Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = drought tolerance quantitative trait loci (QTL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4353 KiB  
Article
Genetic Dissection of Drought Tolerance in Maize Through GWAS of Agronomic Traits, Stress Tolerance Indices, and Phenotypic Plasticity
by Ronglan Li, Dongdong Li, Yuhang Guo, Yueli Wang, Yufeng Zhang, Le Li, Xiaosong Yang, Shaojiang Chen, Tobias Würschum and Wenxin Liu
Int. J. Mol. Sci. 2025, 26(13), 6285; https://doi.org/10.3390/ijms26136285 - 29 Jun 2025
Viewed by 490
Abstract
Drought severely limits crop yield every year, making it critical to clarify the genetic basis of drought tolerance for breeding of improved varieties. As drought tolerance is a complex quantitative trait, we analyzed three phenotypic groups: (1) agronomic traits under well-watered (WW) and [...] Read more.
Drought severely limits crop yield every year, making it critical to clarify the genetic basis of drought tolerance for breeding of improved varieties. As drought tolerance is a complex quantitative trait, we analyzed three phenotypic groups: (1) agronomic traits under well-watered (WW) and water-deficit (WD) conditions, (2) stress tolerance indices of these traits, and (3) phenotypic plasticity, using a multi-parent doubled haploid (DH) population assessed in multi-environment trials. Genome-wide association studies (GWAS) identified 130, 171, and 71 quantitative trait loci (QTL) for the three groups of phenotypes, respectively. Only one QTL was shared among all trait groups, 25 between stress indices and agronomic traits, while the majority of QTL were specific to their group. Functional annotation of candidate genes revealed distinct pathways of the three phenotypic groups. Candidate genes under WD conditions were enriched for stress response and epigenetic regulation, while under WW conditions for protein synthesis and transport, RNA metabolism, and developmental regulation. Stress tolerance indices were enriched for transport of amino/organic acids, epigenetic regulation, and stress response, whereas plasticity showed enrichment for environmental adaptability. Transcriptome analysis of 26 potential candidate genes showed tissue-specific drought responses in leaves, ears, and tassels. Collectively, these results indicated both shared and independent genetic mechanisms underlying drought tolerance, providing novel insights into the complex phenotypes related to drought tolerance and guiding further strategies for molecular breeding in maize. Full article
Show Figures

Figure 1

15 pages, 3661 KiB  
Article
Genome-Wide Association Study Identifies Quantitative Trait Loci and Candidate Genes Involved in Deep-Sowing Tolerance in Maize (Zea mays L.)
by Jin Yang, Zhou Liu, Yanbo Liu, Xiujun Fan, Lei Gao, Yangping Li, Yufeng Hu, Kun Hu and Yubi Huang
Plants 2024, 13(11), 1533; https://doi.org/10.3390/plants13111533 - 1 Jun 2024
Cited by 2 | Viewed by 1704
Abstract
Deep sowing is an efficient strategy for maize to ensure the seedling emergence rate under adverse conditions such as drought or low temperatures. However, the genetic basis of deep-sowing tolerance-related traits in maize remains largely unknown. In this study, we performed a genome-wide [...] Read more.
Deep sowing is an efficient strategy for maize to ensure the seedling emergence rate under adverse conditions such as drought or low temperatures. However, the genetic basis of deep-sowing tolerance-related traits in maize remains largely unknown. In this study, we performed a genome-wide association study on traits related to deep-sowing tolerance, including mesocotyl length (ML), coleoptile length (CL), plumule length (PL), shoot length (SL), and primary root length (PRL), using 255 maize inbred lines grown in three different environments. We identified 23, 6, 4, and 4 quantitative trait loci (QTLs) associated with ML, CL, PL, and SL, respectively. By analyzing candidate genes within these QTLs, we found a γ-tubulin-containing complex protein, ZmGCP2, which was significantly associated with ML, PL, and SL. Loss of function of ZmGCP2 resulted in decreased PL, possibly by affecting the cell elongation, thus affecting SL. Additionally, we identified superior haplotypes and allelic variations of ZmGCP2 with a longer PL and SL, which may be useful for breeding varieties with deep-sowing tolerance to improve maize cultivation. Full article
(This article belongs to the Special Issue Crop Genetics and Breeding)
Show Figures

