Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = dry ice risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4258 KiB  
Review
Corrosion Performance of Atmospheric Corrosion Resistant Steel Bridges in the Current Climate: A Performance Review
by Nafiseh Ebrahimi, Melina Roshanfar, Mojtaba Momeni and Olga Naboka
Materials 2025, 18(15), 3510; https://doi.org/10.3390/ma18153510 - 26 Jul 2025
Viewed by 507
Abstract
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance [...] Read more.
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance strategies. The protective patina, composed of stable iron oxyhydroxides, develops over time under favorable wet–dry cycles but can be disrupted by environmental aggressors such as chlorides, sulfur dioxide, and prolonged moisture exposure. Key alloying elements like Cu, Cr, Ni, and Nb enhance corrosion resistance, while design considerations—such as drainage optimization and avoidance of crevices—are critical for performance. The study highlights the vulnerability of WS bridges to microenvironments, including de-icing salt exposure, coastal humidity, and debris accumulation. Regular inspections and maintenance, such as debris removal, drainage system upkeep, and targeted cleaning, are essential to mitigate corrosion risks. Climate change exacerbates challenges, with rising temperatures, altered precipitation patterns, and ocean acidification accelerating corrosion in coastal regions. Future research directions include optimizing WS compositions with advanced alloys (e.g., rare earth elements) and integrating climate-resilient design practices. This review highlights the need for a holistic approach combining material science, proactive maintenance, and adaptive design to ensure the longevity of WS bridges in evolving environmental conditions. Full article
Show Figures

Figure 1

15 pages, 2192 KiB  
Article
Intermittent Catheters with Integrated Amphiphilic Surfactant Reduce Urethral Microtrauma in an Ex Vivo Model Compared with Polyvinylpyrrolidone-Coated Intermittent Catheters
by Luca Barbieri, Makhara S. Ung, Katherine E. Hill, Ased Ali and Laura A. Smith Callahan
J. Funct. Biomater. 2025, 16(7), 256; https://doi.org/10.3390/jfb16070256 - 10 Jul 2025
Viewed by 721
Abstract
Intermittent catheterization mitigates urinary retention for over 300,000 people in the US every year, but can cause microtrauma in the urothelium, compromising its barrier function and increasing the risk of pathogen entry, which may affect user health. To reduce adverse effects, intermittent catheters [...] Read more.
Intermittent catheterization mitigates urinary retention for over 300,000 people in the US every year, but can cause microtrauma in the urothelium, compromising its barrier function and increasing the risk of pathogen entry, which may affect user health. To reduce adverse effects, intermittent catheters (ICs) with increased lubricity are used. A common strategy to enhance IC lubricity is to apply a polyvinylpyrrolidone (PVP) coating to ICs; however, this coating can become adhesive upon drying, potentially leading to microtrauma. An alternative approach for lubricity is the migration of integrated amphiphilic surfactant (IAS) within the IC to the surface. The present work examines differences in urethral microtrauma caused by the simulated catheterization of ex vivo porcine urethral tissue using PVP-coated and IAS ICs. Scanning electron microscopy and fluorescence microscopy of the tissue showed the removal of the apical cell layer after contact with the PVP-coated ICs, but not the IAS IC. More extracellular matrices and DNA were observed on the PVP-coated ICs than the IAS IC after tissue contact. Contact angle analysis of the polar and dispersive components of the surface energy demonstrated that the PVP-coated ICs promoted mucoadhesion, while the IAS IC limited mucoadhesion. Overall, the results indicate that IAS ICs cause less microtrauma to urethral tissue than traditional PVP-coated ICs. Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 331
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

