Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = drug-induced long QT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2132 KiB  
Article
From Sequence to Solution: Intelligent Learning Engine Optimization in Drug Discovery and Protein Analysis
by Jamal Raiyn, Adam Rayan, Saleh Abu-Lafi and Anwar Rayan
BioTech 2024, 13(3), 33; https://doi.org/10.3390/biotech13030033 - 1 Sep 2024
Viewed by 1608
Abstract
This study introduces the intelligent learning engine (ILE) optimization technology, a novel approach designed to revolutionize screening processes in bioinformatics, cheminformatics, and a range of other scientific fields. By focusing on the efficient and precise identification of candidates with desirable characteristics, the ILE [...] Read more.
This study introduces the intelligent learning engine (ILE) optimization technology, a novel approach designed to revolutionize screening processes in bioinformatics, cheminformatics, and a range of other scientific fields. By focusing on the efficient and precise identification of candidates with desirable characteristics, the ILE technology marks a significant leap forward in addressing the complexities of candidate selection in drug discovery, protein classification, and beyond. The study’s primary objective is to address the challenges associated with optimizing screening processes to efficiently select candidates across various fields, including drug discovery and protein classification. The methodology employed involves a detailed algorithmic process that includes dataset preparation, encoding of protein sequences, sensor nucleation, and optimization, culminating in the empirical evaluation of molecular activity indexing, homology-based modeling, and classification of proteins such as G-protein-coupled receptors. This process showcases the method’s success in multiple sequence alignment, protein identification, and classification. Key results demonstrate the ILE’s superior accuracy in protein classification and virtual high-throughput screening, with a notable breakthrough in drug development for assessing drug-induced long QT syndrome risks through hERG potassium channel interaction analysis. The technology showcased exceptional results in the formulation and evaluation of novel cancer drug candidates, highlighting its potential for significant advancements in pharmaceutical innovations. The findings underline the ILE optimization technology as a transformative tool in screening processes due to its proven effectiveness and broad applicability across various domains. This breakthrough contributes substantially to the fields of systems optimization and holds promise for diverse applications, enhancing the process of selecting candidate molecules with target properties and advancing drug discovery, protein classification, and modeling. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

16 pages, 5659 KiB  
Article
Advancing Cardiovascular Drug Screening Using Human Pluripotent Stem Cell-Derived Cardiomyocytes
by Jisun Oh, Oh-Bin Kwon, Sang-Wook Park, Jun-Woo Kim, Heejin Lee, Young-Kyu Kim, Eun Ji Choi, Haiyoung Jung, Dong Kyu Choi, Bae Jun Oh and Sang-Hyun Min
Int. J. Mol. Sci. 2024, 25(14), 7971; https://doi.org/10.3390/ijms25147971 - 21 Jul 2024
Cited by 6 | Viewed by 2793
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a promising tool for studying cardiac physiology and drug responses. However, their use is largely limited by an immature phenotype and lack of high-throughput analytical methodology. In this study, we developed a high-throughput testing [...] Read more.
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a promising tool for studying cardiac physiology and drug responses. However, their use is largely limited by an immature phenotype and lack of high-throughput analytical methodology. In this study, we developed a high-throughput testing platform utilizing hPSC-CMs to assess the cardiotoxicity and effectiveness of drugs. Following an optimized differentiation and maturation protocol, hPSC-CMs exhibited mature CM morphology, phenotype, and functionality, making them suitable for drug testing applications. We monitored intracellular calcium dynamics using calcium imaging techniques to measure spontaneous calcium oscillations in hPSC-CMs in the presence or absence of test compounds. For the cardiotoxicity test, hPSC-CMs were treated with various compounds, and calcium flux was measured to evaluate their effects on calcium dynamics. We found that cardiotoxic drugs withdrawn due to adverse drug reactions, including encainide, mibefradil, and cetirizine, exhibited toxicity in hPSC-CMs but not in HEK293-hERG cells. Additionally, in the effectiveness test, hPSC-CMs were exposed to ATX-II, a sodium current inducer for mimicking long QT syndrome type 3, followed by exposure to test compounds. The observed changes in calcium dynamics following drug exposure demonstrated the utility of hPSC-CMs as a versatile model system for assessing both cardiotoxicity and drug efficacy. Overall, our findings highlight the potential of hPSC-CMs in advancing drug discovery and development, which offer a physiologically relevant platform for the preclinical screening of novel therapeutics. Full article
Show Figures