Figure 1

22 pages, 3929 KiB  
Article
Meta-Quantitative Trait Loci Analysis and Candidate Gene Mining for Drought Tolerance-Associated Traits in Maize (Zea mays L.)
by Ronglan Li, Yueli Wang, Dongdong Li, Yuhang Guo, Zhipeng Zhou, Mi Zhang, Yufeng Zhang, Tobias Würschum and Wenxin Liu
Int. J. Mol. Sci. 2024, 25(8), 4295; https://doi.org/10.3390/ijms25084295 - 12 Apr 2024
Cited by 11 | Viewed by 3173
Abstract
Drought is one of the major abiotic stresses with a severe negative impact on maize production globally. Understanding the genetic architecture of drought tolerance in maize is a crucial step towards the breeding of drought-tolerant varieties and a targeted exploitation of genetic resources. [...] Read more.
Drought is one of the major abiotic stresses with a severe negative impact on maize production globally. Understanding the genetic architecture of drought tolerance in maize is a crucial step towards the breeding of drought-tolerant varieties and a targeted exploitation of genetic resources. In this study, 511 quantitative trait loci (QTL) related to grain yield components, flowering time, and plant morphology under drought conditions, as well as drought tolerance index were collected from 27 published studies and then projected on the IBM2 2008 Neighbors reference map for meta-analysis. In total, 83 meta-QTL (MQTL) associated with drought tolerance in maize were identified, of which 20 were determined as core MQTL. The average confidence interval of MQTL was strongly reduced compared to that of the previously published QTL. Nearly half of the MQTL were confirmed by co-localized marker-trait associations from genome-wide association studies. Based on the alignment of rice proteins related to drought tolerance, 63 orthologous genes were identified near the maize MQTL. Furthermore, 583 candidate genes were identified within the 20 core MQTL regions and maize–rice homologous genes. Based on KEGG analysis of candidate genes, plant hormone signaling pathways were found to be significantly enriched. The signaling pathways can have direct or indirect effects on drought tolerance and also interact with other pathways. In conclusion, this study provides novel insights into the genetic and molecular mechanisms of drought tolerance in maize towards a more targeted improvement of this important trait in breeding. Full article
Show Figures

Figure 1

13 pages, 2976 KiB  
Article
Exploring the Drought Tolerant Quantitative Trait Loci in Spring Wheat
by Zhong Wang, Xiangjun Lai, Chunsheng Wang, Hongmei Yang, Zihui Liu, Zheru Fan, Jianfeng Li, Hongzhi Zhang, Manshuang Liu and Yueqiang Zhang
Plants 2024, 13(6), 898; https://doi.org/10.3390/plants13060898 - 21 Mar 2024
Cited by 3 | Viewed by 2048
Abstract
Drought-induced stress poses a significant challenge to wheat throughout its growth, underscoring the importance of identifying drought-stable quantitative trait loci (QTLs) for enhancing grain yield. Here, we evaluated 18 yield-related agronomic and physiological traits, along with their drought tolerance indices, in a recombinant [...] Read more.
Drought-induced stress poses a significant challenge to wheat throughout its growth, underscoring the importance of identifying drought-stable quantitative trait loci (QTLs) for enhancing grain yield. Here, we evaluated 18 yield-related agronomic and physiological traits, along with their drought tolerance indices, in a recombinant inbred line population derived from the XC7 × XC21 cross. These evaluations were conducted under both non-stress and drought-stress conditions. Drought stress significantly reduced grain weight per spike and grain yield per plot. Genotyping the recombinant inbred line population using the wheat 90K single nucleotide polymorphism array resulted in the identification of 131 QTLs associated with the 18 traits. Drought stress also exerted negative impacts on grain formation and filling, directly leading to reductions in grain weight per spike and grain yield per plot. Among the identified QTLs, 43 were specifically associated with drought tolerance across the 18 traits, with 6 showing direct linkages to drought tolerance in wheat. These results provide valuable insights into the genetic mechanisms governing wheat growth and development, as well as the traits contributing to the drought tolerance index. Moreover, they serve as a theoretical foundation for the development of new wheat cultivars having exceptional drought tolerance and high yield potentials under both drought-prone and drought-free conditions. Full article
Show Figures

