Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Methanol Roots and Seeds Extracts of A. visnaga L.
2.2. Antioxidant Activity
2.2.1. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.2.2. DPPH and ABTS Radical Scavenging Activity
2.3. Cytotoxic Activity
2.4. Effects of A. visnaga L., Root and Seeds Extracts on MCF-7 and MDA-MB-231 Induced Apoptosis Signaling
2.5. Antibacterial Activity of Roots and Seeds of A. visnaga L. Extracts
3. Discussion
4. Materials and Methods
4.1. A. visnaga L. Root and Seeds Extract Preparation
4.2. Determination of Phytochemicals from the Methanol Roots and Seeds Extracts of A. visnaga L.
4.3. Antioxidant Activity
4.3.1. Analysis of TPC
4.3.2. Analysis of TFC
4.3.3. DPPH Scavenging Assay
4.3.4. ABTS Assay
4.4. Cell Culture and Cytotoxicity Assays
4.5. Apoptosis Coding Genes Assay
4.6. Antibacterial Activity
4.6.1. Microbial Strain
4.6.2. Disc Diffusion Method
4.6.3. Determination of MIC and MBC
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Paz, J.E.W.; Contreras, C.R.; Munguía, A.R.; Aguilar, C.N.; Inungaray, M.L.C. Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Braz. J. Microbiol. 2018, 49, 656–661. [Google Scholar] [CrossRef]
- Bourais, I.; Elmarrkechy, S.; Taha, D.; Mourabit, Y.; Bouyahya, A.; El Yadini, M.; Machich, O.; El Hajjaji, S.; El Boury, H.; Dakka, N. A Review on Medicinal Uses, Nutritional Value, and Antimicrobial, Antioxidant, Anti-Inflammatory, Antidiabetic, and Anticancer Potential Related to Bioactive Compounds of J. regia. Food Rev. Int. 2022, 39, 6199–6249. [Google Scholar] [CrossRef]
- Hashem, S.; Ta, A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother. 2022, 150, 113054. [Google Scholar] [CrossRef] [PubMed]
- Bhilkar, P.; Bodhne, A.; Yerpude, S.; Madankar, R.; Somkuwar, S.; Chaudhary, A.; Lambat, A.; Desimone, M.; Sharma, R.; Chaudhary, R. Phyto-derived metal nanoparticles: Prominent tool for biomedical applications. OpenNano 2023, 14, 100192. [Google Scholar] [CrossRef]
- Gahtori, R.; Tripathi, A.H.; Kumari, A.; Negi, N.; Paliwal, A.; Tripathi, P.; Joshi, P.; Rai, R.C.; Upadhyay, S.K. Anticancer plant-derivatives: Deciphering their oncopreventive and therapeutic potential in molecular terms. Future J. Pharm. Sci. 2023, 9, 14. [Google Scholar] [CrossRef]
- Goel, H.; Kumar, R.; Tanwar, P.; Upadhyay, T.K.; Khan, F.; Pandey, P.; Kang, S.; Moon, M.; Choi, J.; Choi, M. Unraveling the therapeutic potential of natural products in the prevention and treatment of leukemia. Biomed. Pharmacother. 2023, 160, 114351. [Google Scholar] [CrossRef]
- Nirmala, N.S.; Krishnan, N.B.; Vivekanandan, V.; Thirugnanasambantham, K. Anti-inflammatory Potential of Lead Compounds and Their Derivatives from Medicinal Plants. In Bioprospecting of Tropical Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1199–1232. [Google Scholar]
- Adedokun, K.A.; Imodoye, S.O.; Bello, I.O.; Lanihun, A.-A. Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery. In Phytochemistry, Computational Tools and Databases in Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 393–455. [Google Scholar]
- Hashim, S.; Jan, A.; Marwat, K.B.; Khan, M.A. Phytochemistry and medicinal properties of Ammi visnaga (Apiacae). Pak. J. Bot. 2014, 46, 861–867. [Google Scholar]
