Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = drug trafficking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 196
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

28 pages, 1775 KiB  
Review
Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends
by Petar Ristivojević, Božidar Otašević, Petar Todorović and Nataša Radosavljević-Stevanović
Processes 2025, 13(8), 2371; https://doi.org/10.3390/pr13082371 - 25 Jul 2025
Viewed by 554
Abstract
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has [...] Read more.
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has advanced considerably, improving detection of traditional drugs—such as tetrahydrocannabinol, cocaine, heroin, amphetamine-type stimulants, and lysergic acid diethylamide—as well as emerging new psychoactive substances (NPS), including synthetic cannabinoids (e.g., 5F-MDMB-PICA), cathinones (e.g., α-PVP), potent opioids (e.g., carfentanil), designer psychedelics (e.g., 25I-NBOMe), benzodiazepines (e.g., flualprazolam), and dissociatives (e.g., 3-HO-PCP). Current technologies include colorimetric assays, ambient ionization mass spectrometry, and chromatographic methods coupled with various detectors, all enhancing accuracy and precision. Vibrational spectroscopy techniques, like Raman and Fourier transform infrared spectroscopy, have become essential for non-destructive identification. Additionally, new sensors with disposable electrodes and miniaturized transducers allow ultrasensitive on-site detection of drugs and metabolites. Advanced chemometric algorithms extract maximum information from complex data, enabling faster and more reliable identifications. An important emerging trend is the adoption of green analytical methods—including direct analysis, solvent-free extraction, miniaturized instruments, and eco-friendly chromatographic processes—that reduce environmental impact without sacrificing performance. This review provides a comprehensive overview of innovations over the last five years in forensic drug analysis based on the ScienceDirect database and highlights technological trends shaping the future of forensic toxicology. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

39 pages, 3100 KiB  
Review
RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis
by Richard A. McDonald, Armando Varela-Ramirez and Amanda K. Ashley
Biology 2025, 14(8), 936; https://doi.org/10.3390/biology14080936 - 25 Jul 2025
Viewed by 524
Abstract
Proto-oncogenes in the RAS superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades [...] Read more.
Proto-oncogenes in the RAS superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades of research, poor outcomes in advanced cancers reveal gaps in understanding Ras-driven mechanisms or therapeutic strategies. This narrative review examines RAS genes and Ras proteins in both housekeeping functions, such as cell growth, apoptosis, and protein trafficking, as well as in tumorigenesis, integrating insights from human (HRAS, KRAS, NRAS), mouse (Hras, Kras, Nras), and Drosophila melanogaster (ras) models. While RAS mutations are tightly linked to human tumors, the interplay between their standard and oncogenic functions remains complex. Even within the same tissue, distinct cancer pathways—such as the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways—can drive varied disease courses, complicating treatment. Advanced-stage cancers add further challenges, including heterogeneity, protective microenvironments, drug resistance, and adaptive progression. This synthesis organizes current knowledge of RAS gene regulation and Ras protein function from genomic alterations and intracellular signaling to membrane dynamics and extracellular interactions, offering a layered perspective on the Ras pathway’s role in both housekeeping and tumorigenic contexts. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