Figure 1

19 pages, 5826 KiB  
Article
Integrated Bulk Segregant Analysis, Fine Mapping, and Transcriptome Revealed QTLs and Candidate Genes Associated with Drought Adaptation in Wild Watermelon
by Ahmed Mahmoud, Rui Qi, Xiaolu Chi, Nanqiao Liao, Guy Kateta Malangisha, Abid Ali, Mohamed Moustafa-Farag, Jinghua Yang, Mingfang Zhang and Zhongyuan Hu
Int. J. Mol. Sci. 2024, 25(1), 65; https://doi.org/10.3390/ijms25010065 - 20 Dec 2023
Cited by 2 | Viewed by 2173
Abstract
Drought stress has detrimental effects on crop productivity worldwide. A strong root system is crucial for maintaining water and nutrients uptake under drought stress. Wild watermelons possess resilient roots with excellent drought adaptability. However, the genetic factors controlling this trait remain uninvestigated. In [...] Read more.
Drought stress has detrimental effects on crop productivity worldwide. A strong root system is crucial for maintaining water and nutrients uptake under drought stress. Wild watermelons possess resilient roots with excellent drought adaptability. However, the genetic factors controlling this trait remain uninvestigated. In this study, we conducted a bulk segregant analysis (BSA) on an F2 population consisting of two watermelon genotypes, wild and domesticated, which differ in their lateral root development under drought conditions. We identified two quantitative trait loci (qNLR_Dr. Chr01 and qNLR_Dr. Chr02) associated with the lateral root response to drought. Furthermore, we determined that a small region (0.93 Mb in qNLR_Dr. Chr01) is closely linked to drought adaptation through quantitative trait loci (QTL) validation and fine mapping. Transcriptome analysis of the parent roots under drought stress revealed unique effects on numerous genes in the sensitive genotype but not in the tolerant genotype. By integrating BSA, fine mapping, and the transcriptome, we identified six genes, namely L-Ascorbate Oxidase (AO), Cellulose Synthase-Interactive Protein 1 (CSI1), Late Embryogenesis Abundant Protein (LEA), Zinc-Finger Homeodomain Protein 2 (ZHD2), Pericycle Factor Type-A 5 (PFA5), and bZIP transcription factor 53-like (bZIP53-like), that might be involved in the drought adaptation. Our findings provide valuable QTLs and genes for marker-assisted selection in improving water-use efficiency and drought tolerance in watermelon. They also lay the groundwork for the genetic manipulation of drought-adapting genes in watermelon and other Cucurbitacea species. Full article
(This article belongs to the Special Issue Melon Breeding and Molecular Research)
Show Figures

Figure 1

16 pages, 2013 KiB  
Article
Identification of Genomic Regions Associated with Seedling Frost Tolerance in Sorghum
by Niegel La Borde and Ismail Dweikat
Genes 2023, 14(12), 2117; https://doi.org/10.3390/genes14122117 - 23 Nov 2023
Cited by 2 | Viewed by 1521
Abstract
Sorghum bicolor (L.) Moench is the fifth most valuable cereal crop globally. Although sorghum is tolerant to drought and elevated temperatures, it is susceptible to chilling, frost, and freezing stresses. Sorghum seeds planted in April may encounter frequent frost during late April and [...] Read more.
Sorghum bicolor (L.) Moench is the fifth most valuable cereal crop globally. Although sorghum is tolerant to drought and elevated temperatures, it is susceptible to chilling, frost, and freezing stresses. Sorghum seeds planted in April may encounter frequent frost during late April and early May. Early spring freezing temperatures adversely affect crop development and yield. This study aims to identify genomic regions associated with frost tolerance at the seedlings stage. Breeding freeze-tolerant cultivars require selection for freeze tolerance in nurseries. However, the unpredictability of environmental conditions complicates the identification of freeze-tolerant genotypes. An indoor selection protocol has been developed to investigate the genetic determinism of freeze tolerance at the seedling stages and its correlation with several developmental traits. To accomplish this, we used two populations of recombinant inbred lines (RIL) developed from crosses between cold-tolerant (CT19, ICSV700) and cold-sensitive (TX430, M81E) parents. The derived RIL populations were evaluated for single nucleotide polymorphism (SNP) using genotype-by-sequencing (GBS) under controlled environments for their response to freezing stress. Linkage maps were constructed with 464 and 875 SNPs for the CT19 X TX430 (C1) and ICSV700 X M81E(C2) populations. Using quantitative trait loci (QTL) mapping, we identified six QTLs conferring tolerance to freezing temperatures. One QTL in the C1 population and four QTLs in the C2 population, explain 17.75–98% of the phenotypic variance of traits measured. Proline leaf content was increased in response to exposing the seedlings to low temperatures. Candidate QTLs identified in this study could be further exploited to develop frost-tolerant cultivars as proxies in marker-assisted breeding, genomic selection, and genetic engineering. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Stress Responses)
Show Figures