21 pages, 10392 KiB  
Article
Experimental Study of the Effect by Double-Stage Throttling on the Pressure Relief Characteristics of a Large-Scale CO2 Transportation Pipeline
by Huifang Song, Tingyi Wang, Jingjing Qi, Kai Jin, Jia Liu, Feng Li, Fanfan Qiao, Kun Zhao, Baoying Yin and Jianliang Yu
Energies 2025, 18(13), 3244; https://doi.org/10.3390/en18133244 - 20 Jun 2025
Viewed by 392
Abstract
The safety of pipeline transportation technology is the key to guaranteeing the development and application of CCUS. In the process of CO2 pipeline transportation, manual pressure relief may be required due to equipment failure, overpressure, or other reasons. However, the sharp temperature [...] Read more.
The safety of pipeline transportation technology is the key to guaranteeing the development and application of CCUS. In the process of CO2 pipeline transportation, manual pressure relief may be required due to equipment failure, overpressure, or other reasons. However, the sharp temperature drop in the evacuation process may lead to the formation of dry ice, which may cause a pipeline blockage and equipment damage. Although the multi-stage throttling method of pressure relief can effectively control the stability of the equipment, the effect on the low temperature of the pipeline needs to be further investigated. Therefore, in order to evaluate the safety of multi-stage throttling pressure relief, a comparative experiment of dense-phase venting with double-stage throttling was carried out based on an industrial-scale pipeline experimental device. The results show that the double-stage throttling pressure relief scheme can significantly reduce the pressure drop rate and improve the stability of the pressure relief structure. Moreover, the temperature drop limit upstream of the main pipeline is controlled under the double-stage throttling scheme, but it exacerbates the low temperature level downstream, which is not conducive to mitigating the risk of freeze-plugging of the pressure relief valve. Therefore, it is recommended that the double-stage throttling relief scheme be used to close the valve in time to return to the temperature and to adopt an intermittent means of pressure relief. Full article
Show Figures

Figure 1

16 pages, 980 KiB  
Article
Statistical Analysis of Temperature Sensors Applied to a Biological Material Transport System: Challenges, Discrepancies, and a Proposed Monitoring Methodology
by Felipe Roque de Albuquerque Neto, José Eduardo Ferreira de Oliveira, Rodrigo Gustavo Dourado da Silva, Andrezza Carolina Carneiro Tomás, Alvaro Antonio Villa Ochoa, José Ângelo Peixoto da Costa, Alisson Cocci de Souza and Paula Suemy Arruda Michima
Processes 2025, 13(6), 1904; https://doi.org/10.3390/pr13061904 - 16 Jun 2025
Viewed by 499
Abstract
Conventional methods for transporting biological materials typically use dry ice or ice for preservation but often overlook important aspects of temperature monitoring and metrological control. These methods generally do not include temperature sensors to track the thermal conditions of the materials during transport, [...] Read more.
Conventional methods for transporting biological materials typically use dry ice or ice for preservation but often overlook important aspects of temperature monitoring and metrological control. These methods generally do not include temperature sensors to track the thermal conditions of the materials during transport, nor do they apply essential metrological practices such as regular sensor calibration and stability checks. This lack of precise monitoring poses significant risks to the integrity of temperature-sensitive biological materials. This study presents a statistical analysis of DS18B20 digital temperature sensors used in an experimental refrigeration system based on thermoelectric modules. The aim was to verify sensor consistency and investigate sources of measurement error. The research was motivated by a prior phase of study, which revealed significant discrepancies of approximately 3 °C between experimental temperature data and numerical simulations. To investigate a potential cause, we conducted a case study analyzing measurements from three identical temperature sensors (same model, brand, and manufacturer). Statistical analyses included ANOVA (analysis of variance) and Tukey’s test with a 95% confidence interval. Since the data did not follow a normal distribution (p-value < 0.05), non-parametric methods such as the Kruskal–Wallis and Levene’s procedures were also applied. The results showed that all sensors recorded statistically significant different temperature values (p-value < 0.05). Although experimental conditions were kept consistent, temperature differences of up to 0.37 °C were observed between sensors. This finding demonstrates an inherent inter-sensor variability that, while within manufacturer specifications, represents a source of systematic error that can contribute to larger discrepancies in complex systems, highlighting the need for individual calibration. Full article
(This article belongs to the Special Issue Multiscale Modeling and Control of Biomedical Systems)
Show Figures

