Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = downburst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6161 KB  
Article
Machine Learning Indicates Stronger Future Thunderstorm Downbursts Affecting Southeast Australian Airports
by Milton Speer, Lance Leslie and Shuang Wang
Climate 2025, 13(6), 127; https://doi.org/10.3390/cli13060127 - 15 Jun 2025
Viewed by 1158
Abstract
Thunderstorms downbursts can be hazardous during aircraft landing and take-off. A warming climate increases low- to mid-level troposphere water vapor, typically transported from high sea-surface temperature regions. Consequently, the future occurrence and intensity of destructive wind gusts from wet microburst thunderstorms are expected [...] Read more.
Thunderstorms downbursts can be hazardous during aircraft landing and take-off. A warming climate increases low- to mid-level troposphere water vapor, typically transported from high sea-surface temperature regions. Consequently, the future occurrence and intensity of destructive wind gusts from wet microburst thunderstorms are expected to increase. Wet microbursts are downdrafts from heavily precipitating thunderstorms and are several kilometers in diameter, often producing near-surface extreme wind gusts. Brisbane airport recorded a wet microburst wind gust of 157 km/h in November 2016. Numerous locations in eastern Australia experience warm season (October to March) wet microbursts. Here, eight machine learning techniques comprising forward and backward linear regression, radial basis forward and backward support vector regression, polynomial-based forward and backward support vector regression, and forward and backward random forest selection were employed. They identified primary attributes for increased atmospheric instability by warm moist air influx from regions of high sea-surface temperatures. The climate drivers detected here are indicative of increased future eastern Australian warm season thunderstorm downbursts, occurring as wet microbursts. They suggest a greater frequency and intensity of impacts on aircraft safety and operations affecting major east coast airports, such as Sydney and Brisbane, and smaller aircraft at inland regional airports in southeastern Australia. Full article
(This article belongs to the Special Issue Extreme Weather Detection, Attribution and Adaptation Design)
Show Figures

Figure 1

19 pages, 16821 KB  
Communication
Observation of Downburst Associated with Intense Thunderstorms Encountered by an Aircraft at Hong Kong International Airport
by Ying-wa Chan, Pak-wai Chan and Ping Cheung
Appl. Sci. 2025, 15(4), 2223; https://doi.org/10.3390/app15042223 - 19 Feb 2025
Cited by 2 | Viewed by 2195
Abstract
In situ observational data from aircraft within microbursts is rather rare in Hong Kong, and such a case is documented in this paper by comparison with the large amount of meteorological data in the vicinity of Hong Kong International Airport, in particular, from [...] Read more.
In situ observational data from aircraft within microbursts is rather rare in Hong Kong, and such a case is documented in this paper by comparison with the large amount of meteorological data in the vicinity of Hong Kong International Airport, in particular, from the weather radars. Three-dimensional wind field retrieval has been conducted from the radars, and the wind data so obtained are compared with the vertical velocity and eddy dissipation rate measured onboard the aircraft during the encountering of two microbursts. The two datasets are found to be generally consistent with each other. The dataset and the meteorological phenomenon studied in this paper are unique, and it is hoped that such a documented case could be useful for reference for aviation weather forecasting and alerting elsewhere in the world and the design of new aircraft. Full article
Show Figures