Figure 1

32 pages, 1908 KiB  
Review
Genomic-Mediated Breeding Strategies for Global Warming in Chickpeas (Cicer arietinum L.)
by Shailesh Kumar Jain, Eric J. von Wettberg, Sumer Singh Punia, Ashok Kumar Parihar, Amrit Lamichaney, Jitendra Kumar, Debjyoti Sen Gupta, Sarfraz Ahmad, Naveen Chandra Pant, Girish Prasad Dixit, Hatice Sari, Duygu Sari, Amar Ma’ruf, Pelin Toker and Cengiz Toker
Agriculture 2023, 13(9), 1721; https://doi.org/10.3390/agriculture13091721 - 30 Aug 2023
Cited by 18 | Viewed by 3394
Abstract
Although chickpea (Cicer arietinum L.) has high yield potential, its seed yield is often low and unstable due to the impact of abiotic stresses, such as drought and heat. As a result of global warming, both drought and heat are estimated to [...] Read more.
Although chickpea (Cicer arietinum L.) has high yield potential, its seed yield is often low and unstable due to the impact of abiotic stresses, such as drought and heat. As a result of global warming, both drought and heat are estimated to be major yield constraints between one-quarter and one-third per annum. In the present review, genomic-mediated breeding strategies to increase resilience against global warming. Exacerbated drought and heat stresses have been examined to understand the latest advancement happening for better management of these challenges. Resistance mechanisms for drought and heat stresses consist of (i) escape via earliness, (ii) avoidance via morphological traits such as better root traits, compound leaves, or multipinnate leaves and double-/multiple-podded traits, and (iii) tolerance via molecular and physiological traits, such as special tissue and cellular abilities. Both stresses in chickpeas are quantitatively governed by minor genes and are profoundly influenced by edaphic and other environmental conditions. High-yield genotypes have traditionally been screened for resistance to drought and heat stresses in the target selection environment under stress conditions or in the simulacrum mediums under controlled conditions. There are many drought- and heat-tolerant genotypes among domestic and wild Cicer chickpeas, especially in accessions of C. reticulatum Ladiz., C. echinospermum P.H. Davis, and C. turcicum Toker, J. Berger, and Gokturk. The delineation of quantitative trait loci (QTLs) and genes allied to drought- and heat-related attributes have paved the way for designing stress-tolerant cultivars in chickpeas. Transgenic and “omics” technologies hold newer avenues for the basic understanding of background metabolic exchanges of QTLs/candidate genes for their further utilization. The overview of the effect of drought and heat stresses, its mechanisms/adaptive strategies, and markers linked to stress-related traits with their genetics and sources are pre-requisites for framing breeding programs of chickpeas with the intent of imparting drought tolerance. Ideotype chickpeas for resistance to drought and heat stresses were, therefore, developed directly using marker-aided selection over multiple locations. The current understanding of molecular breeding supported by functional genomics and omics technologies in developing drought- and heat-tolerant chickpea is discussed in this review. Full article
(This article belongs to the Special Issue Genetic Diversity and Variability Assessment in Field Crops)
Show Figures