- Oakeley, H. Modern Medicines from Plants: Botanical Histories of Some of Modern Medicine’s Most Important Drugs; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Khalil, N.; Bishr, M.; Desouky, S.; Salama, O. Ammi visnaga, L. a potential medicinal plant: A review. Molecules 2020, 25, 301. [Google Scholar] [CrossRef] [PubMed]
- Saad, B.; Azaizeh, H.; Said, O. Tradition and perspectives of Arab herbal medicine: A review. Evid.-Based Complement. Altern. Med. 2005, 2, 475–479. [Google Scholar] [CrossRef]
- Patel, K.; Rahman, M.; Kumar, V.; Verma, A.; Patel, D.K. Visnagin: A New Perspective of Medicinal Importance, Physiological Functions, Phytochemistry, Pharmacology and Analytical Aspects of Active Phytoconstituents of Ammi visnaga. Nat. Prod. J. 2019, 9, 197–206. [Google Scholar] [CrossRef]
- Golkar, P.; Akbari, R.; Bazarganipour, M.; Javed, R. Biochemical and phytochemical responses of Ammi visnaga L. (Apiaceae) callus culture elicited by SiO2 and graphene Oxide-SiO2 nanoparticles. Plant Physiol. Biochem. 2023, 200, 107741. [Google Scholar] [CrossRef] [PubMed]
- Bahmanpoor, N.; Hamdi, S.M.M.; Ataee, R. Real-Time-RT PCR Study of Extract of Ammi visnaga on Pseudomonas aeruginosa Exo A and Exo S Genes Expression. Iran. J. Med. Microbiol. 2023, 17, 186–193. [Google Scholar] [CrossRef]
- Mohamed, Z.; Abdel-Motaal, F.F. Antioxidant and Antifungal Activities of Ammi visnaga Aqueous Extract Prevent Oxidative Stress Biomarkers and DNA Damage in Experimental Rats Infected with Aspergillus glaucus. Biol. Bull. 2023, 50, 1125–1142. [Google Scholar] [CrossRef]
- Elgamal, M.H.A.; Shalaby, N.M.; Duddeck, H.; Hiegemann, M. Coumarins and coumarin glucosides from the fruits of Ammi majus. Phytochemistry 1993, 34, 819–823. [Google Scholar] [CrossRef]
- Kamal, F.Z.; Stanciu, G.D.; Lefter, R.; Cotea, V.V.; Niculaua, M.; Ababei, D.C.; Ciobica, A.; Ech-Chahad, A. Chemical composition and antioxidant activity of Ammi visnaga L. essential oil. Antioxidants 2022, 11, 347. [Google Scholar] [CrossRef]
- Feirouz, B.; Salima, K.-G. Antibacterial activity and chemical composition of Ammi visnaga L. essential oil collected from Boumerdes (Algeria) during three periods of the plant growth. J. Essent. Oil Bear. Plants 2014, 17, 1317–1328. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Benkhaira, N.; Al-Mijalli, S.H.; Mrabti, H.N.; Abdnim, R.; Abdallah, E.M.; Jeddi, M.; Bnouham, M.; Lee, L.-H.; Ardianto, C. Phytochemical analysis and evaluation of antimicrobial, antioxidant, and antidiabetic activities of essential oils from Moroccan medicinal plants: Mentha suaveolens, Lavandula stoechas, and Ammi visnaga. Biomed. Pharmacother. 2023, 164, 114937. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Khan, Z.A.; Assiri, A.M.; Al-Afghani, H.M.; Maghrabi, T.M. Inhibition of oxalate nephrolithiasis with Ammi visnaga (AI-Khillah). Int. Urol. Nephrol. 2001, 33, 605–608. [Google Scholar] [CrossRef]
- Yadav, R.D.; Jain, S.; Alok, S.; Mahor, A.; Bharti, J.P.; Jaiswal, M. Herbal plants used in the treatment of urolithiasis: A review. IJPSR 2011, 2, 1412–1420. [Google Scholar]
- Kilicaslan, I.; Coskun, S. Spontaneous stone passage: Is it Ammi visnaga effect? Urol. Res. 2012, 40, 799–800. [Google Scholar] [CrossRef]