Figure 1

15 pages, 2954 KiB  
Review
Facilitation of hERG Activation by Its Blocker: A Mechanism to Reduce Drug-Induced Proarrhythmic Risk
by Kazuharu Furutani
Int. J. Mol. Sci. 2023, 24(22), 16261; https://doi.org/10.3390/ijms242216261 - 13 Nov 2023
Cited by 5 | Viewed by 3669
Abstract
Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade [...] Read more.
Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade is a leading cause of long QT syndrome and potentially life-threatening arrhythmias, such as torsades de pointes. Conversely, hERG channel blockade is the mechanism of action of Class III antiarrhythmic agents in terminating ventricular tachycardia and fibrillation. In recent years, it has been recognized that less proarrhythmic hERG blockers with clinical potential or Class III antiarrhythmic agents exhibit, in addition to their hERG-blocking activity, a second action that facilitates the voltage-dependent activation of the hERG channel. This facilitation is believed to reduce the proarrhythmic potential by supporting the final repolarizing of action potentials. This review covers the pharmacological characteristics of hERG blockers/facilitators, the molecular mechanisms underlying facilitation, and their clinical significance, as well as unresolved issues and requirements for research in the fields of ion channel pharmacology and drug-induced arrhythmias. Full article
(This article belongs to the Special Issue Cardiac Arrhythmia: Molecular Mechanisms and Therapeutic Strategies)
Show Figures

Figure 1

20 pages, 5053 KiB  
Article
Inhibition of the hERG Potassium Channel by a Methanesulphonate-Free E-4031 Analogue
by Matthew V. Helliwell, Yihong Zhang, Aziza El Harchi, Christopher E. Dempsey and Jules C. Hancox
Pharmaceuticals 2023, 16(9), 1204; https://doi.org/10.3390/ph16091204 - 24 Aug 2023
Cited by 8 | Viewed by 2652
Abstract
hERG (human Ether-à-go-go Related Gene)-encoded potassium channels underlie the cardiac rapid delayed rectifier (IKr) potassium current, which is a major target for antiarrhythmic agents and diverse non-cardiac drugs linked to the drug-induced form of long QT syndrome. E-4031 is [...] Read more.
hERG (human Ether-à-go-go Related Gene)-encoded potassium channels underlie the cardiac rapid delayed rectifier (IKr) potassium current, which is a major target for antiarrhythmic agents and diverse non-cardiac drugs linked to the drug-induced form of long QT syndrome. E-4031 is a high potency hERG channel inhibitor from the methanesulphonanilide drug family. This study utilized a methanesulphonate-lacking E-4031 analogue, “E-4031-17”, to evaluate the role of the methanesulphonamide group in E-4031 inhibition of hERG. Whole-cell patch-clamp measurements of the hERG current (IhERG) were made at physiological temperature from HEK 293 cells expressing wild-type (WT) and mutant hERG constructs. For E-4031, WT IhERG was inhibited by a half-maximal inhibitory concentration (IC50) of 15.8 nM, whilst the comparable value for E-4031-17 was 40.3 nM. Both compounds exhibited voltage- and time-dependent inhibition, but they differed in their response to successive applications of a long (10 s) depolarisation protocol, consistent with greater dissociation of E-4031-17 than the parent compound between applied commands. Voltage-dependent inactivation was left-ward voltage shifted for E-4031 but not for E-4031-17; however, inhibition by both compounds was strongly reduced by attenuated-inactivation mutations. Mutations of S6 and S5 aromatic residues (F656V, Y652A, F557L) greatly attenuated actions of both drugs. The S624A mutation also reduced IhERG inhibition by both molecules. Overall, these results demonstrate that the lack of a methanesulphonate in E-4031-17 is not an impediment to high potency inhibition of IhERG. Full article
(This article belongs to the Special Issue Potassium Channels as Novel Therapeutic Targets)
Show Figures