Figure 1

28 pages, 6037 KB  
Article
The Reduction of Embodied Carbon in Steel Structures Through the Implementation of Control Systems
by Carlos Mauricio Patlán Manjarrez, Hugo Hernández Barrios and Dayana Pérez Rodríguez
Buildings 2025, 15(3), 482; https://doi.org/10.3390/buildings15030482 - 4 Feb 2025
Viewed by 1446
Abstract
The rapid expansion of global infrastructure has amplified the environmental impact of construction, particularly through the carbon footprint of structures. Addressing this challenge, this study examined the potential of vibration control systems to reduce the carbon footprint of steel-frame buildings subject to dynamic [...] Read more.
The rapid expansion of global infrastructure has amplified the environmental impact of construction, particularly through the carbon footprint of structures. Addressing this challenge, this study examined the potential of vibration control systems to reduce the carbon footprint of steel-frame buildings subject to dynamic wind loads. Utilizing the Force Analogy Method (FAM), which effectively addresses nonlinearity in structural analysis, the research modeled a 10-story steel frame subjected to synthetic downburst wind time history velocities generated through spectral simulation techniques. Both passive and active control systems were implemented, with a focus on tuned mass dampers (TMDs) and active mass dampers (AMDs) to reduce structural displacements and accelerations. The results revealed that these systems not only significantly reduce the peak structural responses but also, when combined with optimized manufacturing methods, lead to a decrease in steel usage. This optimization contributes to a reduction of up to 20% in CO2 emissions during the pre-use stage of a building’s lifecycle. By enhancing the material efficiency and minimizing the environmental impacts, this research highlights the critical role of advanced control systems, supported by new nonlinear analytical methods, in promoting environmentally conscious engineering. This approach aims to guide future generations in developing structural engineering projects that prioritize sustainable practices. Full article
(This article belongs to the Special Issue Energy Performance in Sustainable Architecture Design)
Show Figures

Figure 1

15 pages, 6512 KB  
Article
Wind Field Characteristics of the 13 June 2014 Downburst Event in Beijing Based on Meteorological Tower Records
by Shi Zhang, Yibo Wang, Zengzhi Qian, Kexin Guo, Xiaoda Xu, Daxing Zhou and Qing Cao
Atmosphere 2025, 16(1), 27; https://doi.org/10.3390/atmos16010027 - 29 Dec 2024
Cited by 1 | Viewed by 948
Abstract
Understanding the characteristics of downburst wind fields is crucial for studying structural resistance to downbursts. Based on measured data from the 325 m meteorological tower in Beijing, this paper investigates the spatiotemporal evolution of mean and fluctuating winds during a non-stationary downburst. Key [...] Read more.
Understanding the characteristics of downburst wind fields is crucial for studying structural resistance to downbursts. Based on measured data from the 325 m meteorological tower in Beijing, this paper investigates the spatiotemporal evolution of mean and fluctuating winds during a non-stationary downburst. Key wind field parameters such as the mean wind speed, turbulence intensity, turbulence integral length scale, probability density function, power spectral density, evolutionary power spectral density, and gust factor are statistically analyzed. The results show that the wind speed of downburst undergoes rapid changes, with wind direction significantly influenced by outflow vortices at low altitudes and relatively stable at higher altitudes. When the event happens, the temperature decreases sharply. The mean wind speeds and turbulence integral length scale of the downburst exhibit pronounced “nose-shaped” profile characteristics at the moment when peak wind speed occurs. The turbulence intensity at lower altitudes predominantly exceeds that at higher altitudes. The probability density distribution function of the reduced fluctuating wind speed matches the standard Gaussian distribution curve. The fluctuating wind speeds of the downburst exhibit significant non-stationary characteristics, with their energy mainly distributing in the period of rapid change of wind speed in the time domain and concentrating in the vicinity of 0–0.1 Hz in the frequency domain. The gust factor reaches its maximum at the moment when the peak wind speed occurs. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
Show Figures