Figure 1

19 pages, 2403 KiB  
Article
Insights from Real-World Evidence on the Use of Inhalers in Clinical Practice
by Myriam Calle Rubio, Pedro José Adami Teppa, Juan Luis Rodríguez Hermosa, Miriam García Carro, José Carlos Tallón Martínez, Consolación Riesco Rubio, Laura Fernández Cortés, María Morales Dueñas, Valeria Chamorro del Barrio, Rafael Sánchez-del Hoyo and Jorge García Aragón
J. Clin. Med. 2025, 14(4), 1217; https://doi.org/10.3390/jcm14041217 - 12 Feb 2025
Viewed by 2272
Abstract
Background: Despite the ongoing innovations and the availability of numerous effective inhaled treatment options, achieving optimal disease control in most patients frequently remains disappointing. Unfortunately, although inhaled therapy is the cornerstone of respiratory disease management, the selection of the most appropriate inhaler is [...] Read more.
Background: Despite the ongoing innovations and the availability of numerous effective inhaled treatment options, achieving optimal disease control in most patients frequently remains disappointing. Unfortunately, although inhaled therapy is the cornerstone of respiratory disease management, the selection of the most appropriate inhaler is still overlooked or underestimated by some healthcare professionals, and inhaler misuse remains a significant challenge in managing chronic respiratory diseases which directly influences patients’ quality of life, clinical outcomes, and risk of disease progression. Materials and Methods: This is a unicentric, observational, cross-sectional study designed to evaluate the inhaled therapy prescribed in hospitalized patients and to analyze device changes after hospitalization, as well as the factors associated with these changes. A single face-to-face visit was performed during the patient’s hospitalization, where the inhaled therapy used prior to hospitalization was evaluated: technique (critical errors), compliance (TAI questionnaire), maximum peak inspiratory flow [PIF (L/min)], and level of inhaler handling-related knowledge. A binary logistic regression model was used to explore the association between changing device at discharge and the other independent variables Results: The inhaler most used during hospitalization was the metered-dose inhaler (MDI) with a chamber (51.9% of patients), with the dry powdered inhalers (DPI) being the inhalers used in 43% of maintenance inhaled therapies in the community setting prior to hospitalization. In addition, 90% of patients showed a maximum PIF ≥ 30 L/min, and 35.6% performed critical inhaler errors. These patients had statistically significantly lower maximum PIF values (52.1 L/min in patients with critical inhaler errors vs. 60.8 L/min without critical inhaler errors; p > 0.001) and were more likely to exhibit poor inhaler compliance compared to those without critical errors (50.5% vs. 31.0%, respectively). More than half of the patients who used MDI with spacer chamber made critical inhaler errors; 69.9% showed regular or poor treatment adherence, although 75.6% demonstrated good knowledge about inhaler handling. Only in 27% of the patients did the healthcare professional change the type of inhaler after hospitalization within clinical practice. The medical and nursing staff responsible for the patient’s hospitalization were not informed of the assessment carried out in the study. The probability of not performing a device change at discharge was lower in patients with previous at-home treatment with combined inhaled therapy with LABA + ICS (OR 0.3 [0.18–0.83], p = 0.016) and in patients under triple inhaled therapy (OR 0.3 [0.17–0.76], p = 0.007). No significant differences were observed in inhaler changes when considering the frequency of critical inhaler errors, inhaler handling-related knowledge or maximum PIF values. Conclusions: Our study highlights the urgent need for a more personalized inhaler selection and consistent monitoring by healthcare professionals to minimize inhaler misuse, increase treatment compliance and adherence, and improve disease management outcomes. It is essential to provide training and promote the role of nursing in the evaluation and education of inhaled therapy. Additionally, the use of standardized approaches and tools, such as the CHECK DIAL, is crucial to facilitate the adaptation of devices to patients’ needs. Full article
(This article belongs to the Special Issue Clinical Highlights in Chronic Obstructive Pulmonary Disease (COPD))
Show Figures