Figure 1

21 pages, 3533 KiB  
Article
Pharmacological Screening of Kv7.1 and Kv7.1/KCNE1 Activators as Potential Antiarrhythmic Drugs in the Zebrafish Heart
by Alicia De la Cruz, Xiaoan Wu, Quinn C. Rainer, Irene Hiniesto-Iñigo, Marta E. Perez, Isak Edler, Sara I. Liin and H. Peter Larsson
Int. J. Mol. Sci. 2023, 24(15), 12092; https://doi.org/10.3390/ijms241512092 - 28 Jul 2023
Cited by 3 | Viewed by 1922
Abstract
Long QT syndrome (LQTS) can lead to ventricular arrhythmia and sudden cardiac death. The most common congenital cause of LQTS is mutations in the channel subunits generating the cardiac potassium current IKs. Zebrafish (Danio rerio) have been proposed as [...] Read more.
Long QT syndrome (LQTS) can lead to ventricular arrhythmia and sudden cardiac death. The most common congenital cause of LQTS is mutations in the channel subunits generating the cardiac potassium current IKs. Zebrafish (Danio rerio) have been proposed as a powerful system to model human cardiac diseases due to the similar electrical properties of the zebrafish heart and the human heart. We used high-resolution all-optical electrophysiology on ex vivo zebrafish hearts to assess the effects of IKs analogues on the cardiac action potential. We found that chromanol 293B (an IKs inhibitor) prolonged the action potential duration (APD) in the presence of E4031 (an IKr inhibitor applied to drug-induced LQT2), and to a lesser extent, in the absence of E4031. Moreover, we showed that PUFA analogues slightly shortened the APD of the zebrafish heart. However, PUFA analogues failed to reverse the APD prolongation in drug-induced LQT2. However, a more potent IKs activator, ML-277, partially reversed the APD prolongation in drug-induced LQT2 zebrafish hearts. Our results suggest that IKs plays a limited role in ventricular repolarizations in the zebrafish heart under resting conditions, although it plays a more important role when the IKr is compromised, as if the IKs in zebrafish serves as a repolarization reserve as in human hearts. This study shows that potent IKs activators can restore the action potential duration in drug-induced LQT2 in the zebrafish heart. Full article
(This article belongs to the Special Issue Study on Cardiac Ion Channels)
Show Figures

Figure 1

11 pages, 2925 KiB  
Article
IKs Activator ML277 Mildly Affects Repolarization and Arrhythmic Outcome in the CAVB Dog Model
by Joanne J. A. van Bavel, Henriëtte D. M. Beekman, Agnieszka Smoczyńska, Marcel A. G. van der Heyden and Marc A. Vos
Biomedicines 2023, 11(4), 1147; https://doi.org/10.3390/biomedicines11041147 - 11 Apr 2023
Cited by 1 | Viewed by 1660
Abstract
Long QT syndrome type 1 with affected IKs is associated with a high risk for developing Torsade de Pointes (TdP) arrhythmias and eventually sudden cardiac death. Therefore, it is of high interest to explore drugs that target IKs as antiarrhythmics. We [...] Read more.
Long QT syndrome type 1 with affected IKs is associated with a high risk for developing Torsade de Pointes (TdP) arrhythmias and eventually sudden cardiac death. Therefore, it is of high interest to explore drugs that target IKs as antiarrhythmics. We examined the antiarrhythmic effect of IKs channel activator ML277 in the chronic atrioventricular block (CAVB) dog model. TdP arrhythmia sensitivity was tested in anesthetized mongrel dogs (n = 7) with CAVB in series: (1) induction experiment at 4 ± 2 weeks CAVB: TdP arrhythmias were induced with our standardized protocol using dofetilide (0.025 mg/kg), and (2) prevention experiment at 10 ± 2 weeks CAVB: the antiarrhythmic effect of ML277 (0.6–1.0 mg/kg) was tested by infusion for 5 min preceding dofetilide. ML277: (1) temporarily prevented repolarization prolongation induced by dofetilide (QTc: 538 ± 65 ms at induction vs. 393 ± 18 ms at prevention, p < 0.05), (2) delayed the occurrence of the first arrhythmic event upon dofetilide (from 129 ± 28 s to 180 ± 51 s, p < 0.05), and (3) decreased the arrhythmic outcome with a significant reduction in the number of TdP arrhythmias, TdP score, arrhythmia score and total arrhythmic events (from 669 ± 132 to 401 ± 228, p < 0.05). IKs channel activation by ML277 temporarily suppressed QT interval prolongation, delayed the occurrence of the first arrhythmic event and reduced the arrhythmic outcome in the CAVB dog model. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Cardiac Arrhythmia)
Show Figures