- Jouad, H.; Maghrani, M.; Eddouks, M. Hypoglycemic effect of aqueous extract of Ammi visnaga in normal and streptozotocin-induced diabetic rats. J. Herb. Pharmacother. 2002, 2, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, A.M.; Zedan, T.H.; Gharb, L. Antibacterial and antifungal activities of Ammi visnaga extracts against pathogenic microorganisms. Iraqi J. Sci. 2011, 52, 30–36. [Google Scholar]
- Amin, J.N.; Murad, A.; Motasem, A.-M.; Ibrahem, S.R.; Ass’ad, J.M.; Ayed, A.M. Phytochemical screening and in-vitro evaluation of antioxidant and antimicrobial activities of the entire Khella plant (Ammi visnaga. L.) a member of palestinian flora. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 137–143. [Google Scholar]
- Batanouny, K.; Abou Tabl, S.; Shabana, M.S. Wild Medicinal Plants in Egypt (An Inventory to Support Onservation and Sustainable Use). Cairo Egypt Palm Press C 1999, 154, 1–48. [Google Scholar]
- Farnsworth, N.R.; Krause, E.C.; Bolton, J.L.; Pauli, G.F.; van Breemen, R.B.; Graham, J.G. The university of Illinois at Chicago/National institutes of health center for botanical dietary supplements research for women’s health: From plant to clinical use. Am. J. Clin. Nutr. 2008, 87, 504S–508S. [Google Scholar] [CrossRef]
- Lee, J.-K.; Jung, J.-S.; Park, S.-H.; Park, S.-H.; Sim, Y.-B.; Kim, S.-M.; Ha, T.-S.; Suh, H.-W. Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells. Arch. Pharmacal Res. 2010, 33, 1843–1850. [Google Scholar] [CrossRef]
- Kwon, M.-S.; Lee, J.-K.; Park, S.-H.; Sim, Y.-B.; Jung, J.-S.; Won, M.-H.; Kim, S.-M.; Suh, H.-W. Neuroprotective effect of visnagin on kainic acid-induced neuronal cell death in the mice hippocampus. Korean J. Physiol. Pharmacol. 2010, 14, 257–263. [Google Scholar] [CrossRef]
- Arafah, M.W.; Almutairi, B.; Al-Zharani, M.; Alkahtane, A.A.; Al-Otibi, F.O.; Ali, D.; Alghamdi, W.M.; Alanazi, I.S.; Aljarba, N.H.; Alhoshani, N.M. The protective effect of Ammi visnaga extract against human hepatic cancer. J. King Saud Univ.-Sci. 2021, 33, 101540. [Google Scholar] [CrossRef]
- Ferreira, E.; Cronjé, M.J. Selection of suitable reference genes for quantitative real-time PCR in apoptosis-induced MCF-7 breast cancer cells. Mol. Biotechnol. 2012, 50, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Yapasert, R.; Banjerdpongchai, R. Gambogic Acid and Piperine Synergistically Induce Apoptosis in Human Cholangiocarcinoma Cell via Caspase and Mitochondria-Mediated Pathway. Evid.-Based Complement. Altern. Med. 2022, 2022, 6288742. [Google Scholar] [CrossRef]
- Bhadra, K. A Mini Review on Molecules Inducing Caspase-Independent Cell Death: A New Route to Cancer Therapy. Molecules 2022, 27, 6401. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.S.; Gupta, G.; Afzal, M.; Alqahtani, S.M.; Samuel, V.P.; Kazmi, I.; Alzarea, S.I.; Saleem, S.; Dureja, H.; Singh, S.K. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol.-Res. Pract. 2023, 252, 154908. [Google Scholar] [CrossRef] [PubMed]
- Hashem, R.; Al-Obaidi, Z.F.; Samawi, F.T.; Baher, H. Analysis of anti-apoptotic protein (Bcl-xl) levels and mRNA expression in infertile patients. Afr. J. Reprod. Health 2022, 26, 63–71. [Google Scholar] [PubMed]