Figure 1

15 pages, 5042 KiB  
Article
A Strategy for Reliable Cargo Loading of Low-Pressure Liquid Carbon Dioxide Carriers
by Soon-Kyu Hwang, Sang-Taek Im and Jong-Kap Ahn
Energies 2024, 17(22), 5739; https://doi.org/10.3390/en17225739 - 16 Nov 2024
Cited by 1 | Viewed by 1088
Abstract
This study addresses the control challenges associated with loading low-pressure liquid carbon dioxide carriers (LCO2Cs), which are crucial components of the carbon capture, utilization, and storage (CCUS) chain. It explores the need for stable pressure and temperature control to prevent dry ice formation [...] Read more.
This study addresses the control challenges associated with loading low-pressure liquid carbon dioxide carriers (LCO2Cs), which are crucial components of the carbon capture, utilization, and storage (CCUS) chain. It explores the need for stable pressure and temperature control to prevent dry ice formation and ensure efficient cargo handling. The research employed HYSYS dynamic simulations to assess three different control strategies. The simulations assessed each strategy’s effectiveness in maintaining stable operating conditions and preventing risks, such as dry ice formation and valve blockages. The study concluded by examining the necessity of pressurization for safe and efficient LCO2 loading and by determining which control strategy is most effective and reliable based on the simulation outcomes. Among the three scenarios examined, Case A, which utilized two control valves, exhibited initial instability due to significant flow coefficient differences, resulting in temperature drops below the CO2 triple point and increasing the risk of dry ice formation. Case C, operating without pressurization, experienced severe pressure fluctuations and prolonged exposure to temperatures below the triple point, posing risks of valve blockages. In contrast, Case B, which uses a remote pressure-reducing valve and a control valve, demonstrated the most stable performance, effectively avoiding dry ice formation and pressure fluctuations, making it the most reliable method for safe LCO2 cargo loading. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

18 pages, 1804 KiB  
Article
Reduce Speed Limits to Minimize Potential Harm and Maximize the Health Benefits of Street Trees
by Xiaoqi Feng, Michael Navakatikyan and Thomas Astell-Burt
Land 2024, 13(11), 1815; https://doi.org/10.3390/land13111815 - 1 Nov 2024
Viewed by 972
Abstract
Urban greening is threatened by the concern that street trees increase traffic-related injury/death. Associations between all serious and fatal traffic crashes and street tree percentages were examined in Sydney, Australia. Associations were adjusted for confounding factors relating to driver behavior (speeding, fatigue, and [...] Read more.
Urban greening is threatened by the concern that street trees increase traffic-related injury/death. Associations between all serious and fatal traffic crashes and street tree percentages were examined in Sydney, Australia. Associations were adjusted for confounding factors relating to driver behavior (speeding, fatigue, and use of alcohol) and road infrastructure, including alignment (e.g., straight, curved), surface condition (e.g., dry, wet, ice), type (e.g., freeway, roundabout), and speed limit. Models indicated that 10% more street trees were associated with 3% and 20% higher odds of serious or fatal injuries and 20% tree collisions on roads of any speed, respectively. However, further analysis stratified by speed limit revealed contrasting results. Along roads of 70 km/h or greater, 10% more street trees were associated with 8% higher odds of serious or fatal injury and 25% higher odds of death. Comparable associations were not found between street trees and serious or fatal injuries along roads below 70 km/h. Reducing speed limits below 70 km/h saves lives and may mitigate risks of serious or fatal traffic accidents associated with street trees, enabling greener, cooler, healthier cities. Full article
Show Figures