Figure 1

10 pages, 5879 KB  
Technical Note
Assessing Downburst Kinematics Using Video Footage Analysis
by Djordje Romanic and Lalita Allard Vavatsikos
Atmosphere 2024, 15(10), 1168; https://doi.org/10.3390/atmos15101168 - 30 Sep 2024
Cited by 2 | Viewed by 1467
Abstract
Measurements of downburst outflows using standard meteorological instruments (e.g., anemometers) are rare due to their transient and localized nature. However, video recordings of such events are becoming more frequent. This short communication (Technical Note) study presents a new approach to estimating the kinematics [...] Read more.
Measurements of downburst outflows using standard meteorological instruments (e.g., anemometers) are rare due to their transient and localized nature. However, video recordings of such events are becoming more frequent. This short communication (Technical Note) study presents a new approach to estimating the kinematics of a downburst event using video footage recordings of the event. The main geometric dimensions of the event, such as downdraft diameter, cloud base height, outflow depth, and the radius of the outflow at a given moment in time, are estimated by sizing them against reference structures of known dimensions that are present in the video footage. From this analysis, and knowing the frame rate of the video recording, one can estimate the characteristic velocities in the downburst event, such as the mean downdraft velocity and the mean velocity of the radial outflow propagation. The proposed method is tested on an August 2015 downburst event that hit Tucson, Arizona, United States. The diameter of the downburst outflow increased with the time from approximately 1.10 km to 3.35 km. This range of values indicates that the event was a microburst. The mean descending velocity of downburst downdraft was 8.9 m s−1 and the horizontal velocity of outflow propagation was 17.7 m s−1. The latter velocity is similar to the measured wind gust at the nearby weather station and Doppler radar. The outflow depth is estimated at 160 m, and the cloud base height was approximately 1.24 km. Estimating the kinematics of downbursts using video footage, while subject to certain limitations, does yield a useful estimation of the main downburst kinematics that contribute to a better quantification of these localized windstorms. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 4426 KB  
Review
Review of Wind Field Characteristics of Downbursts and Wind Effects on Structures under Their Action
by Shi Zhang, Kexin Guo, Qingshan Yang and Xiaoda Xu
Buildings 2024, 14(9), 2653; https://doi.org/10.3390/buildings14092653 - 26 Aug 2024
Cited by 3 | Viewed by 2850
Abstract
Downbursts belong to sudden, local, and strong convection weather, which present significant destruction for structures. At any given time, there are approximately 2000 thunderstorms occurring on the Earth. Many studies have investigated the effects of downbursts on different structures. However, the extensive range [...] Read more.
Downbursts belong to sudden, local, and strong convection weather, which present significant destruction for structures. At any given time, there are approximately 2000 thunderstorms occurring on the Earth. Many studies have investigated the effects of downbursts on different structures. However, the extensive range of varying wind field parameters and the diverse representations of wind speeds render the study of structural wind effects complex and challenging under downbursts. This study firstly reviews the research of wind field properties of downbursts according to four common approaches, and the major findings, advantages, and disadvantages of which are concluded. Then, failure analysis of transmission line systems under stationary and moving downbursts is explored. The article also reviews the wind pressure on the roof of different kinds of low-rise buildings, and some dominant parameters, namely roof slope, distance of building from downburst center, wind direction angle, and so on, are discussed. Moreover, the wind effects caused by downbursts on high-rise buildings and some specialized structures are also considered because more and more wind hazards are related to downbursts. Finally, the limitations of the current study are pointed out, and recommendations for further research are given for the accurate assessment of the effects of wind on buildings, with a view to providing safer and more economical wind-resistant design solutions for structures. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 6319 KB  
Article
Gust Modeling with State-of-the-Art Computational Fluid Dynamics (CFD) Software and Its Influence on the Aerodynamic Characteristics of an Unmanned Aerial Vehicle
by Michał Frant, Stanisław Kachel and Wojciech Maślanka
Energies 2023, 16(19), 6847; https://doi.org/10.3390/en16196847 - 27 Sep 2023
Cited by 8 | Viewed by 2997
Abstract
The aim of this article is to propose methods for obtaining the aerodynamic characteristics of a flying object in a turbulent atmosphere. This article presents static aerodynamic characteristics of an unmanned aerial vehicle (UAV), which have been obtained during experimental examinations and during [...] Read more.
The aim of this article is to propose methods for obtaining the aerodynamic characteristics of a flying object in a turbulent atmosphere. This article presents static aerodynamic characteristics of an unmanned aerial vehicle (UAV), which have been obtained during experimental examinations and during numerical calculations. The results have been compared with each other in order to validate the numerical model and methods. The method for modeling gusts using state-of-the-art CFD software (i.e., ANSYS Fluent Release 16.2) has been proposed and applied to obtain the aerodynamic characteristics of a UAV including during gusts. Two cases have been analyzed. In the first case, a downburst was modeled. In the second case, a single oblique gust was modeled (i.e., changing the angle of attack and the angle of sideslip), that had a complicated time course in regard to its velocity. Although this article is focused on the assessment of the vulnerability of a UAV model to gusts, the practical implications of the proposed methodology are applicable to a wide selection of objects, including wind turbines. Full article
(This article belongs to the Topic Computational Fluid Dynamics (CFD) and Its Applications)
Show Figures

