlands in the upper reaches of the Yellow River from 1990 to 2020, [...] Read more.
Wetland monitoring is a key means of protecting wetland ecosystems. In order to achieve continuous monitoring of wetlands and predict future patterns, this paper analyzes the spatiotemporal evolution characteristics of wetlands in the upper reaches of the Yellow River from 1990 to 2020, and uses the Patch Generation Land Use Simulation (PLUS) model to simulate the spatial distribution of wetlands from 2040 to 2060 under four scenarios: farmland protection (FPS), wetland protection (WPS), comprehensive protection (CPS) and natural development (NDS). The results show that the total area of wetlands in the upper reaches of the Yellow River is on the rise, increasing by 7.12% in 2020 compared with 1990. The changes in various types of wetlands are different: the areas of river and canals increased by 26.39% and 57.97%, respectively, paddy fields increased by 7.95%, lakes remained basically stable, and tidal flats decreased by 5.67%. The simulation results of the future spatial pattern of wetlands show that: under the FPS scenario, farmland and related land use will expand significantly, mainly through the development of beaches, dry land and unused land, while under the WPS scenario, wetlands will be strictly protected, the area of water resource features such as rivers, lakes and reservoirs will increase significantly, and land use changes will be more ecologically oriented. Compared with the CPS and NDS scenarios, the wetland protection and urbanization process in the upper reaches of the Yellow River can be balanced under the FPS and WPS scenarios. This study has important reference value for the protection and sustainable development of wetland ecosystems in the upper reaches of the Yellow River. Full article
Show Figures

Figure 1

21 pages, 4519 KB  
Article
Parsimonious Model of Groundwater Recharge Potential as Seen Related with Two Topographic Indices and the Leaf Area Index
by Rodríguez-Moreno Victor Manuel and Kretzschmar Thomas Gunter
Hydrology 2025, 12(6), 127; https://doi.org/10.3390/hydrology12060127 - 22 May 2025
Cited by 3 | Viewed by 1423
Abstract
A concise model, utilizing the threshold values of closed depressions, the convergence index, and the leaf area index (LAI) that play a significant role in modeling vegetation–atmosphere interactions and understanding the impact of vegetation on the hydrological cycle, was employed to pinpoint potential [...] Read more.
A concise model, utilizing the threshold values of closed depressions, the convergence index, and the leaf area index (LAI) that play a significant role in modeling vegetation–atmosphere interactions and understanding the impact of vegetation on the hydrological cycle, was employed to pinpoint potential aquifer recharge centroids. The LAI index served as a geographic mask, linking centroid locations to soil vegetation cover. Analyzing a paired subsample of 500 centroids for each strata (true and false), we observed that maximum values of true centroids, indicating potential groundwater recharge, correlated with the presence of abundant vegetation (0.074 < LAI < 0.639). Conversely, lower LAI values were associated with sparse vegetation in false centroids (0.01 < LAI < 0.590). The study’s findings hold promising implications for aquifer management, biodiversity conservation, hydric planning, and land use protection, making a substantial contribution to the field. The recharge hypothesis is theoretically sound and empirically supported to propose that areas of high topographic convergence and closed depressions are potential water recharge zones, and these locations may exhibit permanent or denser vegetation, reflected as higher LAI values. This happens because water accumulates or lingers in these zones, soil moisture is maintained more consistently, and plant roots access water for longer periods, even during dry seasons. Vegetation becomes more resilient and persistent (possibly even forming phreatophytes—plants accessing groundwater). Additionally, there is potential for expanding the research by incorporating field observations, including tracking the routes of surface and subsurface runoff and determining arrival times to the aquifer. Such studies are increasingly vital for addressing contemporary environmental and water resource challenges. Full article
Show Figures

Figure 1

Back to TopTop