- Bernal, C.; Otalora, A.; Cañas, A.; Barreto, A.; Prieto, K.; Montecino, M.; Rojas, A. Regulatory Role of the RUNX2 Transcription Factor in Lung Cancer Apoptosis. Int. J. Cell Biol. 2022, 2022, 5198203. [Google Scholar] [CrossRef]
- Lopez, A.; Reyna, D.E.; Gitego, N.; Kopp, F.; Zhou, H.; Miranda-Roman, M.A.; Nordstrøm, L.U.; Narayanagari, S.-R.; Chi, P.; Vilar, E. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat. Commun. 2022, 13, 1199. [Google Scholar] [CrossRef] [PubMed]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide research trends on medicinal plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef] [PubMed]
- Réthy, B.; Csupor-Löffler, B.; Zupkó, I.; Hajdú, Z.; Máthé, I.; Hohmann, J.; Rédei, T.; Falkay, G. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part I. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, W.; Kumari, A.; Rahman, N.; Mandave, P. Anticancer activities of plant secondary metabolites: Rice callus suspension culture as a new paradigm. Rice Sci. 2021, 28, 13–30. [Google Scholar] [CrossRef]
- Günaydin, K.; Beyazit, N. The chemical investigations on the ripe fruits of Ammi visnaga (Lam.) Lamarck growing in Turkey. Nat. Prod. Res. 2004, 18, 169–175. [Google Scholar] [CrossRef]
- Zrira, S.; Elamrani, A.; Pellerin, P.; Bessière, J.-M.; Menut, C.; Benjilali, B. Isolation of Moroccan Ammi visnaga oil: Comparison between hydrodistillation, steam distillation and supercritical fluid extraction. J. Essent. Oil Bear. Plants 2008, 11, 30–35. [Google Scholar] [CrossRef]
- Jabboury, Z.E.; Ousaaid, D.; Gašić, U.; Janaćković, P.; Stevanovic, Z.D.; Kolašinac, S.; Benjelloun, M.; Ghadraoui, L.E. Unraveling the Phytochemical Profile Variability and Antioxidant Activities of Different Parts of Ammi visnaga (L) Collected from Taounate Region. Chem. Afr. 2023, 1–7. [Google Scholar] [CrossRef]
- Soro, K.; Sabri, L.; Amalich, S.; Khabbal, Y.; Zair, T. Chemical composition of Moroccan Ammi visnaga L. (Lam.) and antibacterial activity of its essential oil against extended-spectrum beta-lactamase-producing and not producing bacteria. Phytotherapie 2015, 13, 168–175. [Google Scholar] [CrossRef]
- Samuel, A.D.; Tit, D.M.; Melinte, C.E.; Iovan, C.; Purza, L.; Gitea, M.; Bungau, S. Enzymological and physicochemical evaluation of the effects of soil management practices. Rev. Chim. 2017, 68, 2243–2247. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.; Tit, D.M.; Melinte, C.E.; Purza, L.; Badea, G.E. Effects of long term application of organic and mineral fertilizers on soil enzymes. Rev. Chim. 2018, 69, 2608–2612. [Google Scholar] [CrossRef]
- Osama, S.; El Sherei, M.; Al-Mahdy, D.A.; Bishr, M.; Salama, O. Effect of salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Ind. Crops Prod. 2019, 134, 1–10. [Google Scholar] [CrossRef]
- Tan, K.W.; Kassim, M.J. A correlation study on the phenolic profiles and corrosion inhibition properties of mangrove tannins (Rhizophora apiculata) as affected by extraction solvents. Corros. Sci. 2011, 53, 569–574. [Google Scholar] [CrossRef]
- Aourabi, S.; Driouch, M.; Sfaira, M.; Mahjoubi, F.; Hammouti, B.; Emran, K. Influence of phenolic compounds on antioxidant and anticorrosion activities of Ammi visnaga extracts obtained ultrasonically in three solvent systems. Int. J. Electrochem. Sci. 2019, 14, 6376–6393. [Google Scholar] [CrossRef]