Figure 1

29 pages, 11112 KB  
Article
Fragility Analysis of Transmission Towers Subjected to Downburst Winds
by Chao Zhu, Qingshan Yang, Dahai Wang, Guoqing Huang and Shuguo Liang
Appl. Sci. 2023, 13(16), 9167; https://doi.org/10.3390/app13169167 - 11 Aug 2023
Cited by 12 | Viewed by 3427
Abstract
A downburst is a typical local highly intensive wind all over the world, which is attributed to be the main cause of wind damage to transmission lines in inland areas worldwide. The collapse accidents of transmission towers under the downburst still occur every [...] Read more.
A downburst is a typical local highly intensive wind all over the world, which is attributed to be the main cause of wind damage to transmission lines in inland areas worldwide. The collapse accidents of transmission towers under the downburst still occur every year. Therefore, it is of great significance to assess the safety of the transmission towers under downbursts. The motivation of the present study is to propose a fragility assessment method for transmission towers under the action of a downburst considering the uncertainty of wind-resistance capacity and the stochastic wind load effect. First, the downburst wind field of the transmission tower with different wind attack angles and different radial distances is simulated according to the mixed stochastic model. Then, random material characteristic samples are generated by the Latin hypercube sampling technique and applied to establish uncertain finite element models for transmission towers. Next, the static nonlinear buckling analysis is carried out by numerical methods to determine the ultimate capacity under the downburst wind load. The parameter analysis of different wind attack angles and radial distances between the downburst and the tower is conducted to determine the most unfavorable location of the maximum response. The failure mode of the transmission tower and the probabilities of the initial failure main members are summarized. Finally, the fragility curves of the transmission tower under the downburst and the atmospheric boundary layer (ABL) wind are compared. The results show that the maximum response is located at R = 1.6D. Most of the initial buckling members are located close to the first section of the tower. The fragility curves of the tower under the downburst are more dangerous than the ABL wind with the attack angle increasing from 0° to 90°. Furthermore, considering the probability model of intensity and direction of the downburst and based on the previous fragility analysis, the collapse probability of the transmission tower caused by the downburst is obtained. By probability analysis of the parameters, including layout conditions, different directions, and different wind speeds, it is found that the most favorable arrangement is 157.5°, and the most unfavorable arrangement is 112.5°. Full article
Show Figures