Figure 1

20 pages, 6981 KiB  
Review
Genetic Biomarkers of Antipsychotic-Induced Prolongation of the QT Interval in Patients with Schizophrenia
by Elena E. Vaiman, Natalia A. Shnayder, Nikita M. Zhuravlev, Marina M. Petrova, Azat R. Asadullin, Mustafa Al-Zamil, Natalia P. Garganeeva, German A. Shipulin, Paul Cumming and Regina F. Nasyrova
Int. J. Mol. Sci. 2022, 23(24), 15786; https://doi.org/10.3390/ijms232415786 - 13 Dec 2022
Cited by 6 | Viewed by 2946
Abstract
Antipsychotics (AP) induced prolongation of the QT interval in patients with schizophrenia (Sch) is an actual interdisciplinary problem as it increases the risk of sudden death syndrome. Long QT syndrome (LQTS) as a cardiac adverse drug reaction is a multifactorial symptomatic disorder, the [...] Read more.
Antipsychotics (AP) induced prolongation of the QT interval in patients with schizophrenia (Sch) is an actual interdisciplinary problem as it increases the risk of sudden death syndrome. Long QT syndrome (LQTS) as a cardiac adverse drug reaction is a multifactorial symptomatic disorder, the development of which is influenced by modifying factors (APs’ dose, duration of APs therapy, APs polytherapy, and monotherapy, etc.) and non-modifying factors (genetic predisposition, gender, age, etc.). The genetic predisposition to AP-induced LQTS may be due to several causes, including causal mutations in the genes responsible for monoheme forms of LQTS, single nucleotide variants (SNVs) of the candidate genes encoding voltage-dependent ion channels expressed both in the brain and in the heart, and SNVs of candidate genes encoding key enzymes of APs metabolism. This narrative review summarizes the results of genetic studies on AP-induced LQTS and proposes a new personalized approach to assessing the risk of its development (low, moderate, high). We recommend implementation in protocols of primary diagnosis of AP-induced LQTS and medication dispensary additional observations of the risk category of patients receiving APs, deoxyribonucleic acid profiling, regular electrocardiogram monitoring, and regular therapeutic drug monitoring of the blood APs levels. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Schizophrenia and Novel Targets 2.0)
Show Figures