- Isleroglu, H.; Turker, I. Ultrasonic-assisted extraction and thermal stability of phytochemicals from fenugreek leaves. J. Appl. Res. Med. Aromat. Plants 2022, 30, 100390. [Google Scholar] [CrossRef]
- Aourabi, S.; Driouch, M.; Ammor, K.; Sfaira, M.; Touhami, M.E.; Mahjoubi, F. Evaluation of anticorrosion and antioxidant activities of ethanolic extract of Ammi visnaga. Anal Bioanal Electrochem. 2018, 10, 912–929. [Google Scholar]
- Imane, B.; Ouafa, R.; Rachid, D. Antimicrobial and antioxidant activity of Ammi visnaga (L) phenolic extracts and their effects on planktonic and biofilm growth of food spoilage Bacillus cereus. Int. J. Biosci. 2016, 9, 32–47. [Google Scholar]
- El Karkouri, J.; Drioiche, A.; Soro, A.; Ailli, A.; Benhlima, N.; Bouzoubaa, A.; El Makhoukhi, F.; Oulhaj, H.; Elombo, F.K.; Zair, T. Identification and antioxidant activity of Ammi Visnaga L. Polyphenols from the Middle Atlas in Morocco. Mediterr. J. Chem. 2020, 10, 649. [Google Scholar] [CrossRef]
- Shi, J.; Nawaz, H.; Pohorly, J.; Mittal, G.; Kakuda, Y.; Jiang, Y. Extraction of polyphenolics from plant material for functional foods—Engineering and technology. Food Rev. Int. 2005, 21, 139–166. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K.; Bhargav, V.K. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J. Food Sci. Technol. 2014, 51, 2568–2575. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef]
- Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective medicinal plant in cancer treatment, part 2: Review study. J. Evid.-Based Complement. Altern. Med. 2017, 22, 982–995. [Google Scholar] [CrossRef]
- Sharaf, M.; El-Ansari, M.; Saleh, N. New flavonoids from Avicennia marina. Fitoterapia 2000, 71, 274–277. [Google Scholar] [CrossRef]
- Behbahani, M.; Sadeghi-aliabadi, H. Evalution of cytotoxic effect of some extracts of Avicennia marina against MDA-MB 231 human breast cancer cell line. Pharm. Sci. 2010, 16, 229–238. [Google Scholar]
- Park, W.; Wei, S.; Kim, B.-S.; Kim, B.; Bae, S.-J.; Chae, Y.C.; Ryu, D.; Ha, K.-T. Diversity and complexity of cell death: A historical review. Exp. Mol. Med. 2023, 55, 1573–1594. [Google Scholar] [CrossRef]
- Lossi, L. The concept of intrinsic versus extrinsic apoptosis. Biochem. J. 2022, 479, 357–384. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Qi, L.; Li, L.; Li, Y. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov. 2020, 6, 112. [Google Scholar] [CrossRef]
- Wang, X.; Peng, P.; Pan, Z.; Fang, Z.; Lu, W.; Liu, X. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells. Biol. Res. 2019, 52, 34. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.; Burgess, S.; Toombs-Ruane, L.; Benschop, J.; Marshall, J.; French, N. Combining mutation and horizontal gene transfer in a within-host model of antibiotic resistance. Math. Biosci. 2021, 339, 108656. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem. Toxicol. 2008, 46, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Satrani, B.; Farah, A.; Fechtal, M.; Talbi, M.; Boumari, M. Chemical composition and antimicrobial and antifungal activities of the essential oil of Ammi visnaga (L.) Lam. Acta. Bot. Gal 2004, 151, 65–71. [Google Scholar] [CrossRef]