Figure 1

23 pages, 10334 KB  
Article
Numerical Simulation of Long-Span Bridge Response under Downburst: Parameter Optimization Using a Surrogate Model
by Yu Feng, Lingfeng Xin, Jianming Hao, Nan Ding and Feng Wang
Mathematics 2023, 11(14), 3150; https://doi.org/10.3390/math11143150 - 17 Jul 2023
Cited by 3 | Viewed by 1829
Abstract
Long-span bridges located in thunderstorm-prone areas can potentially be struck by downburst transient winds. In this study, the downburst time-varying mean wind was simulated by an impinging jet model based on computational fluid dynamics (CFD). To make the simulation results fit well with [...] Read more.
Long-span bridges located in thunderstorm-prone areas can potentially be struck by downburst transient winds. In this study, the downburst time-varying mean wind was simulated by an impinging jet model based on computational fluid dynamics (CFD). To make the simulation results fit well with the measurements, a parameter optimization method was developed. The objective function was established based on the errors between the simulated characteristic points and the target values from the measurement data. To increase the effectiveness, a Kriging surrogate model that was trained using data from numerical simulations was used. The parameter optimization method and the Kriging model were verified using five groups of test samples. The optimization efficiency was significantly increased by replacing the numerical model with a surrogate model during the optimization iteration. The simulation accuracy was clearly improved by the numerical modeling of a downburst based on optimized parameters. Subsequently, the nonstationary turbulent downburst wind was obtained by the combination of the Hilbert-based nonstationary fluctuations and the CFD-based time-varying trend. Finally, the dynamic response of a long-span bridge subjected to the moving downburst was presented. The results based on the simulation validate the optimized downburst wind field and highlight the significant influence on the bridge’s aerodynamics and buffeting response. Full article
Show Figures

Figure 1

14 pages, 3885 KB  
Article
Experimental Simulation of Thunderstorm Profiles in an Atmospheric Boundary Layer Wind Tunnel
by Camila Aldereguía Sánchez, Federica Tubino, Anna Bagnara and Giuseppe Piccardo
Appl. Sci. 2023, 13(14), 8064; https://doi.org/10.3390/app13148064 - 10 Jul 2023
Cited by 8 | Viewed by 2814
Abstract
Thunderstorms have different features in comparison with synoptic events, including a typical nose-shaped mean wind speed profile and non-stationary characteristics in time intervals from 10 min to 1 h. The simulation of thunderstorms in traditional wind tunnels requires suitable devices in order to [...] Read more.
Thunderstorms have different features in comparison with synoptic events, including a typical nose-shaped mean wind speed profile and non-stationary characteristics in time intervals from 10 min to 1 h. The simulation of thunderstorms in traditional wind tunnels requires suitable devices in order to replicate their peculiar characteristics. Disregarding the non-stationary characteristics of thunderstorm outflows, this paper aims to study the possibility of adopting a passive device such as a specially designed grid in order to reproduce the nose-shaped mean wind speed profile. A widely adopted model of the mean wind velocity profile from the literature is employed as a target profile for the verification of the experimental findings. The results obtained show a good agreement between the measured and target mean wind speed profiles and an acceptable turbulence intensity level compared with full-scale and experimental measurements. The proposed device offers a practical and cost-effective solution to simulate the main characteristics of a thunderstorm event in a traditional atmospheric boundary layer wind tunnel, which could be adopted to assess the significance of thunderstorm loading on civil engineering structures and define the requirement for ad hoc specialist studies. Full article
(This article belongs to the Special Issue Structural Wind Engineering)
Show Figures

Figure 1

32 pages, 18737 KB  
Article
Numerical Study of the Flow Characteristics of Downburst-like Wind over the 3D Hill Using Different Turbulence Models
by Bowen Yan, Ruifang Shen, Chenyan Ma, Xu Cheng, Guoqing Huang, Zhitao Yan, Xiao Li and Zhigang Zhang
Appl. Sci. 2023, 13(12), 7098; https://doi.org/10.3390/app13127098 - 14 Jun 2023
Cited by 1 | Viewed by 2281
Abstract
With the rapid development of computational fluid dynamics (CFD) technology, it has been widely used to study the wind field characteristics of downbursts in mountainous areas. However, there is little guidance on the selection of different turbulence models for simulating downburst wind fields [...] Read more.
With the rapid development of computational fluid dynamics (CFD) technology, it has been widely used to study the wind field characteristics of downbursts in mountainous areas. However, there is little guidance on the selection of different turbulence models for simulating downburst wind fields over hills using CFD, and few comparative studies have been conducted. This paper used nine turbulence models to simulate the wind field of a downburst over a 3D quadratic ideal hill. The simulated values of average and transient winds were compared with wind tunnel test data, and the flow characteristics at different moments under a downburst were analyzed. The flow characteristics in the wake region of the downburst over the hill are also quantitatively analyzed using the proper orthogonal decomposition (POD) method. The results show that approximately 85% of the results from the LES and REA models fall within a 30% error range, so the large eddy simulation (LES) model and the realizable k-ε model (REA) are more accurate in simulating the mean wind field, and the transient wind field simulated by the LES model is also in good agreement with the experimental data. In addition, this paper reveals the evolution mechanism of the transient wind field structure over a hill model under a downburst and finds that the first-order mode obtained by POD may be related to the acceleration effect on the hilltop. Full article
(This article belongs to the Special Issue City Resilience to Windstorm Hazard)
Show Figures