Figure 1

19 pages, 1753 KiB  
Article
New Insights into Ion Channels: Predicting hERG-Drug Interactions
by Michael Fitzpatrick Wempe
Int. J. Mol. Sci. 2022, 23(18), 10732; https://doi.org/10.3390/ijms231810732 - 14 Sep 2022
Cited by 5 | Viewed by 4179
Abstract
Drug-induced long QT syndrome can be a very dangerous side effect of existing and developmental drugs. In this work, a model proposed two decades ago addressing the ion specificity of potassium channels is extended to the human ether-à-gogo gene (hERG). hERG encodes the [...] Read more.
Drug-induced long QT syndrome can be a very dangerous side effect of existing and developmental drugs. In this work, a model proposed two decades ago addressing the ion specificity of potassium channels is extended to the human ether-à-gogo gene (hERG). hERG encodes the protein that assembles into the potassium channel responsible for the delayed rectifier current in ventricular cardiac myocytes that is often targeted by drugs associated with QT prolongation. The predictive value of this model can guide a rational drug design decision early in the drug development process and enhance NCE (New Chemical Entity) retention. Small molecule drugs containing a nitrogen that can be protonated to afford a formal +1 charge can interact with hERG to prevent the repolarization of outward rectifier currents. Low-level ab initio calculations are employed to generate electronic features of the drug molecules that are known to interact with hERG. These calculations were employed to generate structure–activity relationships (SAR) that predict whether a small molecule drug containing a protonated nitrogen has the potential to interact with and inhibit the activity of the hERG potassium channels of the heart. The model of the mechanism underlying the ion specificity of potassium channels offers predictive value toward optimizing drug design and, therefore, minimizes the effort and expense invested in compounds with the potential for life-threatening inhibitory activity of the hERG potassium channel. Full article
(This article belongs to the Special Issue Pharmacology of Potassium Channels)
Show Figures

Graphical abstract

17 pages, 5520 KiB  
Article
In Vitro Drug Screening Using iPSC-Derived Cardiomyocytes of a Long QT-Syndrome Patient Carrying KCNQ1 & TRPM4 Dual Mutation: An Experimental Personalized Treatment
by Feifei Wang, Yafan Han, Wanyue Sang, Lu Wang, Xiaoyan Liang, Liang Wang, Qiang Xing, Yankai Guo, Jianghua Zhang, Ling Zhang, Tuerhong Zukela, Jiasuoer Xiaokereti, Yanmei Lu, Xianhui Zhou, Baopeng Tang and Yaodong Li
Cells 2022, 11(16), 2495; https://doi.org/10.3390/cells11162495 - 11 Aug 2022
Cited by 9 | Viewed by 3230
Abstract
Congenital long QT syndrome is a type of inherited cardiovascular disorder characterized by prolonged QT interval. Patient often suffer from syncopal episodes, electrocardiographic abnormalities and life-threatening arrhythmia. Given the complexity of the root cause of the disease, a combination of clinical diagnosis and [...] Read more.
Congenital long QT syndrome is a type of inherited cardiovascular disorder characterized by prolonged QT interval. Patient often suffer from syncopal episodes, electrocardiographic abnormalities and life-threatening arrhythmia. Given the complexity of the root cause of the disease, a combination of clinical diagnosis and drug screening using patient-derived cardiomyocytes represents a more effective way to identify potential cures. We identified a long QT syndrome patient carrying a heterozygous KCNQ1 c.656G>A mutation and a heterozygous TRPM4 c.479C>T mutation. Implantation of implantable cardioverter defibrillator in combination with conventional medication demonstrated limited success in ameliorating long-QT-syndrome-related symptoms. Frequent defibrillator discharge also caused deterioration of patient quality of life. Aiming to identify better therapeutic agents and treatment strategy, we established a patient-specific iPSC line carrying the dual mutations and differentiated these patient-specific iPSCs into cardiomyocytes. We discovered that both verapamil and lidocaine substantially shortened the QT interval of the long QT syndrome patient-specific cardiomyocytes. Verapamil treatment was successful in reducing defibrillator discharge frequency of the KCNQ1/TRPM4 dual mutation patient. These results suggested that verapamil and lidocaine could be alternative therapeutic agents for long QT syndrome patients that do not respond well to conventional treatments. In conclusion, our approach indicated the usefulness of the in vitro disease model based on patient-specific iPSCs in identifying pharmacological mechanisms and drug screening. The long QT patient-specific iPSC line carrying KCNQ1/TRPM4 dual mutations also represents a tool for further understanding long QT syndrome pathogenesis. Full article
Show Figures

Figure 1

14 pages, 4296 KiB  
Article
Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart
by Layse Malagueta-Vieira, Julieta Fernández-Ruocco, María P. Hortigón-Vinagre, Víctor Zamora, Julián Zayas-Arrabal, Leyre Echeazarra, Godfrey L. Smith, Martín Vila Petroff, Emiliano Medei, Óscar Casis and Mónica Gallego
Int. J. Mol. Sci. 2022, 23(11), 6021; https://doi.org/10.3390/ijms23116021 - 27 May 2022
Cited by 5 | Viewed by 6862
Abstract
Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia [...] Read more.
Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (Ito). In vitro, incubation with metformin for 24 h also reduced Ito, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced IhERG in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of Ito and IhERG. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration. Full article
(This article belongs to the Special Issue Membrane Channels in Physiology and Pathology)
Show Figures

Figure 1

20 pages, 3963 KiB  
Article
Induced Pluripotent Stem Cell-Derived Cardiomyocytes with SCN5A R1623Q Mutation Associated with Severe Long QT Syndrome in Fetuses and Neonates Recapitulates Pathophysiological Phenotypes
by Emiko Hayama, Yoshiyuki Furutani, Nanako Kawaguchi, Akiko Seki, Yoji Nagashima, Keisuke Okita, Daiji Takeuchi, Rumiko Matsuoka, Kei Inai, Nobuhisa Hagiwara and Toshio Nakanishi
Biology 2021, 10(10), 1062; https://doi.org/10.3390/biology10101062 - 18 Oct 2021
Cited by 8 | Viewed by 3831
Abstract
The SCN5A R1623Q mutation is one of the most common genetic variants associated with severe congenital long QT syndrome 3 (LQT3) in fetal and neonatal patients. To investigate the properties of the R1623Q mutation, we established an induced pluripotent stem cell (iPSC) cardiomyocyte [...] Read more.
The SCN5A R1623Q mutation is one of the most common genetic variants associated with severe congenital long QT syndrome 3 (LQT3) in fetal and neonatal patients. To investigate the properties of the R1623Q mutation, we established an induced pluripotent stem cell (iPSC) cardiomyocyte (CM) model from a patient with LQTS harboring a heterozygous R1623Q mutation. The properties and pharmacological responses of iPSC-CMs were characterized using a multi-electrode array system. The biophysical characteristic analysis revealed that R1623Q increased open probability and persistent currents of sodium channel, indicating a gain-of-function mutation. In the pharmacological study, mexiletine shortened FPDcF in R1623Q-iPSC-CMs, which exhibited prolonged field potential duration corrected by Fridericia’s formula (FPDcF, analogous to QTcF). Meanwhile, E4031, a specific inhibitor of human ether-a-go-go-related gene (hERG) channel, significantly increased the frequency of arrhythmia-like early after depolarization (EAD) events. These characteristics partly reflect the patient phenotypes. To further analyze the effect of neonatal isoform, which is predominantly expressed in the fetal period, on the R1623Q mutant properties, we transfected adult form and neonatal isoform SCN5A of control and R1623Q mutant SCN5A genes to 293T cells. Whole-cell automated patch-clamp recordings revealed that R1623Q increased persistent Na+ currents, indicating a gain-of-function mutation. Our findings demonstrate the utility of LQT3-associated R1623Q mutation-harboring iPSC-CMs for assessing pharmacological responses to therapeutic drugs and improving treatment efficacy. Furthermore, developmental switching of neonatal/adult Nav1.5 isoforms may be involved in the pathological mechanisms underlying severe long QT syndrome in fetuses and neonates. Full article
(This article belongs to the Special Issue Stem Cells for Cardiovascular Biology and Medicine)
Show Figures