- Abebe, M.S.; Asres, K.; Bekuretsion, Y.; Abebe, A.; Bikila, D.; Seyoum, G. Sub-chronic toxicity of ethanol leaf extract of Syzygium guineense on the biochemical parameters and histopathology of liver and kidney in the rats. Toxicol. Rep. 2021, 8, 822–828. [Google Scholar] [CrossRef]
- Ndayambaje, M.; Wahnou, H.; Sow, M.; Chgari, O.; Habyarimana, T.; Karkouri, M.; Limami, Y.; Naya, A.; Oudghiri, M. Exploring the multifaceted effects of Ammi visnaga: Subchronic toxicity, antioxidant capacity, immunomodulatory, and anti-inflammatory activities. J. Toxicol. Environ. Health Part A 2023, 87, 150–165. [Google Scholar] [CrossRef]
- Koriem, K.M.; Arbid, M.S.; El-Attar, M.A. Acute and subacute toxicity of Ammi visnaga on rats. Interdiscip. Toxicol. 2019, 12, 26–35. [Google Scholar] [CrossRef]
- Al-Hadhrami, R.M.S.; Hossain, M.A. Evaluation of antioxidant, antimicrobial and cytotoxic activities of seed crude extracts of Ammi majus grown in Oman. Egypt. J. Basic Appl. Sci. 2016, 3, 329–334. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Apple peels as a value-added food ingredient. J. Agric. Food Chem. 2003, 51, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A.; Gomez, J.; Vattuone, M. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Tian, M.; Wu, X.; Lu, T.; Zhao, X.; Wei, F.; Deng, G.; Zhou, Y. Phytochemical analysis, antioxidant, antibacterial, cytotoxic, and enzyme inhibitory activities of Hedychium flavum rhizome. Front. Pharmacol. 2020, 11, 572659. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, M.; Liu, F.; Zeng, S.; Hu, J. Antioxidants in volatile Maillard reaction products: Identification and interaction. LWT-Food Sci. Technol. 2013, 53, 22–28. [Google Scholar] [CrossRef]
- Kis, B.; Pavel, I.Z.; Avram, S.; Moaca, E.A.; Herrero San Juan, M.; Schwiebs, A.; Radeke, H.H.; Muntean, D.; Diaconeasa, Z.; Minda, D. Antimicrobial activity, in vitro anticancer effect (MCF-7 breast cancer cell line), antiangiogenic and immunomodulatory potentials of Populus nigra L. buds extract. BMC Complement. Med. Ther. 2022, 22, 74. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell viability assays. In Assay Guidance Manual [Internet]; Eli Lilly & Company: Indianapolis, IN, USA; National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2016; pp. 1–31. [Google Scholar]
- Sukumaran, A.; Sweety, V.K.; Vikas, B.; Joseph, B. Cytotoxicity and Cell Viability Assessment of Biomaterials. In Cytotoxicity-Understanding Cellular Damage and Response; Intechopen: London, UK, 2023. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Alotaibi, M.R.; Hassan, Z.K.; Al-Rejaie, S.S.; Alshammari, M.A.; Almutairi, M.M.; Alhoshani, A.R.; Alanazi, W.A.; Hafez, M.M.; Al-Shabanah, O.A. Characterization of apoptosis in a breast cancer cell line after IL-10 silencing. Asian Pac. J. Cancer Prev. APJCP 2018, 19, 777. [Google Scholar]
- Honarpisheh, M.; Desai, J.; Marschner, J.A.; Weidenbusch, M.; Lech, M.; Vielhauer, V.; Anders, H.-J.; Mulay, S.R. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis. Biosci. Rep. 2016, 36, e00425. [Google Scholar] [CrossRef]