Figure 1

26 pages, 1716 KiB  
Review
Exercise-Induced Bronchoconstriction in Children: State of the Art from Diagnosis to Treatment
by Roberto Grandinetti, Nicole Mussi, Arianna Rossi, Giulia Zambelli, Marco Masetti, Antonella Giudice, Simone Pilloni, Michela Deolmi, Carlo Caffarelli, Susanna Esposito and Valentina Fainardi
J. Clin. Med. 2024, 13(15), 4558; https://doi.org/10.3390/jcm13154558 - 5 Aug 2024
Cited by 4 | Viewed by 3762
Abstract
Exercise-induced bronchoconstriction (EIB) is a common clinical entity in people with asthma. EIB is characterized by postexercise airway obstruction that results in symptoms such as coughing, dyspnea, wheezing, chest tightness, and increased fatigue. The underlying mechanism of EIB is not completely understood. “Osmotic [...] Read more.
Exercise-induced bronchoconstriction (EIB) is a common clinical entity in people with asthma. EIB is characterized by postexercise airway obstruction that results in symptoms such as coughing, dyspnea, wheezing, chest tightness, and increased fatigue. The underlying mechanism of EIB is not completely understood. “Osmotic theory” and “thermal or vascular theory” have been proposed. Initial assessment must include a specific work-up to exclude alternative diagnoses like exercise-induced laryngeal obstruction (EILO), cardiac disease, or physical deconditioning. Detailed medical history and clinical examination must be followed by basal spirometry and exercise challenge test. The standardized treadmill running (TR) test, a controlled and standardized method to assess bronchial response to exercise, is the most adopted exercise challenge test for children aged at least 8 years. In the TR test, the goal is to reach the target heart rate in a short period and maintain it for at least 6 min. The test is then followed by spirometry at specific time points (5, 10, 15, and 30 min after exercise). In addition, bronchoprovocation tests like dry air hyperpnea (exercise and eucapnic voluntary hyperpnea) or osmotic aerosols (inhaled mannitol) can be considered when the diagnosis is uncertain. Treatment options include both pharmacological and behavioral approaches. Considering medications, the use of short-acting beta-agonists (SABA) just before exercise is the commonest option strategy, but daily inhaled corticosteroids (ICS) can also be considered, especially when EIB is not controlled with SABA only or when the patients practice physical activity very often. Among the behavioral approaches, warm-up before exercise, breathing through the nose or face mask, and avoiding polluted environments are all recommended strategies to reduce EIB risk. This review summarizes the latest evidence published over the last 10 years on the pathogenesis, diagnosis using spirometry and indirect bronchoprovocation tests, and treatment strategies, including SABA and ICS, of EIB. A specific focus has been placed on EIB management in young athletes, since this condition can not only prevent them from practicing regular physical activity but also competitive sports. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

16 pages, 2520 KiB  
Article
Microbial Population and Physicochemical Properties of Miang Fermented in Bamboo Tubes by the Luar Ethnic Group in Lao PDR
by Somsay Phovisay, Aliyu Dantani Abdullahi, Nang Nwet Noon Kham, Kridsada Unban, Kalidas Shetty and Chartchai Khanongnuch
Foods 2024, 13(13), 2109; https://doi.org/10.3390/foods13132109 - 2 Jul 2024
Cited by 1 | Viewed by 2298
Abstract
Miang is a traditional fermented food made from Assam tea leaves and consumed as a snack. This study investigated the underground Miang fermentation process practiced by the Luar ethnic group in Laos, specifically examining the nutritional composition and microbial dynamics. Lactic acid bacteria [...] Read more.
Miang is a traditional fermented food made from Assam tea leaves and consumed as a snack. This study investigated the underground Miang fermentation process practiced by the Luar ethnic group in Laos, specifically examining the nutritional composition and microbial dynamics. Lactic acid bacteria and yeast were dominant in the fermentation process, reaching 8.43 and 8.50 log CFU/g after one week before gradually declining, while the coliform bacterial count was at 5.31 log CFU/g in the initial week but became undetectable in the later stages of fermentation. Next-generation sequencing identified Firmicutes (75.02%) and Proteobacteria (23.51%) as the primary phyla. Bacterial genera included Lactobacillus (73.36%) and Acetobacter (21.06%), with fungi mainly represented by Pichia (85.52%) and Candida (13.45%). Fundamental microbes such as Lactobacillus and Acetobacter were predominantly present, alongside Pichia and Candida, in the fungal communities. Microbial activities played a crucial role in generating essential enzymes for Miang’s transformation. The nutritional transformation appears to be complete at 5 weeks of fermentation. The moisture content in the final products was approximately 74% and correlated with a change in nitrogen-free extract (NFE) and crude fiber. The fat content showed a slight increase from 1.3% to 2.52%, but protein content slightly declined from 17.21% to 16.05%, whereas ash content did not change significantly. Key polysaccharide-degrading enzymes, particularly pectinase and β-mannanase, were revealed and peaked at 48.32 and 25.32 U/g Miang, respectively. The total polyphenols increased from 103.54 mg/g dry Miang to 144.19–155.52 mg/g during fermentation. The lowered IC50 value indicated an increase in antioxidant activity. A fermentation period of at least 3 weeks proved to be optimal for enhancing antioxidant properties and bioactive compounds, and mitigating the risk of coliform bacteria. Full article
Show Figures