15 pages, 2357 KiB  
Article
Development of a Novel, Highly Sensitive System for Evaluating Ebola Virus Particle Formation
by Wakako Furuyama, Miako Sakaguchi, Hanako Ariyoshi and Asuka Nanbo
Viruses 2025, 17(7), 1016; https://doi.org/10.3390/v17071016 - 19 Jul 2025
Viewed by 476
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and effective countermeasures remain limited. The EBOV-encoded major matrix protein VP40 is essential for viral assembly, budding, and particle release, making it a promising target for antiviral drug development. However, no approved drugs currently [...] Read more.
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and effective countermeasures remain limited. The EBOV-encoded major matrix protein VP40 is essential for viral assembly, budding, and particle release, making it a promising target for antiviral drug development. However, no approved drugs currently target the viral particle formation process. In this study, we established a simple and highly sensitive screening system to evaluate VP40-mediated virus-like particle (VLP) formation under biosafety level −2 conditions. The system uses the HiBiT luminescence-based reporter fused to VP40, allowing for the detection of VP40 release. Our results demonstrate that the HiBiT sequence fused at the N-terminus [HiBiT-VP40 (N)] retains VP40′s ability to form VLPs, supporting its use as a functional reporter. Furthermore, we validated the system by assessing the role of Rab11-dependent trafficking in VP40-mediated budding and by evaluating the effect of nocodazole, a microtubule depolymerizer, on VLP release. This novel screening system provides a convenient and reliable platform for screening potential inhibitors targeting the late stages of EBOV infection, including viral particle formation and release. Additionally, its potential adaptability to other filoviruses suggests wide applicability in the discovery and development of additional novel therapeutic agents. Full article
Show Figures

Figure 1

26 pages, 1363 KiB  
Review
From Structure to Function: The Promise of PAMAM Dendrimers in Biomedical Applications
by Said Alamos-Musre, Daniel Beltrán-Chacana, Juan Moyano, Valeria Márquez-Miranda, Yorley Duarte, Sebastián Miranda-Rojas, Yusser Olguín, Juan A. Fuentes, Danilo González-Nilo and María Carolina Otero
Pharmaceutics 2025, 17(7), 927; https://doi.org/10.3390/pharmaceutics17070927 - 18 Jul 2025
Viewed by 479
Abstract
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells [...] Read more.
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells through various endocytic mechanisms, such as passive diffusion, clathrin-mediated endocytosis, and caveolae-mediated endocytosis, allowing them to traverse the cytoplasm and reach intracellular targets, such as the mitochondria or nucleus. Despite the significant challenge posed by the cytotoxicity of these nanoparticles, which is contingent upon the dendrimer size, surface charge, and generation, numerous strategies have been documented to modify the dendrimer surface using polyethylene glycol and other chemical groups to temporarily mitigate their cytotoxic effects. The potential of PAMAM dendrimers in cancer therapy and other biomedical applications is substantial, owing to their ability to enhance bioavailability, pharmacokinetics, and pharmacodynamics of active ingredients within the body. This underscores the necessity for further investigation into the optimization of internalization pathways and cytotoxicity of these nanoparticles. This review offers a comprehensive synthesis of the current literature on the diverse cellular internalization pathways of PAMAM dendrimers and their cargo molecules, emphasizing the mechanisms of entry, intracellular trafficking, and factors influencing these processes. Full article
(This article belongs to the Special Issue Biomedical Applications: Advances in Bioengineering and Drug Delivery)
Show Figures