- Buskaran, K.; Bullo, S.; Hussein, M.Z.; Masarudin, M.J.; Mohd Moklas, M.A.; Fakurazi, S. Anticancer Molecular Mechanism of Protocatechuic Acid Loaded on Folate Coated Functionalized Graphene Oxide Nanocomposite Delivery System in Human Hepatocellular Carcinoma. Materials 2021, 14, 817. [Google Scholar] [CrossRef]
- Jiang, Q.; Yang, M.; Qu, Z.; Zhou, J.; Zhang, Q. Resveratrol enhances anticancer effects of paclitaxel in HepG2 human liver cancer cells. BMC Complement. Altern. Med. 2017, 17, 477. [Google Scholar] [CrossRef]
- Salem, N.; Kefi, S.; Tabben, O.; Ayed, A.; Jallouli, S.; Feres, N.; Hammami, M.; Khammassi, S.; Hrigua, I.; Nefisi, S. Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards. Ind. Crops Prod. 2018, 124, 115–125. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Valan Arasu, M.; Vijayaraghavan, P.; Esmail, G.A.; Duraipandiyan, V.; Kim, Y.O.; Kim, H.; Kim, H.-J. Probiotic and antioxidant potential of Lactobacillus reuteri LR12 and Lactobacillus lactis LL10 isolated from pineapple puree and quality analysis of pineapple-flavored goat milk yoghurt during storage. Microorganisms 2020, 8, 1461. [Google Scholar] [CrossRef]
- Basri, D.F.; Sandra, V. Synergistic interaction of methanol extract from Canarium odontophyllum Miq. Leaf in combination with oxacillin against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591. Int. J. Microbiol. 2016, 2016, 5249534. [Google Scholar] [CrossRef]
- Aljeldah, M.M.; Yassin, M.T.; Mostafa, A.A.-F.; Aboul-Soud, M.A. Synergistic Antibacterial Potential of Greenly Synthesized Silver Nanoparticles with Fosfomycin against Some Nosocomial Bacterial Pathogens. Infect. Drug Resist. 2022, 16, 125–142. [Google Scholar] [CrossRef] [PubMed]
Peak | Compound Name | Retention Time (min) | Peak Area % | Area |
---|---|---|---|---|
1 | 1-Butoxy-2-Propanol Acetate | 5.04 | 5.36 | 14,009 |
2 | 5-Methyl-2-Heptanamine | 6.97 | 8.22 | 21,484 |
3 | (-)-Curcuhydroquinone | 9.39 | 9.03 | 31,466 |
4 | Di-Isodecyl Phthalate | 9.76 | 3.66 | 9559 |
5 | 2,5-Dimethyl-5-Nitrohexanal | 12.56 | 10.70 | 27,988 |
6 | 3-Methyl-2h-Cyclohepta[B]Furan | 14.98 | 2.85 | 59,272 |
7 | Angecin | 19.24 | 10.75 | 223,303 |
8 | 9-Octadecenoic Acid | 20.52 | 8.11 | 168,542 |
9 | 6-Methoxy-2-Oxo-(2h)-Furo[2,3-H]-1-Benzopyran | 21.60 | 1.54 | 32,007 |
10 | Docosanolide | 22.32 | 73.39 | 1,524,375 |
Peak | Compound Name | Retention Time (min) | Peak Area % | Area |
---|---|---|---|---|
1 | Camphor | 9.59 | 0.68 | 151,747 |
2 | 4-Methyl-1-Methyl 3-Cyclohexen-1-Ol | 10.12 | 0.75 | 167,952 |
3 | 3-Cyclohexene-1-Methanol | 10.35 | 4.04 | 908,773 |
4 | 4-Phenyl2-Butanone | 11.00 | 3.34 | 750,682 |
5 | Isocaryophyllen | 13.76 | 0.51 | 114,170 |
6 | Trans-α-Bergamotene | 13.87 | 1.14 | 256,370 |
7 | 3-Methyl-2h-Cyclohepta[B]Furan | 14.98 | 2.85 | 59,272 |
8 | 2-Benzoyl-3-Methyl-2,3-Diaza | 18.17 | 54.60 | 450,1224 |
9 | 1-Methyl-5-Phenyltetrazole | 18.34 | 1.92 | 158,385 |
10 | 2-Methoxy-4-Propyl-Phenol | 18.54 | 24.96 | 2,057,664 |
11 | Neophytadiene | 19.09 | 0.510 | 42,337 |
12 | Angecin | 19.24 | 5.66 | 466,675 |
13 | 6-Octadecenoic Acid | 22.22 | 10.68 | 880,313 |
Bacterium/Dilution | Positive Control | 500 μg/mL | 250 μg/mL | 125 μg/mL | 62.5 μg/mL | MIC (μg/mL) | MBC (μg/mL) |
---|---|---|---|---|---|---|---|