Figure 1

19 pages, 8046 KB  
Article
Semiempirical Models of Speedup Effect for Downburst Wind Field over 3-D Hills
by Bowen Yan, Yini He, Chenyan Ma and Xu Cheng
Atmosphere 2023, 14(4), 694; https://doi.org/10.3390/atmos14040694 - 7 Apr 2023
Cited by 5 | Viewed by 1828
Abstract
Downbursts occur frequently in mountainous regions, such as the southwest of China, and causing extensive damage to engineering structures. While some researchers have developed semiempirical models for the speedup effect, most are based on the wind field in the boundary layer over the [...] Read more.
Downbursts occur frequently in mountainous regions, such as the southwest of China, and causing extensive damage to engineering structures. While some researchers have developed semiempirical models for the speedup effect, most are based on the wind field in the boundary layer over the hill, and there is a lack of semiempirical models for the downburst wind field over the hill. This study employs three RANS (Reynolds Average Navier-Stokes) turbulence models to numerically simulate the downburst wind field over a quadratic curved hill. The realizable k-ε model is selected as the optimal model for the subsequent numerical simulations based on comparison with wind tunnel test results. Then, a semiempirical model of the speedup effect of the downburst wind field over the hill is constructed by numerically simulating the downburst wind field over the hill with different radial locations and different slopes. Finally, the constructed semiempirical model is validated and demonstrates good accuracy. Full article
(This article belongs to the Special Issue Advances in Computational Wind Engineering and Wind Energy)
Show Figures