Figure 1

31 pages, 25018 KiB  
Article
VPS26A as a Prognostic Biomarker and Therapeutic Target in Liver Hepatocellular Carcinoma: Insights from Comprehensive Bioinformatics Analysis
by Hye-Ran Kim and Jongwan Kim
Medicina 2025, 61(7), 1283; https://doi.org/10.3390/medicina61071283 - 16 Jul 2025
Viewed by 245
Abstract
Background and Objectives: VPS26A, a core component of the retromer complex, is pivotal to endosomal trafficking and membrane protein recycling. However, its expression profile, prognostic significance, and clinical relevance in liver hepatocellular carcinoma (LIHC) remain unexplored. This study investigates the prognostic potential of [...] Read more.
Background and Objectives: VPS26A, a core component of the retromer complex, is pivotal to endosomal trafficking and membrane protein recycling. However, its expression profile, prognostic significance, and clinical relevance in liver hepatocellular carcinoma (LIHC) remain unexplored. This study investigates the prognostic potential of VPS26A by extensively analyzing publicly available LIHC-related databases. Materials and Methods: Multiple databases, including TIMER, UALCAN, HPA, GSCA, KM Plotter, OSlihc, MethSurv, miRNet, OncomiR, LinkedOmics, GeneMANIA, and STRING, were used to evaluate VPS26A expression patterns, prognostic implications, correlations with tumor-infiltrating immune cells (TIICs), epigenetic modifications, drug sensitivity, co-expression networks, and protein–protein interactions in LIHC. Results: VPS26A was significantly overexpressed at both the mRNA and protein levels in LIHC tissues compared to that in normal tissues. This upregulation was strongly associated with a poor prognosis. Furthermore, VPS26A expression was both positively and negatively correlated with various TIICs. Epigenetic analysis indicated that VPS26A is regulated by promoter and regional DNA methylation. Additionally, VPS26A influences the sensitivity of LIHC cells to a broad range of anticancer agents. Functional enrichment and co-expression analyses revealed that VPS26A serves as a central regulator of the LIHC transcriptomic landscape, with positively correlated gene sets linked to poor prognosis. Additionally, VPS26A contributes to the molecular architecture governing vesicular trafficking, with potential relevance to diseases involving defects in endosomal transport and autophagy. Notably, miRNAs targeting VPS26A-associated gene networks have emerged as potential prognostic biomarkers for LIHC. VPS26A was found to be integrated into a highly interconnected signaling network comprising proteins in cancer progression, immune regulation, and cellular metabolism. Conclusions: Overall, VPS26A may serve as a potential prognostic biomarker and therapeutic target in LIHC. This study provides novel insights into the molecular mechanisms underlying LIHC progression, and highlights the multifaceted role of VPS26A in tumor biology. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

15 pages, 10930 KiB  
Article
Leflunomide-Mediated Immunomodulation Inhibits Lesion Progression in a Vitiligo Mouse Model
by Fang Miao, Xiaohui Li, Liang Zhao, Shijiao Zhang, Mengmeng Geng, Chuhuan Ye, Ying Shi and Tiechi Lei
Int. J. Mol. Sci. 2025, 26(14), 6787; https://doi.org/10.3390/ijms26146787 - 15 Jul 2025
Viewed by 327
Abstract
Autoimmune CD8+ T cell-driven melanocyte destruction constitutes a key pathogenic mechanism in the development of vitiligo. Therefore, the pharmacological inhibition of CD8+ T cell effector functions and skin trafficking is a clinically viable therapeutic strategy. This study investigates leflunomide (LEF), an [...] Read more.
Autoimmune CD8+ T cell-driven melanocyte destruction constitutes a key pathogenic mechanism in the development of vitiligo. Therefore, the pharmacological inhibition of CD8+ T cell effector functions and skin trafficking is a clinically viable therapeutic strategy. This study investigates leflunomide (LEF), an immunomodulatory drug with established safety in autoimmune diseases, for its therapeutic potential in a tyrosine-related protein (TRP) 2-180-induced vitiligo mouse model. Through flow cytometry, immunofluorescence, ELISA, and histopathological analyses, we systematically evaluated LEF’s effects on T cell regulation, chemokine expression, and cytokine profiles. Key findings demonstrated that LEF (20 mg/kg/day) significantly attenuated depigmentation by reducing CD8+ T cell infiltration and suppressing the IFN-γ-driven expression of CXCL9/10. Furthermore, LEF restored CD4+/CD8+ T cell homeostasis and rebalanced pro-inflammatory (IFN-γ, TNF-α, IL-2) and anti-inflammatory (IL-4, IL-10) cytokines, inducing a shift from Th1 to Th2. These results position LEF as an effective immunomodulator that disrupts the IFN-γ-CXCL9/10 axis and re-establishes immune balance, offering a promising repurposing strategy for halting vitiligo progression. Full article
(This article belongs to the Special Issue Advances in Vitiligo: From Mechanisms to Treatment Innovations)
Show Figures