S. aureus (MTCC 29213) | 25 ± 1.24 | 21 ± 1.62 | 18 ± 0.64 | 14 ± 1.38 | 12 ± 1.36 | 7.81 ± 1.74 | 15.62 ± 3.84 |
S. epidermidis (MTCC 12228) | 26 ± 1.14 | 22 ± 2.34 | 19 ± 2.36 | 14 ± 0.98 | 12 ± 1.39 | 7.81 ± 0.54 | 15.62 ± 1.83 |
B. subtilis (MTCC 10400) | 24 ± 0.42 | 21 ± 3.93 | 19 ± 1.44 | 13 ± 1.65 | 11 ± 1.69 | 15.62 ± 1.43 | 31.25 ± 1.23 |
E. coli (ATCC 25922) | 25 ± 2.15 | 20 ± 1.64 | 15 ± 1.66 | 12 ± 2.37 | 6 ± 0.39 | 31.25 ± 1.23 | 62.5 ± 3.76 |
K. pneumoniae (MTCC 13883) | 22 ± 1.35 | 17 ± 132 | 13 ± 1.25 | 8 ± 1.45 | 6 ± 0.93 | 31.25 ± 1.45 | 62.5 ± 3.53 |
P. aeruginosa (MTCC 27853) | 28 ± 2.27 | 19 ± 0.64 | 14 ± 0.44 | 11 ± 1.27 | 5 ± 0.83 | 62.5 ± 3.53 | 125 ± 5.69 |
Bacterium/Dilution | Positive Control | 500 μg/mL | 250 μg/mL | 125 μg/mL | 62.5 μg/mL | MIC (μg/mL) | MBC (μg/mL) |
---|---|---|---|---|---|---|---|
S. aureus (MTCC 29213) | 25 ± 1.24 | 18 ± 2.65 | 16 ± 1.33 | 12 ± 2.36 | 8 ± 0.69 | 3.81 ± 0.24 | 7.81 ± 2.43 |
S. epidermidis (MTCC 12228) | 26 ± 1.14 | 23 ± 0.98 | 18 ± 1.36 | 12 ± 1.93 | 8 ± 0.76 | 3.81 ± 0.28 | 7.81 ± 1.34 |
B. subtilis (MTCC 10400) | 24 ± 0.42 | 20 ± 1.35 | 12 ± 1.95 | 10 ± 0.64 | 9 ± 0.36 | 15.63 ± 1.63 | 31.25 ± 2.65 |
E. coli (ATCC 25922) | 25 ± 2.15 | 18 ± 0.59 | 14 ± 1.25 | 10 ± 1.44 | 8 ± 0.35 | 50 ± 5.73 | 100 ± 3.57 |
K. pneumoniae (MTCC 13883) | 22 ± 1.35 | 18 ± 0.92 | 11 ± 0.84 | 9 ± 0.39 | 5 ± 0.23 | 125 ± 7.63 | 250 ± 5.66 |
P. aeruginosa (MTCC 27853) | 28 ± 2.27 | 17 ± 0.85 | 12 ± 0.37 | 9 ± 0.33 | 6 ± 0.25 | 31.25 ± 5.27 | 62.5 ± 4.65 |
Gene Name | Primers Sequence | Reference |
---|---|---|
Caspase-3 | F: 5′-GCTGGATGCCGTCTAGAGTC-3′ | [83] |
R: 5′-ATGTGTGGATGATGCTGCCA-3′ | ||
Caspase-8 | F: 5′-AGAAGAGGGTCATCCTGGGAGA-3′ | [84] |
R: 5′-TCAGGACTTCCTTCAAGGCTGC-3′ | ||
Caspase-9 | F: 5′-ATTGCACAGCACGTTCACAC-3′ | [83] |
R: 5′-TATCCCATCCCAGGAAGGCA-3′ | ||
Bax | F: 5′-GAGCTAGGGTCAGAGGGTCA-3′ | [83] |
R: 5′-CCCCGATTCATCTACCCTGC-3′ | ||
Bcl-2 | F: 5′-ACCTACCCAGCCTCCGTTAT-3′ | [83] |
R: 5′-GAACTGGGGGAGGATTGTGG-3′ | ||
Bcl-XL | F: 5′-CAGAGCTTTGAACAGGTAG-3′ | [85] |
R: 5′-GCTCTCGGGTGCTGTATTG-3′ | ||
R: 5′-GGGCGGATTAGGGCTTCC-3′ | ||
GAPDH | F: 5′-CGGAGTCAACGGATTTGGTC-3′ | [86] |
R: 5′-AGCCTTCTCCATGGTCGTGA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, I.M.; Alshalan, R.M.; Rizwana, H.; Alkhelaiwi, F.; Almuqrin, A.M.; Aljowaie, R.M.; Alkubaisi, N.A. Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract. Pharmaceuticals 2024, 17, 121. https://doi.org/10.3390/ph17010121
Aziz IM, Alshalan RM, Rizwana H, Alkhelaiwi F, Almuqrin AM, Aljowaie RM, Alkubaisi NA. Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract. Pharmaceuticals. 2024; 17(1):121. https://doi.org/10.3390/ph17010121
Chicago/Turabian StyleAziz, Ibrahim M., Rawan M. Alshalan, Humaira Rizwana, Fetoon Alkhelaiwi, Abdulaziz M. Almuqrin, Reem M. Aljowaie, and Noorah A. Alkubaisi. 2024. "Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract" Pharmaceuticals 17, no. 1: 121. https://doi.org/10.3390/ph17010121
APA StyleAziz, I. M., Alshalan, R. M., Rizwana, H., Alkhelaiwi, F., Almuqrin, A. M., Aljowaie, R. M., & Alkubaisi, N. A. (2024). Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract. Pharmaceuticals, 17(1), 121. https://doi.org/10.3390/ph17010121