Figure 1

19 pages, 16327 KB  
Article
Simulation Analyses on a Downburst Event That Caused a Severe Tower Toppling down Accident in Zhejiang (China)
by Danyu Li, Jinghua Liu, Bin Liu, Wenqi Fan, Dongwen Yang and Xue Xiao
Atmosphere 2023, 14(3), 427; https://doi.org/10.3390/atmos14030427 - 21 Feb 2023
Cited by 3 | Viewed by 2231
Abstract
The downburst events have been a research focus for decades, as their associated disastrously strong winds pose a great threat to aviation, the shipping industry, agriculture, and the power industry. On 14 May 2021, a series of severe convection occurred in middle and [...] Read more.
The downburst events have been a research focus for decades, as their associated disastrously strong winds pose a great threat to aviation, the shipping industry, agriculture, and the power industry. On 14 May 2021, a series of severe convection occurred in middle and eastern China, during which six 500-kilovolt transmission line towers in Zhejiang were toppled down by a downburst event, resulting in a large range of power outages. By using the Weather Research and Forecasting (WRF) model version 4.4, key features of the downburst event were reproduced reasonably; based on which, we explored the evolutionary mechanisms and the three-dimensional structures of the strong winds associated with the downburst event. It was found that a southwest–northeast-orientated, eastward moving strong squall line was the parent convection system for the downburst event. The downburst-associated convection was deep (from surface to 200 hPa); in the near surface layer, it was mainly associated with positive geopotential height and negative temperature deviations, whereas, at higher levels, it was mainly associated with negative geopotential height and positive temperature deviations. Backward trajectory analysis indicates that the air particles that came from the middle troposphere west of the key region (~61.2% in proportion) were crucial for producing the strong winds of the downburst event. These air particles experienced notable descending processes, during which most of the air particles decreased notably in their potential temperature, while they increased significantly in their specific humidity. The kinetic energy budget analyses denote that, for the region surrounding the location where the tower toppling appeared, the work done by the strong pressure gradient force between the high-pressure closed center (corresponding to intense descending motions) and the low-pressure closed center (corresponding to strong latent heat release) dominated the rapid wind enhancement. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 1293 KB  
Article
Autonomous Landing of an UAV Using H Based Model Predictive Control
by Zohaib Latif, Amir Shahzad, Aamer Iqbal Bhatti, James Ferris Whidborne and Raza Samar
Drones 2022, 6(12), 416; https://doi.org/10.3390/drones6120416 - 15 Dec 2022
Cited by 13 | Viewed by 4600
Abstract
Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust [...] Read more.
Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control system is required to maintain the performance requirements during landing. The paper proposes a loop-shaping-based Model Predictive Control (MPC) approach for autonomous UAV landings. Instead of conventional MPC plant model augmentation, the input and output weights are designed in the frequency domain to meet the transient and steady-state performance requirements. Then, the H loop shaping design procedure is used to synthesize the state-feedback controller for the shaped plant. This linear state-feedback control law is then used to solve an inverse optimization problem to design the cost function matrices for MPC. The designed MPC inherits the small-signal characteristics of the H controller when constraints are inactive (i.e., perturbation around equilibrium points that keep the system within saturation limits). The H loop shaping synthesis results in an observer plus state feedback structure. This state estimator initializes the MPC problem at each time step. The control law is successfully evaluated in a non-linear simulation environment under moderate and severe wind downburst. It rejects unmeasured disturbances, has good transient performance, provides an excellent stability margin, and enforces input constraints. Full article
Show Figures

Figure 1

17 pages, 6897 KB  
Article
Study on Stability of Transmission Tower-Line System under a Downburst
by Yongli Zhong, Shun Li, Zhitao Yan, Xinpeng Liu, Jun Luo and Weichen Jin
Buildings 2022, 12(9), 1338; https://doi.org/10.3390/buildings12091338 - 31 Aug 2022
Cited by 3 | Viewed by 4973
Abstract
A downburst is one of the high-intensity winds that cause transmission tower failures. In recent years, downbursts have brought great disasters to the economies and lives of people all around the world. In this paper, the dynamic stability of the transmission tower-line system [...] Read more.
A downburst is one of the high-intensity winds that cause transmission tower failures. In recent years, downbursts have brought great disasters to the economies and lives of people all around the world. In this paper, the dynamic stability of the transmission tower-line system under a downburst is analyzed. The deterministic-random mixed model is used to generate the downburst wind field and ANSYS software is employed to establish the finite element model of the transmission tower-line system. The response characteristics of the transmission tower-line system in the downburst and the atmospheric boundary layer (ABL) wind fields are compared through time history analysis. The displacement response of the transmission tower is analyzed with different Zmax values and attack angles. Based on the Budiansky–Roth criterion and dynamic incremental method, the dynamic stability of the transmission tower system under the action of the downburst wind field is studied, and the corresponding wind speed conditions when the transmission tower-line system is unstable are obtained. The results show that the top displacement of the tower-line system under the action of a downburst is 1.83 times that under the ABL wind. The tower top acceleration under the downburst is 1.57 times that under ABL wind. The most unfavorable wind attack angle for a transmission tower-line system is 90°. When Zmax is within the height range of the transmission tower, the influence on the displacement of the transmission tower increases with the increase in Zmax. When Zmax exceeds the height range of the transmission tower, the influence on the displacement of the transmission tower decreases. Under the most unfavorable wind attack angle, the influence of the conductor on the stability of the transmission tower is obvious. Full article
Show Figures

Figure 1

Back to TopTop