Figure 1

17 pages, 1637 KiB  
Article
Algae-Based Supplements Claiming Weight Loss Properties: Authenticity Control and Scientific-Based Evidence on Their Effectiveness
by Fátima Fernandes, Raquel Martins, Mariana Barbosa and Patrícia Valentão
Mar. Drugs 2024, 22(3), 123; https://doi.org/10.3390/md22030123 - 5 Mar 2024
Cited by 1 | Viewed by 4278
Abstract
The worldwide prevalence of obesity impacts more than 600 million adults. Successfully managing weight is effective in reducing the risk of chronic diseases, but sustaining long-term weight loss remains a challenge. Although there are supplements based on algae that claim to aid in [...] Read more.
The worldwide prevalence of obesity impacts more than 600 million adults. Successfully managing weight is effective in reducing the risk of chronic diseases, but sustaining long-term weight loss remains a challenge. Although there are supplements based on algae that claim to aid in weight loss, there is a notable scarcity of scientific evidence supporting their effectiveness, and their regular consumption safety remains inadequately addressed. In this work, commercially available Arthrospira (Spirulina) platensis Gomont and/or Fucus vesiculosus L. supplements showed moderate capacity to inhibit the activity of carbohydrate-metabolizing enzymes, and to scavenge biologically relevant reactive species. IC25 values varying between 4.54 ± 0.81 and 66.73 ± 5.91 µg of dry extract/mL and between 53.74 ± 8.42 and 1737.96 ± 98.26 µg of dry extract/mL were obtained for α-glucosidase and aldose reductase, respectively. A weaker effect towards α-amylase activity was observed, with a maximum activity of the extracts not going beyond 33%, at the highest concentrations tested. Spirulina extracts showed generally better effects than those from F. vesiculosus. Similar results were observed concerning the antiradical capacity. In a general way, the extracts were able to intercept the in vitro-generated reactive species nitric oxide (NO) and superoxide anion (O2•−) radicals, with better results for O2•−scavenging with the spirulina samples (IC25 values of 67.16 and 122.84 µg of dry extract/mL). Chemically, similar pigment profiles were observed between spirulina supplements and the authenticated counterpart. However, fucoxanthin, the chemotaxonomic marker of brown seaweeds, was not found in F. vesiculosus samples, pointing to the occurrence of a degradation phenomenon before, during, or after raw material processing. Our findings can contribute to providing data to allow regulatory entities (e.g., EFSA and FDA) to better rule these products in a way that can benefit society. Full article
Show Figures