Figure 1

47 pages, 2944 KiB  
Review
Molecular Advances to Combat Different Biotic and Abiotic Stresses in Linseed (Linum usitatissimum L.): A Comprehensive Review
by Shruti Paliwal, Manoj Kumar Tripathi, Sushma Tiwari, Niraj Tripathi, Devendra K. Payasi, Prakash N. Tiwari, Kirti Singh, Rakesh Kumar Yadav, Ruchi Asati and Shailja Chauhan
Genes 2023, 14(7), 1461; https://doi.org/10.3390/genes14071461 - 17 Jul 2023
Cited by 9 | Viewed by 5141
Abstract
Flax, or linseed, is considered a “superfood”, which means that it is a food with diverse health benefits and potentially useful bioactive ingredients. It is a multi-purpose crop that is prized for its seed oil, fibre, nutraceutical, and probiotic qualities. It is suited [...] Read more.
Flax, or linseed, is considered a “superfood”, which means that it is a food with diverse health benefits and potentially useful bioactive ingredients. It is a multi-purpose crop that is prized for its seed oil, fibre, nutraceutical, and probiotic qualities. It is suited to various habitats and agro-ecological conditions. Numerous abiotic and biotic stressors that can either have a direct or indirect impact on plant health are experienced by flax plants as a result of changing environmental circumstances. Research on the impact of various stresses and their possible ameliorators is prompted by such expectations. By inducing the loss of specific alleles and using a limited number of selected varieties, modern breeding techniques have decreased the overall genetic variability required for climate-smart agriculture. However, gene banks have well-managed collectionns of landraces, wild linseed accessions, and auxiliary Linum species that serve as an important source of novel alleles. In the past, flax-breeding techniques were prioritised, preserving high yield with other essential traits. Applications of molecular markers in modern breeding have made it easy to identify quantitative trait loci (QTLs) for various agronomic characteristics. The genetic diversity of linseed species and the evaluation of their tolerance to abiotic stresses, including drought, salinity, heavy metal tolerance, and temperature, as well as resistance to biotic stress factors, viz., rust, wilt, powdery mildew, and alternaria blight, despite addressing various morphotypes and the value of linseed as a supplement, are the primary topics of this review. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 6482 KiB  
Review
Breeding Drought-Tolerant Maize (Zea mays) Using Molecular Breeding Tools: Recent Advancements and Future Prospective
by Adnan Rasheed, Hongdong Jie, Basharat Ali, Pengliang He, Long Zhao, Yushen Ma, Hucheng Xing, Sameer H. Qari, Muhammad Umair Hassan, Muhammad Rizwan Hamid and Yucheng Jie
Agronomy 2023, 13(6), 1459; https://doi.org/10.3390/agronomy13061459 - 25 May 2023
Cited by 17 | Viewed by 7159
Abstract
As a most significant cereal crop, maize provides vital nutritional components to humans and livestock. Drought stress curtails maize growth and yield by impairing several morphological, physiological, and biochemical functions. The rising threats of drought stress significantly affect global food security and increase [...] Read more.
As a most significant cereal crop, maize provides vital nutritional components to humans and livestock. Drought stress curtails maize growth and yield by impairing several morphological, physiological, and biochemical functions. The rising threats of drought stress significantly affect global food security and increase the ratio of hunger and starvation. The use of molecular breeding techniques has enabled maize researchers to deeply examine the genetic control of drought tolerance and the genetic differences between genotypes to drought stress. Despite the significant progress in molecular genetics, the drought tolerance mechanism is still not fully understood. With the advancements in molecular research, researchers have identified several molecular factors associated with maize tolerance to drought stress. Quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) analysis have led to identifying QTL, and genes linked to drought tolerance in maize that can be further exploited for their possible breeding applications. Transcriptome and transcription factors (TFs) analysis has revealed the documentation of potential genes and protein groups that might be linked to drought tolerance and accelerate the drought breeding program. Genetic engineering has been used to develop transgenic maize cultivars that are resistant to drought stress. Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) is a new ray of hope to edit the gene of interest to enhance drought tolerance in maize and save both time and cost in cultivar development. In the current review article, we have tried to present an updated picture of the advancements of drought tolerance in maize and its future prospects. These organized pieces of information can assist future researchers in understanding the basis of drought tolerance to adopt a potential breeding tool for breeding drought-tolerant maize cultivars. Full article
Show Figures