Figure 1

19 pages, 5784 KiB  
Article
Identification of Exosome-Associated Biomarkers in Diabetic Foot Ulcers: A Bioinformatics Analysis and Experimental Validation
by Tianbo Li, Lei Gao and Jiangning Wang
Biomedicines 2025, 13(7), 1687; https://doi.org/10.3390/biomedicines13071687 - 10 Jul 2025
Viewed by 450
Abstract
Background: Diabetic foot ulcers (DFUs) are a severe complication of diabetes and are characterized by impaired wound healing and a high amputation risk. Exosomes—which are nanovesicles carrying proteins, RNAs, and lipids—mediate intercellular communication in wound microenvironments, yet their biomarker potential in DFUs remains [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a severe complication of diabetes and are characterized by impaired wound healing and a high amputation risk. Exosomes—which are nanovesicles carrying proteins, RNAs, and lipids—mediate intercellular communication in wound microenvironments, yet their biomarker potential in DFUs remains underexplored. Methods: We analyzed transcriptomic data from GSE134431 (13 DFU vs. 8 controls) as a training set and validated findings in GSE80178 (6 DFU vs. 3 controls). A sum of 7901 differentially expressed genes (DEGs) of DFUs were detected and intersected with 125 literature-curated exosome-related genes (ERGs) to yield 51 candidates. This was followed by GO/KEGG analyses and a PPI network construction. Support vector machine–recursive feature elimination (SVM-RFE) and the Boruta random forest algorithm distilled five biomarkers (DIS3L, EXOSC7, SDC1, STX11, SYT17). Expression trends were confirmed in both datasets. Analyses included nomogram construction, functional and correlation analyses, immune infiltration, GSEA, gene co-expression and regulatory network construction, drug prediction, molecular docking, and RT-qPCR validation in clinical samples. Results: A nomogram combining these markers achieved an acceptable calibration (Hosmer–Lemeshow p = 0.0718, MAE = 0.044). Immune cell infiltration (CIBERSORT) revealed associations between biomarker levels and NK cell and neutrophil subsets. Gene set enrichment analysis (GSEA) implicated IL-17 signaling, proteasome function, and microbial infection pathways. A GeneMANIA network highlighted RNA processing and vesicle trafficking. Transcription factor and miRNA predictions uncovered regulatory circuits, and DGIdb-driven drug repurposing followed by molecular docking identified Indatuximab ravtansine and heparin as high-affinity SDC1 binders. Finally, RT-qPCR validation in clinical DFU tissues (n = 5) recapitulated the bioinformatic expression patterns. Conclusions: We present five exosome-associated genes as novel DFU biomarkers with diagnostic potential and mechanistic links to immune modulation and vesicular transport. These findings lay the groundwork for exosome-based diagnostics and therapeutic targeting in DFU management. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

28 pages, 2642 KiB  
Article
The Proteomic Landscape of Parkin-Deficient and Parkin-Overexpressing Rat Nucleus Accumbens: An Insight into the Role of Parkin in Methamphetamine Use Disorder
by Akhil Sharma, Tarek Atasi, Florine Collin, Weiwei Wang, TuKiet T. Lam, Rolando Garcia-Milian, Tasnim Arroum, Lucynda Pham, Maik Hüttemann and Anna Moszczynska
Biomolecules 2025, 15(7), 958; https://doi.org/10.3390/biom15070958 - 3 Jul 2025
Viewed by 564
Abstract
In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). We previously determined that ubiquitin-protein ligase parkin is involved in the regulation of METH addictive behaviors in rat models [...] Read more.
In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). We previously determined that ubiquitin-protein ligase parkin is involved in the regulation of METH addictive behaviors in rat models of MUD. Parkin is not yet a “druggable” drug target; therefore, this study aimed to determine which biological processes, pathways, and proteins downstream of parkin are likely drug targets against MUD. Employing young adult Long Evans male rats with parkin deficit or excess in the nucleus accumbens (NAc), label-free proteomics, and molecular biology, we determined that the pathways downstream of parkin that are candidates for regulating METH addictive behaviors in young adult male rats are mitochondrial respiration, oxidative stress, AMPA receptor trafficking, GABAergic neurotransmission, and actin cytoskeleton dynamics. Full article
(This article belongs to the Special Issue Advances in Neuroproteomics)
Show Figures