Graphical abstract

20 pages, 1033 KiB  
Article
Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract
by Ibrahim M. Aziz, Rawan M. Alshalan, Humaira Rizwana, Fetoon Alkhelaiwi, Abdulaziz M. Almuqrin, Reem M. Aljowaie and Noorah A. Alkubaisi
Pharmaceuticals 2024, 17(1), 121; https://doi.org/10.3390/ph17010121 - 17 Jan 2024
Cited by 10 | Viewed by 3167
Abstract
For centuries, plants and their components have been harnessed for therapeutic purposes, with Ammi visnaga L. (Khella) being no exception to this rich tradition. While existing studies have shed light on the cytotoxic and antimicrobial properties of seed extracts, there remains a noticeable [...] Read more.
For centuries, plants and their components have been harnessed for therapeutic purposes, with Ammi visnaga L. (Khella) being no exception to this rich tradition. While existing studies have shed light on the cytotoxic and antimicrobial properties of seed extracts, there remains a noticeable gap in research about the antimicrobial, antioxidant, and anticancer potential of root extracts. This study seeks to address this gap by systematically examining methanol extracts derived from the roots of A. visnaga L. and comparing their effects with those of seed extracts specifically against breast cancer cells. Notably, absent from previous investigations, this study focuses on the comparative analysis of the antimicrobial, antioxidant, and anticancer activities of both root and seed extracts. The methanol extract obtained from A. visnaga L. seeds demonstrated a notably higher level of total phenolic content (TPC) than its root counterpart, measuring 366.57 ± 2.86 and 270.78 ± 2.86 mg GAE/g dry weight of the dry extract, respectively. In the evaluation of antioxidant activities using the DPPH method, the IC50 values for root and seed extracts were determined to be 193.46 ± 17.13 μg/mL and 227.19 ± 1.48 μg/mL, respectively. Turning our attention to cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231), both root and seed extracts displayed similar cytotoxic activities, with IC50 values of 92.45 ± 2.14 μg/mL and 75.43 ± 2.32 μg/mL, respectively. Furthermore, both root and seed extracts exhibited a noteworthy modulation of gene expression, upregulating the expression of caspase and Bax mRNA levels while concurrently suppressing the expression of anti-apoptotic genes (Bcl-xL and Bcl-2), thereby reinforcing their potential as anticancer agents. A. visnaga L. seed extract outperforms the root extract in antimicrobial activities, exhibiting lower minimum inhibitory concentrations (MICs) of 3.81 ± 0.24 to 125 ± 7.63 μg/mL. This highlights the seeds’ potential as potent antibacterial agents, expanding their role in disease prevention. Overall, this study underscores the diverse therapeutic potentials of A. visnaga L. roots and seeds, contributing to the understanding of plant-derived extracts in mitigating disease risks. Full article
(This article belongs to the Special Issue Therapeutic Potential of Natural Products in Internal Diseases)
Show Figures

Figure 1

13 pages, 2259 KiB  
Article
Environmental and Anthropogenic Influences on Coliform Concentrations in the Octopus insularis Production Chain in the Veracruz Reef System, Gulf of Mexico
by Sarai Acuña-Ramírez, María de Lourdes Jiménez-Badillo, Gabriela Galindo-Cortes, Angel Marval-Rodríguez, María del Refugio Castañeda-Chávez, Christian Reyes-Velázquez, Hectorina Rodulfo-Carvajal and Marcos De Donato-Capote
Animals 2023, 13(19), 3049; https://doi.org/10.3390/ani13193049 - 28 Sep 2023
Cited by 2 | Viewed by 1452
Abstract
Coliforms are relatively common in aquatic environments, but their concentrations can be increased by environmental changes and anthropogenic activities, thus impacting fisheries resources. To determine the microbiological quality in the octopus production chain (capture, post-capture, processing and commercialization), total (TC) and fecal (FC) [...] Read more.
Coliforms are relatively common in aquatic environments, but their concentrations can be increased by environmental changes and anthropogenic activities, thus impacting fisheries resources. To determine the microbiological quality in the octopus production chain (capture, post-capture, processing and commercialization), total (TC) and fecal (FC) coliforms were quantified in sea water, fresh octopus, fresh water, ice and octopus in two presentations: packed in ice and boiled. Samples came from fishing zones Enmedio, Chopa and La Gallega at the Veracruz Reef System (VRS) during dry, rainy and windy seasons. The coliforms were determined using the most probable number technique (MPN). The most relevant results indicated that octopus packed in ice coming from the commercialization stage had FC levels >540 MPN/100 g, which exceeded the permissible limits (230 MPN/100 g). Therefore, these products present a risk for human consumption. Differences in FC were observed in octopuses between the three fishing zones (H = 8.697; p = 0.0129) and among the three climatic seasons, increasing during the rainy season, highlighting La Gallega with 203.33 ± 63 MPN (H = 7.200; p = 0.0273). The results provide evidence of the environmental and anthropogenic influences on coliform concentrations and the urgent need to implement an efficient cold chain throughout octopus production stages with adequate handling practices to reverse this situation. Full article
(This article belongs to the Special Issue Assessment and Management of Cephalopod Fisheries and Ecosystems)
Show Figures

Graphical abstract

25 pages, 8458 KiB  
Article
The Taconnaz Rockfall (Mont-Blanc Massif, European Alps) of November 2018: A Complex and At-Risk Rockwall-Glacier-Torrent Morphodynamic Continuum
by Ludovic Ravanel, Pierre-Allain Duvillard, Laurent Astrade, Thierry Faug, Philip Deline, Johan Berthet, Maëva Cathala, Florence Magnin, Alexandre Baratier and Xavier Bodin
Appl. Sci. 2023, 13(17), 9716; https://doi.org/10.3390/app13179716 - 28 Aug 2023
Cited by 4 | Viewed by 5360
Abstract
The glacial and torrential basin of Taconnaz (Mont-Blanc massif, France) dominates the Chamonix valley. It is one of the major paths for snow avalanches in the Alps, often triggered by serac falls from the Taconnaz glacier. On 24 November 2018, the basin’s multi-risk [...] Read more.
The glacial and torrential basin of Taconnaz (Mont-Blanc massif, France) dominates the Chamonix valley. It is one of the major paths for snow avalanches in the Alps, often triggered by serac falls from the Taconnaz glacier. On 24 November 2018, the basin’s multi-risk nature was further accentuated by a new type of hazard with a rockfall triggered at c. 2700 m a.s.l. It travelled down over a distance of 1.85 km and stopped 165 m away from the construction site of a micro-hydroelectric power station. We studied the triggering conditions at the permafrost lower limit, the effects of the supra-glacial path on the flow patterns, and the fate of the scar and the deposit on torrential activity. By comparing a pre-event Structure from Motion model with a post-event LiDAR model, we estimated the volume of the scar to be 42,900 m3 (±5%). A numerical model was employed to simulate the rapid runout. It revealed the complexity of the flow, attributed to the sequestration of a part of the deposit in crevasses, the incorporation of a significant volume of ice resulting in a transition from a dry granular flow to a mud-like flow, and the presence of numerous deposit zones. Subsequent monitoring of the area after the event allowed for the documentation of the scar’s evolution, including a landslide, as well as the progressive degradation and evacuation of the deposit by the torrent without producing debris flow. The study of the triggering factors indicated glacial retreat as the probable main cause, assisted by the melting of ice lenses left by the permafrost disappearance. Finally, we present replicable methods for managing risks at the site following the event. This event improves the understanding of cascading processes that increasingly impact Alpine areas in the context of climate change. Full article
Show Figures

Figure 1

8 pages, 225 KiB  
Communication
The Little Ice Age and the Fall of the Ming Dynasty: A Review
by Ka-wai Fan
Climate 2023, 11(3), 71; https://doi.org/10.3390/cli11030071 - 17 Mar 2023
Cited by 5 | Viewed by 24794
Abstract
Based on the climate proxy data, several recent studies have concluded that the Ming dynasty’s reign in China coincided with the Little Ice Age, a global crisis. In response, scholars have published several reports in recent years addressing this topic. This paper presents [...] Read more.
Based on the climate proxy data, several recent studies have concluded that the Ming dynasty’s reign in China coincided with the Little Ice Age, a global crisis. In response, scholars have published several reports in recent years addressing this topic. This paper presents a comprehensive overview of the current research findings in English regarding this subject and identifies existing research gaps. The author proposes that the impact of climate on different regions during the late Ming period remains largely underexplored. Furthermore, scholars must exercise caution when assuming that adverse climatic conditions uniformly impacted the Ming empire during the Little Ice Age. This paper also highlights the use of simplistic models by scholars linking cold and dry climates to crop failure, floods, droughts, population decline, and other factors. However, any straightforward models that presume causal determination risk ignoring historical facts. Full article
Back to TopTop