Figure 1

23 pages, 6512 KiB  
Article
Integrated QTL Mapping, Meta-Analysis, and RNA-Sequencing Reveal Candidate Genes for Maize Deep-Sowing Tolerance
by Xiaoqiang Zhao, Yining Niu, Zakir Hossain, Jing Shi, Taotao Mao and Xiaodong Bai
Int. J. Mol. Sci. 2023, 24(7), 6770; https://doi.org/10.3390/ijms24076770 - 5 Apr 2023
Cited by 11 | Viewed by 2739
Abstract
Synergetic elongation of mesocotyl and coleoptile are crucial in governing maize seedlings emergence, especially for the maize sown in deep soil. Studying the genomic regions controlling maize deep-sowing tolerance would aid the development of new varieties that are resistant to harsh conditions, such [...] Read more.
Synergetic elongation of mesocotyl and coleoptile are crucial in governing maize seedlings emergence, especially for the maize sown in deep soil. Studying the genomic regions controlling maize deep-sowing tolerance would aid the development of new varieties that are resistant to harsh conditions, such as drought and low temperature during seed germination. Using 346 F2:3 maize population families from W64A × K12 cross at three sowing depths, we identified 33 quantitative trait loci (QTLs) for the emergence rate, mesocotyl, coleoptile, and seedling lengths via composite interval mapping (CIM). These loci explained 2.89% to 14.17% of phenotypic variation in a single environment, while 12 of 13 major QTLs were identified at two or more sowing environments. Among those, four major QTLs in Bin 1.09, Bin 4.08, Bin 6.01, and Bin 7.02 supported pleiotropy for multiple deep-sowing tolerant traits. Meta-analysis identified 17 meta-QTLs (MQTLs) based on 130 original QTLs from present and previous studies. RNA-Sequencing of mesocotyl and coleoptile in both parents (W64A and K12) at 3 cm and 20 cm sowing environments identified 50 candidate genes expressed differentially in all major QTLs and MQTLs regions: six involved in the circadian clock, 27 associated with phytohormones biosynthesis and signal transduction, seven controlled lignin biosynthesis, five regulated cell wall organization formation and stabilization, three were responsible for sucrose and starch metabolism, and two in the antioxidant enzyme system. These genes with highly interconnected networks may form a complex molecular mechanism of maize deep-sowing tolerance. Findings of this study will facilitate the construction of molecular modules for deep-sowing tolerance in maize. The major QTLs and MQTLs identified could be used in marker-assisted breeding to develop elite maize varieties. Full article
(This article belongs to the Special Issue Molecular Research in Maize)
Show Figures

Figure 1

19 pages, 4107 KiB  
Review
Role of Molecular Breeding Tools in Enhancing the Breeding of Drought-Resilient Cotton Genotypes: An Updated Review
by Adnan Rasheed, Long Zhao, Ali Raza, Athar Mahmood, Hucheng Xing, Xueying Lv, Hamza Saeed, Fatmah M. Alqahtani, Mohamed Hashem, Muhammad Umair Hassan, Syed Faheem Anjum Gillani and Yucheng Jie
Water 2023, 15(7), 1377; https://doi.org/10.3390/w15071377 - 3 Apr 2023
Cited by 13 | Viewed by 4372
Abstract
Drought stress is an inevitable factor that disturbs the production of plants by altering morphological, physiological, biochemical, and molecular functions. Breeding for drought tolerance requires a complete understanding of the molecular factors controlling stress-responsive pathways. The plant responds to drought stress by adopting [...] Read more.
Drought stress is an inevitable factor that disturbs the production of plants by altering morphological, physiological, biochemical, and molecular functions. Breeding for drought tolerance requires a complete understanding of the molecular factors controlling stress-responsive pathways. The plant responds to drought stress by adopting four mechanisms: avoidance, escape, tolerance, and recovery. Traditional plant-breeding tools have been employed to increase tolerance in cotton, but the complexity of drought tolerance has limited the use of these breeding methods. The plant adopts several key strategies against drought stress, such as activating the signaling network and activating molecular factors. Cotton breeders have been engaged in elucidating the molecular mechanisms of drought tolerance in cotton using significant molecular tools such as quantitative trait loci (QTL) mapping, transcription factor (TFs) analysis, transcriptome analysis, genome-wide association studies (GWAS), genetic engineering, and CRISPR/Cas9. Breeders have studied the functional description of genes and the interacting pathways accountable for controlling drought tolerance in cotton. Hundreds of genes/QTL have been identified, and many have been cloned for drought tolerance in cotton; however, a complete understanding of these traits still needs more study. This review presents a detailed overview of molecular tools, their application for improving drought tolerance in cotton, and their prospects. This review will help future researchers to conduct further studies to develop drought-tolerant cotton genotypes that can thrive under conditions of water scarcity. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