Figure 1

27 pages, 549 KiB  
Review
Genetic and Molecular Aspects of Drug-Induced QT Interval Prolongation
by Daniela Baracaldo-Santamaría, Kevin Llinás-Caballero, Julián Miguel Corso-Ramirez, Carlos Martín Restrepo, Camilo Alberto Dominguez-Dominguez, Dora Janeth Fonseca-Mendoza and Carlos Alberto Calderon-Ospina
Int. J. Mol. Sci. 2021, 22(15), 8090; https://doi.org/10.3390/ijms22158090 - 28 Jul 2021
Cited by 24 | Viewed by 6828
Abstract
Long QT syndromes can be either acquired or congenital. Drugs are one of the many etiologies that may induce acquired long QT syndrome. In fact, many drugs frequently used in the clinical setting are a known risk factor for a prolonged QT interval, [...] Read more.
Long QT syndromes can be either acquired or congenital. Drugs are one of the many etiologies that may induce acquired long QT syndrome. In fact, many drugs frequently used in the clinical setting are a known risk factor for a prolonged QT interval, thus increasing the chances of developing torsade de pointes. The molecular mechanisms involved in the prolongation of the QT interval are common to most medications. However, there is considerable inter-individual variability in drug response, thus making the application of personalized medicine a relevant aspect in long QT syndrome, in order to evaluate the risk of every individual from a pharmacogenetic standpoint. Full article
Show Figures

Figure 1

15 pages, 4014 KiB  
Article
Functional Impact of BeKm-1, a High-Affinity hERG Blocker, on Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells
by Stephan De Waard, Jérôme Montnach, Barbara Ribeiro, Sébastien Nicolas, Virginie Forest, Flavien Charpentier, Matteo Elia Mangoni, Nathalie Gaborit, Michel Ronjat, Gildas Loussouarn, Patricia Lemarchand and Michel De Waard
Int. J. Mol. Sci. 2020, 21(19), 7167; https://doi.org/10.3390/ijms21197167 - 28 Sep 2020
Cited by 7 | Viewed by 3179
Abstract
IKr current, a major component of cardiac repolarization, is mediated by human Ether-à-go-go-Related Gene (hERG, Kv11.1) potassium channels. The blockage of these channels by pharmacological compounds is associated to drug-induced long QT syndrome (LQTS), which is a life-threatening disorder [...] Read more.
IKr current, a major component of cardiac repolarization, is mediated by human Ether-à-go-go-Related Gene (hERG, Kv11.1) potassium channels. The blockage of these channels by pharmacological compounds is associated to drug-induced long QT syndrome (LQTS), which is a life-threatening disorder characterized by ventricular arrhythmias and defects in cardiac repolarization that can be illustrated using cardiomyocytes derived from human-induced pluripotent stem cells (hiPS-CMs). This study was meant to assess the modification in hiPS-CMs excitability and contractile properties by BeKm-1, a natural scorpion venom peptide that selectively interacts with the extracellular face of hERG, by opposition to reference compounds that act onto the intracellular face. Using an automated patch-clamp system, we compared the affinity of BeKm-1 for hERG channels with some reference compounds. We fully assessed its effects on the electrophysiological, calcium handling, and beating properties of hiPS-CMs. By delaying cardiomyocyte repolarization, the peptide induces early afterdepolarizations and reduces spontaneous action potentials, calcium transients, and contraction frequencies, therefore recapitulating several of the critical phenotype features associated with arrhythmic risk in drug-induced LQTS. BeKm-1 exemplifies an interesting reference compound in the integrated hiPS-CMs cell model for all drugs that may block the hERG channel from the outer face. Being a peptide that is easily modifiable, it will serve as an ideal molecular platform for the design of new hERG modulators displaying additional functionalities. Full article
(This article belongs to the Special Issue Peptides for Health Benefits 2020)
Show Figures

Figure 1

19 pages, 3333 KiB  
Article
Risk of Adverse Drug Events Following the Virtual Addition of COVID-19 Repurposed Drugs to Drug Regimens of Frail Older Adults with Polypharmacy
by Sweilem B. Al Rihani, Matt K. Smith, Ravil Bikmetov, Malavika Deodhar, Pamela Dow, Jacques Turgeon and Veronique Michaud
J. Clin. Med. 2020, 9(8), 2591; https://doi.org/10.3390/jcm9082591 - 10 Aug 2020
Cited by 17 | Viewed by 5907
Abstract
Determination of the risk–benefit ratio associated with the use of novel coronavirus disease 2019 (COVID-19) repurposed drugs in older adults with polypharmacy is mandatory. Our objective was to develop and validate a strategy to assess risk for adverse drug events (ADE) associated with [...] Read more.
Determination of the risk–benefit ratio associated with the use of novel coronavirus disease 2019 (COVID-19) repurposed drugs in older adults with polypharmacy is mandatory. Our objective was to develop and validate a strategy to assess risk for adverse drug events (ADE) associated with COVID-19 repurposed drugs using hydroxychloroquine (HCQ) and chloroquine (CQ), alone or in combination with azithromycin (AZ), and the combination lopinavir/ritonavir (LPV/r). These medications were virtually added, one at a time, to drug regimens of 12,383 participants of the Program of All-Inclusive Care for the Elderly. The MedWise Risk Score (MRSTM) was determined from 198,323 drug claims. Results demonstrated that the addition of each repurposed drug caused a rightward shift in the frequency distribution of MRSTM values (p < 0.05); the increase was due to an increase in the drug-induced Long QT Syndrome (LQTS) or CYP450 drug interaction burden risk scores. Increases in LQTS risk observed with HCQ + AZ and CQ + AZ were of the same magnitude as those estimated when terfenadine or terfenadine + AZ, used as positive controls for drug-induced LQTS, were added to drug regimens. The simulation-based strategy performed offers a way to assess risk of ADE for drugs to be used in people with underlying medical comorbidities and polypharmacy at risk of COVID-19 infection without exposing them to these drugs. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

28 pages, 7172 KiB  
Article
Molecular Docking Guided Grid-Independent Descriptor Analysis to Probe the Impact of Water Molecules on Conformational Changes of hERG Inhibitors in Drug Trapping Phenomenon
by Saba Munawar, Jamie I. Vandenberg and Ishrat Jabeen
Int. J. Mol. Sci. 2019, 20(14), 3385; https://doi.org/10.3390/ijms20143385 - 10 Jul 2019
Cited by 19 | Viewed by 5564
Abstract
Human ether a-go-go related gene (hERG) or KV11.1 potassium channels mediate the rapid delayed rectifier current (IKr) in cardiac myocytes. Drug-induced inhibition of hERG channels has been implicated in the development of acquired long QT syndrome type (aLQTS) and fatal [...] Read more.
Human ether a-go-go related gene (hERG) or KV11.1 potassium channels mediate the rapid delayed rectifier current (IKr) in cardiac myocytes. Drug-induced inhibition of hERG channels has been implicated in the development of acquired long QT syndrome type (aLQTS) and fatal arrhythmias. Several marketed drugs have been withdrawn for this reason. Therefore, there is considerable interest in developing better tests for predicting drugs which can block the hERG channel. The drug-binding pocket in hERG channels, which lies below the selectivity filter, normally contains K+ ions and water molecules. In this study, we test the hypothesis that these water molecules impact drug binding to hERG. We developed 3D QSAR models based on alignment independent descriptors (GRIND) using docked ligands in open and closed conformations of hERG in the presence (solvated) and absence (non-solvated) of water molecules. The ligand–protein interaction fingerprints (PLIF) scheme was used to summarize and compare the interactions. All models delineated similar 3D hERG binding features, however, small deviations of about ~0.4 Å were observed between important hotspots of molecular interaction fields (MIFs) between solvated and non-solvated hERG models. These small changes in conformations do not affect the performance and predictive power of the model to any significant extent. The model that exhibits the best statistical values was attained with a cryo_EM structure of the hERG channel in open state without water. This model also showed the best R2 of 0.58 and 0.51 for the internal and external validation test sets respectively. Our results suggest that the inclusion of water molecules during the docking process has little effect on conformations and this conformational change does not impact the predictive ability of the 3D QSAR models. Full article
(This article belongs to the Special Issue New Avenues in Molecular Docking for Drug Design)
Show Figures

Graphical abstract

Back to TopTop