Figure 1

11 pages, 211 KiB  
Article
Education Improves Perceived Control but Not Risk Identification in Adolescents Regarding Fentanyl
by Christine Bakos-Block, Francine R. Vega, Marylou Cardenas-Turanzas, Bhanumathi Gopal and Tiffany Champagne-Langabeer
Children 2025, 12(6), 794; https://doi.org/10.3390/children12060794 - 17 Jun 2025
Viewed by 470
Abstract
Background/Objectives: In 2022, 2.2 million adolescents were diagnosed with substance use disorders, including 265,000 with opioid use disorder. The National Survey on Drug Use and Health revealed that 130,000 adolescents misused prescription pain medications, often obtaining them from friends or relatives. This age [...] Read more.
Background/Objectives: In 2022, 2.2 million adolescents were diagnosed with substance use disorders, including 265,000 with opioid use disorder. The National Survey on Drug Use and Health revealed that 130,000 adolescents misused prescription pain medications, often obtaining them from friends or relatives. This age group perceives weekly heroin use as less risky than those younger or older. Methods: A questionnaire was developed for 7th to 12th graders in a rural Texas school district as part of a fentanyl awareness curriculum. The questionnaire included Likert scale, multiple choice, and yes/no questions. The participants were categorized into younger (grades 7th and 8th) and older students (grades 9th through 12th), and associations were explored between demographic characteristics, responses, and grade groups using chi-square tests. To assess confidence, behavior, and the impact of education, we used chi-square and Fisher’s exact tests. Results: The participants (n = 94; 85.11%) identified as Hispanic or Latino, with a smaller percentage identifying as White or more than one race. An association was found between feeling more in control of actions related to substances and fentanyl (p-value = 0.04) after receiving education. No association was found between education and confidence in identifying fentanyl. Conclusions: This study aligns with a surge in fentanyl-related overdose deaths in a high-intensity drug trafficking region. Recent fentanyl overdoses among school-age children prompted legislative changes in 2023, making this study valuable for understanding the epidemic within the geographical context. These results suggest that school-based education may play a role in strengthening adolescents’ behavioral intentions to fentanyl exposure, though additional efforts are needed to improve risk identification. Full article
21 pages, 679 KiB  
Review
Respiratory Pathophysiology Through the Lens of Mitochondria
by Masafumi Noguchi, Keiko Iwata and Norihito Shintani
Clin. Bioenerg. 2025, 1(1), 4; https://doi.org/10.3390/clinbioenerg1010004 - 5 Jun 2025
Viewed by 543
Abstract
Mitochondrial integrity is indispensable for pulmonary cellular homeostasis, with its dysfunction increasingly being implicated as a central mechanism in the etiology of respiratory disorders. We present a comprehensive overview of the integral role played by mitochondrial dynamics, such as fusion, fission, mitophagy, intracellular [...] Read more.
Mitochondrial integrity is indispensable for pulmonary cellular homeostasis, with its dysfunction increasingly being implicated as a central mechanism in the etiology of respiratory disorders. We present a comprehensive overview of the integral role played by mitochondrial dynamics, such as fusion, fission, mitophagy, intracellular trafficking, and biogenesis, in maintaining pulmonary homeostasis. This study further explores how perturbations in these processes contribute to the pathogenesis of diverse lung disorders, including chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), and drug-induced lung disease. It further explores how perturbations in these processes contribute to the pathogenesis of diverse lung disorders—for example, chronic obstructive pulmonary disease (COPD; responsible for roughly 55% of chronic respiratory disease cases), bronchopulmonary dysplasia (BPD; affecting up to 45% of infants born before 29 weeks of gestation), pulmonary arterial hypertension (PAH; a rare condition causing about 22,000 deaths worldwide in 2021), idiopathic pulmonary fibrosis (IPF; 0.33–4.51 cases per 10,000 persons), and drug-induced lung disease. Evidence demonstrates that mitochondria-triggered apoptosis, metabolic shifts, and subsequent inflammatory signaling act together to drive airway tissue remodeling and fibrotic progression across these lung diseases. Furthermore, this review evaluates the therapeutic potential of mitochondrial-targeted drugs, such as MitoQ and SS31, and metformin, which have shown promise in basic and preclinical studies. Preclinical and early clinical evaluations include an ongoing trial of the mitochondrial-targeted antioxidant MitoQ (NCT02966665, phase 1) in COPD, a 4-month open-label DCA study in PAH patients, and studies determining the preclinical efficacy of SS-31 and metformin in IPF models. Ultimately, integrating mitochondrial biomarkers into clinical practice holds the potential not only to facilitate early disease detection but also to enable the development of precision therapies, thereby offering renewed hope for patients afflicted with chronic lung diseases. Full article
Show Figures

Figure 1

20 pages, 2737 KiB  
Article
Natural Nanoparticles for Drug Delivery: Proteomic Insights and Anticancer Potential of Doxorubicin-Loaded Avocado Exosomes
by Dina Salem, Shaimaa Abdel-Ghany, Eman Mohamed, Nada F. Alahmady, Amany Alqosaibi, Ibtesam S. Al-Dhuayan, Mashael Mashal Alnamshan, Rebekka Arneth, Borros Arneth and Hussein Sabit
Pharmaceuticals 2025, 18(6), 844; https://doi.org/10.3390/ph18060844 (registering DOI) - 4 Jun 2025
Viewed by 948
Abstract
Background: Exosomes have recently attracted significant attention for their potential in drug delivery. Plant-derived exosomes, in particular, may serve as direct anticancer agents due to their unique characteristics, including immunogenicity, biocompatibility, safety, cell-free nature, and nanoscale structure. Methods: This study characterizes [...] Read more.
Background: Exosomes have recently attracted significant attention for their potential in drug delivery. Plant-derived exosomes, in particular, may serve as direct anticancer agents due to their unique characteristics, including immunogenicity, biocompatibility, safety, cell-free nature, and nanoscale structure. Methods: This study characterizes Persea americana (avocado)-derived exosomes, exploring their anticancer properties, proteomic profile, and therapeutic potential. Results: Isolated exosomes exhibited a diameter of 99.58 ± 5.09 nm (non-loaded) and 151.2 ± 6.36 nm (doxorubicin (DOX)-loaded), with zeta potentials of −17 mV and −28 mV, respectively. Proteomic analysis identified 47 proteins, including conserved exosome markers (GAPDH, tubulin) and stress-response proteins (defensin, endochitinase). Functional enrichment revealed roles in photosynthesis, glycolysis, ATP synthesis, and transmembrane transport, supported by protein–protein interaction networks highlighting energy metabolism and cellular trafficking. DOX encapsulation efficiency was 18%, with sustained release (44.4% at 24 h). In vitro assays demonstrated reduced viability in breast cancer (MCF-7, T47D, 4T1) and endothelial (C166) cells, enhanced synergistically by DOX (Av+DOX). Gene expression analysis revealed cell-specific modulation: Av+DOX upregulated TP53 and STAT in T47D but suppressed both in 4T1/C166, suggesting context-dependent mechanisms. Conclusions: These findings underscore avocado exosomes as promising nanovehicles for drug delivery, combining biocompatibility, metabolic functionality, and tunable cytotoxicity. Their plant-derived origin offers a scalable, low-cost alternative to mammalian exosomes, with potential applications in oncology and targeted therapy. Further optimization of loading efficiency and in vivo validation are warranted to advance translational prospects. Full article
Show Figures

Figure 1

21 pages, 9801 KiB  
Article
Correction of a Traffic-Defective Missense ABCB11 Variant Responsible for Progressive Familial Intrahepatic Cholestasis Type 2
by Martine Lapalus, Elodie Mareux, Rachida Amzal, Emmanuelle Drège, Yosra Riahi, Sylvain Petit, Manon Banet, Thomas Falguières, Isabelle Callebaut, Bruno Figadère, Delphine Joseph, Emmanuel Gonzales and Emmanuel Jacquemin
Int. J. Mol. Sci. 2025, 26(11), 5232; https://doi.org/10.3390/ijms26115232 - 29 May 2025
Viewed by 440
Abstract
Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic variations in the ABCB11 (ATP-binding cassette B11) gene encoding the canalicular bile salt export pump (BSEP). Some missense variants identified in patients with PFIC2 do not traffic properly [...] Read more.
Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic variations in the ABCB11 (ATP-binding cassette B11) gene encoding the canalicular bile salt export pump (BSEP). Some missense variants identified in patients with PFIC2 do not traffic properly to the canalicular membrane. However, 4-phenybutyrate (4-PB) has been shown in vitro to partially correct the mis-trafficking of selected variants, resulting in an improvement of the medical conditions of corresponding PFIC2 patients. Herein, we report the ability of 4-PB analogous or homologous drugs and of non-4-PB related chemical correctors to rescue the canalicular expression and the activity of the folding-defective Abcb11R1128C variant. New compounds, either identified by screening a chemical library or designed by structural homology with 4-PB (or its metabolites) and synthesized, were evaluated in vitro for their ability to (i) correct the canalicular localization of Abcb11R1128C after transfection in hepatocellular polarized cell lines; (ii) restore the 3H-taurocholate transport of the Abcb11R1128C protein in Madin–Darby canine kidney (MDCK) cells stably co-expressing Abcb11 and the sodium taurocholate co-transporting polypeptide (Ntcp/Slc10A1). Glycerol phenylbutyrate (GPB), phenylacetate (PA, the active metabolite of 4-PB), 3-hydroxy-2-methyl-4-phenylbutyrate (HMPB, a 4-PB metabolite analog chemically synthesized in our laboratory) and 4-oxo-1,2,3,4-tetrahydro-naphthalene-carboxylate (OTNC, from the chemical library screening) significantly increased the proportion of canalicular Abcb11R1128C protein. GPB, PA, ursodeoxycholic acid (UDCA), alone or in combination with 4-PB, suberoylanilide hydroxamic acid (SAHA), C18, VX-445, and/or VX-661, significantly corrected both the traffic and the activity of Abcb11R1128C. Such correctors could represent new pharmacological insights for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the transporter’s traffic. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 930 KiB  
Review
Ketamine in Status Epilepticus: How Soon Is Now?
by Giuseppe Magro
Neurol. Int. 2025, 17(6), 83; https://doi.org/10.3390/neurolint17060083 - 28 May 2025
Viewed by 1460
Abstract
Status epilepticus (SE) is a neurological emergency. Current evidence dictates a step-by-step approach with a first line of therapy consisting of benzodiazepines (BDZs). In many situations, the currently approved approach does not terminate a BDZ-resistant SE. This happens in Stage 1 Plus, a [...] Read more.
Status epilepticus (SE) is a neurological emergency. Current evidence dictates a step-by-step approach with a first line of therapy consisting of benzodiazepines (BDZs). In many situations, the currently approved approach does not terminate a BDZ-resistant SE. This happens in Stage 1 Plus, a framework designed by the author to recognize cases of probable benzodiazepine-resistant status epilepticus even before treatment initiation. These cases include Prolonged SE (SE lasting > 10 min), the absence of prominent motor phenomena, and acute etiology (primary central nervous system etiologies most of all). BDZ-refractory SE cases (Stage 1 Plus) might require a different approach, one targeting the unresponsive GABA signaling state mediated by NMDA/AMPA receptors, such as combined polytherapy with Ketamine from the start. These considerations stem from the receptor trafficking hypotheses: in prolonged seizure activity and primary central nervous system etiologies, GABA receptors get internalized and move away from synapses, and therefore, SE becomes resistant to BDZ. A rational polytherapy that might restore the unresponsiveness to BDZ in SE should include NMDA antagonists, such as Ketamine. Ketamine has proven effective in many experimental models of status epilepticus, and much evidence is gathering supporting its use in humans, especially in refractory and super-refractory SE. We lack studies evaluating combined polytherapy in SE, especially in the early phases. The author suggests here that Ketamine should be used along with first-line BDZ in the early SE stage falling in the category of Stage 1 Plus and as a first-line anesthetic infusion drug in refractory SE, especially in cases progressing from Stage 1 Plus, eventually adding continuous midazolam/propofol infusion in later phases. This systematic review’s objective is to summarize the presently available evidence of the early use of combined polytherapy that includes Ketamine, along with the currently available evidence of Ketamine use in early, established, and refractory SE. Nine studies were included. Boluses of Ketamine and Midazolam are effective in pediatric convulsive Stage 1 Plus SE. The results show that earlier Ketamine administration (especially within 12 h of SE onset) was significantly associated with improved seizure control, with a more favorable safety profile than Midazolam in refractory SE. Notably, a dosage of less than 0.9 mg/kg/h proves ineffective in terminating SE. Ketamine has the advantage of preventing intubation, possibly shortening the length of stay in the intensive care unit. Full article
Show Figures

Graphical abstract

24 pages, 1036 KiB  
Review
ADAM Proteases in Cancer: Biological Roles, Therapeutic Challenges, and Emerging Opportunities
by Sakshi Arora, Andrew M. Scott and Peter W. Janes
Cancers 2025, 17(10), 1703; https://doi.org/10.3390/cancers17101703 - 19 May 2025
Viewed by 1878
Abstract
ADAM (A Disintegrin and Metalloproteinase) family members are multifunctional transmembrane proteases that govern tumorigenesis and metastasis by cleaving membrane-bound substrates such as growth factors, cytokines, and cell adhesion molecules. Several ADAMs, including ADAM8, ADAM9, ADAM10, ADAM12, and ADAM17, are overexpressed in malignancies and [...] Read more.
ADAM (A Disintegrin and Metalloproteinase) family members are multifunctional transmembrane proteases that govern tumorigenesis and metastasis by cleaving membrane-bound substrates such as growth factors, cytokines, and cell adhesion molecules. Several ADAMs, including ADAM8, ADAM9, ADAM10, ADAM12, and ADAM17, are overexpressed in malignancies and are linked with a poor prognosis. These proteases contribute to tumour growth by regulating cell proliferation, cell fate, invasion, angiogenesis, and immune evasion. ADAM10 and ADAM17, especially, facilitate the shedding of critical developmental and growth factors and their receptors, as well as immuno-regulatory molecules, hence promoting tumour progression, immune escape, and resistance to therapy. Recent work has unveiled multiple regulatory pathways that modulate ADAM functions, which include trafficking, dimerization, and conformational modifications that affect substrate accessibility. These observations have rekindled efforts to produce selective ADAM inhibitors, avoiding the off-target consequences reported with early small molecule inhibitors targeting the enzyme active site, which is conserved also in matrix metalloproteinases (MMPs). Promising approaches tested in preclinical models and, in some cases, clinical settings include more selective small-molecule inhibitors, monoclonal antibodies, and antibody–drug conjugates designed to specifically target ADAMs. In this review, we will discuss the emerging roles of ADAMs in cancer biology, as well as the molecular processes that control their function. We further discuss the therapeutic potential of targeting ADAMs, with a focus on recent advances and future directions in the development of ADAM-specific cancer therapies. Full article
Show Figures

Figure 1

Back to TopTop