17 pages, 3023 KiB  
Article
Identification of Drought Tolerant Rice (Oryza Sativa L.) Genotypes with Asian and African Backgrounds
by Cyprien Ndikuryayo, Alexis Ndayiragije, Newton Lwiyiso Kilasi and Paul Kusolwa
Plants 2023, 12(4), 922; https://doi.org/10.3390/plants12040922 - 17 Feb 2023
Cited by 9 | Viewed by 3854
Abstract
Drought is among the major abiotic stresses on rice production that can cause yield losses of up to 100% under severe drought conditions. Neither of the rice varieties currently grown in Burundi can withstand very low and irregular precipitation. This study identified genotypes [...] Read more.
Drought is among the major abiotic stresses on rice production that can cause yield losses of up to 100% under severe drought conditions. Neither of the rice varieties currently grown in Burundi can withstand very low and irregular precipitation. This study identified genotypes that have putative quantitative trait loci (QTLs) associated with drought tolerance and determined their performance in the field. Two hundred and fifteen genotypes were grown in the field under both drought and irrigated conditions. Genomic deoxyribonucleic acid (DNA) was extracted from rice leaves for further genotypic screening. The results revealed the presence of the QTLs qDTY12.1, qDTY3.1, qDTY2-2_1, and qDTY1.1 in 90%, 85%, 53%, and 22% of the evaluated genotypes, respectively. The results of the phenotypic evaluation showed a significant yield reduction due to drought stress. Yield components and other agronomic traits were also negatively affected by drought. Genotypes having high yield best linear unbiased predictions (BLUPs) with two or more major QTLs for drought tolerance, including IR 108044-B-B-B-3-B-B, IR 92522-45-3-1-4, and BRRI DHAN 55 are of great interest for breeding programs to improve the drought tolerance of lines or varieties with other preferred traits. Full article
(This article belongs to the Special Issue Abiotic Stress of Crops: Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2017 KiB  
Article
Quantitative Trait Loci for Genotype and Genotype by Environment Interaction Effects for Seed Yield Plasticity to Terminal Water-Deficit Conditions in Canola (Brassica napus L.)
by Harsh Raman, Nawar Shamaya, Ramethaa Pirathiban, Brett McVittie, Rosy Raman, Brian Cullis and Andrew Easton
Plants 2023, 12(4), 720; https://doi.org/10.3390/plants12040720 - 6 Feb 2023
Cited by 4 | Viewed by 2465
Abstract
Canola plants suffer severe crop yield and oil content reductions when exposed to water-deficit conditions, especially during the reproductive stages of plant development. There is a pressing need to develop canola cultivars that can perform better under increased water-deficit conditions with changing weather [...] Read more.
Canola plants suffer severe crop yield and oil content reductions when exposed to water-deficit conditions, especially during the reproductive stages of plant development. There is a pressing need to develop canola cultivars that can perform better under increased water-deficit conditions with changing weather patterns. In this study, we analysed genetic determinants for the main effects of quantitative trait loci (QTL), (Q), and the interaction effects of QTL and Environment (QE) underlying seed yield and related traits utilising 223 doubled haploid (DH) lines of canola in well-watered and water-deficit conditions under a rainout shelter. Moderate water-deficit at the pre-flowering stage reduced the seed yield to 40.8%. Multi-environmental QTL analysis revealed 23 genomic regions associated with days to flower (DTF), plant height (PH) and seed yield (SY) under well-watered and water-deficit conditions. Three seed yield QTL for main effects were identified on chromosomes A09, C03, and C09, while two were related to QE interactions on A02 and C09. Two QTL regions were co-localised to similar genomic regions for flowering time and seed yield (A09) and the second for plant height and chlorophyll content. The A09 QTL was co-located with a previously mapped QTL for carbon isotope discrimination (Δ13C) that showed a positive relationship with seed yield in the same population. Opposite allelic effects for plasticity in seed yield were identified due to QE interactions in response to water stress on chromosomes A02 and C09. Our results showed that QTL’s allelic effects for DTF, PH, and SY and their correlation with Δ13C are stable across environments (field conditions, previous study) and contrasting water regimes (this study). The QTL and DH lines that showed high yield under well-watered and water-deficit conditions could be used to manipulate water-use efficiency for breeding improved canola cultivars. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

16 pages, 2526 KiB  
Article
Identification of Drought-Tolerance Genes in the Germination Stage of Soybean
by Xingzhen Zhao, Zhangxiong Liu, Huihui Li, Yanjun Zhang, Lili Yu, Xusheng Qi, Huawei Gao, Yinghui Li and Lijuan Qiu
Biology 2022, 11(12), 1812; https://doi.org/10.3390/biology11121812 - 13 Dec 2022
Cited by 11 | Viewed by 3215
Abstract
Drought stress influences the vigor of plant seeds and inhibits seed germination, making it one of the primary environmental factors adversely affecting food security. The seed germination stage is critical to ensuring the growth and productivity of soybeans in soils prone to drought [...] Read more.
Drought stress influences the vigor of plant seeds and inhibits seed germination, making it one of the primary environmental factors adversely affecting food security. The seed germination stage is critical to ensuring the growth and productivity of soybeans in soils prone to drought conditions. We here examined the genetic diversity and drought-tolerance phenotypes of 410 accessions of a germplasm diversity panel for soybean and conducted quantitative genetics analyses to identify loci associated with drought tolerance of seed germination. We uncovered significant differences among the diverse genotypes for four growth indices and five drought-tolerance indices, which revealed abundant variation among genotypes, upon drought stress, and for genotype × treatment effects. We also used 158,327 SNP markers and performed GWAS for the drought-related traits. Our data met the conditions (PCA + K) for using a mixed linear model in TASSEL, and we thus identified 26 SNPs associated with drought tolerance indices for germination stage distributed across 10 chromosomes. Nine SNP sites, including, for example, Gm20_34956219 and Gm20_36902659, were associated with two or more phenotypic indices, and there were nine SNP markers located in or adjacent to (within 500 kb) previously reported drought tolerance QTLs. These SNPs led to our identification of 41 candidate genes related to drought tolerance in the germination stage. The results of our study contribute to a deeper understanding of the genetic mechanisms underlying drought tolerance in soybeans at the germination stage, thereby providing a molecular basis for identifying useful soybean germplasm for breeding new drought-tolerant varieties. Full article
(This article belongs to the Special Issue Eco-Physiological and Molecular Basis of Stress Tolerance in Plants)
Show Figures

Figure 1

21 pages, 2757 KiB  
Article
Conuping BSA-Seq and RNA-Seq Reveal the Molecular Pathway and Genes Associated with the Plant Height of Foxtail Millet (Setaria italica)
by Yongbin Gao, Yuhao Yuan, Xiongying Zhang, Hui Song, Qinghua Yang, Pu Yang, Xiaoli Gao, Jinfeng Gao and Baili Feng
Int. J. Mol. Sci. 2022, 23(19), 11824; https://doi.org/10.3390/ijms231911824 - 5 Oct 2022
Cited by 16 | Viewed by 4002
Abstract
Foxtail millet (Setaria italica) plays an important role in C4 crop research and agricultural development in arid areas due to its short growth period, drought tolerance, and barren tolerance. Exploration of the dwarfing mechanism and the dwarf genes of foxtail millet [...] Read more.
Foxtail millet (Setaria italica) plays an important role in C4 crop research and agricultural development in arid areas due to its short growth period, drought tolerance, and barren tolerance. Exploration of the dwarfing mechanism and the dwarf genes of foxtail millet can provide a reference for dwarf breeding and dwarf research of other C4 crops. In this study, genetic analysis was performed using phenotypic data, candidate genes were screened by bulk segregant analysis sequencing (BSA-Seq); differentially expressed genes and metabolic pathways in different strains of high samples were analyzed by RNA sequencing (RNA-Seq). The association analysis of BSA-Seq and RNA-Seq further narrowed the candidate range. As a result, a total of three quantitative trait loci (QTLs) and nine candidate genes related to plant height were obtained on chromosomes I and IX. Based on the functional prediction of the candidate genes, we propose a hypothetical mechanism for the formation of millet dwarfing, in which, metabolism and MAPK signaling play important roles in the formation of foxtail millet plant height. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop