Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = double-peak seasonality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 671
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

23 pages, 8407 KiB  
Article
Assessing the Combined Influence of Indoor Air Quality and Visitor Flow Toward Preventive Conservation at the Peggy Guggenheim Collection
by Maria Catrambone, Emiliano Cristiani, Cristiano Riminesi, Elia Onofri and Luciano Pensabene Buemi
Atmosphere 2025, 16(7), 860; https://doi.org/10.3390/atmos16070860 - 15 Jul 2025
Viewed by 375
Abstract
The study at the Peggy Guggenheim Collection in Venice highlights critical interactions between indoor air quality, visitor dynamics, and microclimatic conditions, offering insights into preventive conservation of modern artworks. By analyzing pollutants such as ammonia, formaldehyde, and organic acids, alongside visitor density and [...] Read more.
The study at the Peggy Guggenheim Collection in Venice highlights critical interactions between indoor air quality, visitor dynamics, and microclimatic conditions, offering insights into preventive conservation of modern artworks. By analyzing pollutants such as ammonia, formaldehyde, and organic acids, alongside visitor density and environmental data, the research identified key patterns and risks. Through three seasonal monitoring campaigns, the concentrations of SO2 (sulphur dioxide), NO (nitric oxide), NO2 (nitrogen dioxide), NOx (nitrogen oxides), HONO (nitrous acid), HNO3 (nitric acid), O3 (ozone), NH3 (ammonia), CH3COOH (acetic acid), HCOOH (formic acid), and HCHO (formaldehyde) were determined using passive samplers, as well as temperature and relative humidity data loggers. In addition, two specific short-term monitoring campaigns focused on NH3 were performed to evaluate the influence of visitor presence on indoor concentrations of the above compounds and environmental parameters. NH3 and HCHO concentrations spiked during high visitor occupancy, with NH3 levels doubling in crowded periods. Short-term NH3 campaigns confirmed a direct correlation between visitor numbers and the above indoor concentrations, likely due to human emissions (e.g., sweat, breath) and off-gassing from materials. The indoor/outdoor ratios indicated that several pollutants originated from indoor sources, with ammonia and acetic acid showing the highest indoor concentrations. By measuring the number of visitors and microclimate parameters (temperature and humidity) every 3 s, we were able to precisely estimate the causality and the temporal shift between these quantities, both at small time scale (a few minute delay between peaks) and at medium time scale (daily average conditions due to the continuous inflow and outflow of visitors). Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 11734 KiB  
Article
Predictive Assessment of Forest Fire Risk in the Hindu Kush Himalaya (HKH) Region Using HIWAT Data Integration
by Sunil Thapa, Tek Maraseni, Hari Krishna Dhonju, Kiran Shakya, Bikram Shakya, Armando Apan and Bikram Banerjee
Remote Sens. 2025, 17(13), 2255; https://doi.org/10.3390/rs17132255 - 30 Jun 2025
Viewed by 410
Abstract
Forest fires in the Hindu Kush Himalaya (HKH) region are increasing in frequency and severity, driven by climate variability, prolonged dry periods, and human activity. Nepal, a critical part of the HKH, recorded over 22,700 forest fire events in the past decade, with [...] Read more.
Forest fires in the Hindu Kush Himalaya (HKH) region are increasing in frequency and severity, driven by climate variability, prolonged dry periods, and human activity. Nepal, a critical part of the HKH, recorded over 22,700 forest fire events in the past decade, with fire incidence nearly doubling in 2023. Despite this growing threat, operational early warning systems remain limited. This study presents Nepal’s first high-resolution early fire risk outlook system, developed by adopting the Canadian Fire Weather Index (FWI) using meteorological forecasts from the High-Impact Weather Assessment Toolkit (HIWAT). The system generates daily and two-day forecasts using a fully automated Python-based workflow and publishes results as Web Map Services (WMS). Model validation against MODIS, VIIRS, and ground fire records for 2023 showed that over 80% of fires occurred in zones classified as Moderate to Very High risk. Spatiotemporal analysis confirmed fire seasonality, with peaks in mid-April and over 65% of fires occurring in forested areas. The system’s integration of satellite data and high-resolution forecasts improves the spatial and temporal accuracy of fire danger predictions. This research presents a novel, scalable, and operational framework tailored for data-scarce and topographically complex regions. Its transferability holds substantial potential for strengthening anticipatory fire management and climate adaptation strategies across the HKH and beyond. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

17 pages, 7728 KiB  
Article
Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Pepper Yield and Soil GHGs Emissions
by Antonio Manco, Matteo Giaccone, Luca Vitale, Giuseppe Maglione, Maria Riccardi, Bruno Di Matteo, Andrea Esposito, Vincenzo Magliulo and Anna Tedeschi
Horticulturae 2025, 11(6), 708; https://doi.org/10.3390/horticulturae11060708 - 19 Jun 2025
Viewed by 749
Abstract
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under [...] Read more.
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under two nitrogen fertilization methods: granular fertilization versus low-frequency fertigation with urea, each supplying about 63 kg N ha−1. Eight automated static chambers coupled to a cavity ring-down spectrometer monitored soil CO2 and N2O fluxes throughout the season. Cumulative emissions did not differ between treatments (CO2: 811 ± 6 g m−2 vs. 881 ± 4 g m−2; N2O: 0.038 ± 0.008 g m−2 vs. 0.041 ± 0.015 g m−2, fertigation vs. granular), and marketable yield remained at ~11 t ha−1, leaving product-scaled global warming potential (GWP) unchanged. Although representing less than 2% of measured fluxes, “hot moments,” burst emissions exceeding four standard deviations (SD) from the mean, accounted for up to 4% of seasonal CO2 and 19% of N2O. Fertigation doubled the frequency of these events but reduced their peak magnitude, whereas granular application produced fewer but more extreme bursts (>11 SD). Results showed that fertigation did not mitigate GHGs emission nor improve productivity for Mediterranean pepper, mainly due to the low application frequency and the use of a urea fertilizer. Moreover, we can highlight that in horticultural systems, omitting ‘hot moments’ leads to systematic underestimation of emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

13 pages, 3247 KiB  
Article
Multiscale Water Cycle Mechanisms and Return Flow Utilization in Paddy Fields of Plain Irrigation Districts
by Jie Zhang, Yujiang Xiong, Peihua Jiang, Niannian Yuan and Fengli Liu
Agriculture 2025, 15(11), 1178; https://doi.org/10.3390/agriculture15111178 - 29 May 2025
Viewed by 349
Abstract
This study aimed to reveal the characteristics of returned water in paddy fields at different scales and the rules of its reuse in China’s Ganfu Plain Irrigation District through multiscale (field, lateral canal, main canal, small watershed) observations, thereby optimizing water resource management [...] Read more.
This study aimed to reveal the characteristics of returned water in paddy fields at different scales and the rules of its reuse in China’s Ganfu Plain Irrigation District through multiscale (field, lateral canal, main canal, small watershed) observations, thereby optimizing water resource management and improving water use efficiency. Subsequent investigations during the 2021–2022 double-cropping rice seasons revealed that the tillering stage emerged as a critical drainage period, with 49.5% and 52.2% of total drainage occurring during this phase in early and late rice, respectively. Multiscale drainage heterogeneity displayed distinct patterns, with early rice following a “decrease-increase” trend while late rice exhibited “decrease-peak-decline” dynamics. Smaller scales (field and lateral canal) produced 37.1% higher drainage than larger scales (main canal and small watershed) during the reviving stage. In contrast, post-jointing-booting stages showed 103.6% higher drainage at larger scales. Return flow utilization peaked at the field-lateral canal scales, while dynamic regulation of Fangxi Lake’s storage capacity achieved 60% reuse efficiency at the watershed scale. We propose an integrated optimization strategy combining tillering-stage irrigation/drainage control, multiscale hydraulic interception (control gates and pond weirs), and dynamic watershed storage scheduling. This framework provides theoretical and practical insights for enhancing water use efficiency and mitigating non-point source pollution in plain irrigation districts. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

18 pages, 4831 KiB  
Article
Spatial and Temporal Variation Characteristics of Air Pollutants in Coastal Areas of China: From Satellite Perspective
by Xinrong Yan, Juanle Wang, Fang Wu, Jing Bai, Xun Zhang, Guiping Li and Haibo Fei
Remote Sens. 2025, 17(11), 1861; https://doi.org/10.3390/rs17111861 - 27 May 2025
Cited by 1 | Viewed by 525
Abstract
Under increasingly stringent global policies aimed at reducing emissions from shipping, the impact of maritime activities on air quality has garnered significant attention. However, the absence of comprehensive macro-evaluation methods and a limited understanding of regional-scale pollutant emissions introduce substantial uncertainties in assessing [...] Read more.
Under increasingly stringent global policies aimed at reducing emissions from shipping, the impact of maritime activities on air quality has garnered significant attention. However, the absence of comprehensive macro-evaluation methods and a limited understanding of regional-scale pollutant emissions introduce substantial uncertainties in assessing emission reduction effectiveness and identifying pollution sources. In this study, we utilized Sentinel-5P satellite data from 2019 to 2024 to examine the spatiotemporal characteristics of six air pollutants (SO2, NO2, HCHO, O3, CO, and CH4) in China’s coastal areas. We further investigated the correlation between ship density and pollutant concentrations and analyzed the distribution of pollutant concentrations in major coastal ports across China. The results indicate the following: (1) The concentrations of SO2, HCHO, and CH4 exhibited a continuous increasing trend, whereas NO2, CO, and O3 remained relatively stable or showed a slight decline. All six pollutants demonstrated obvious seasonal variations, with NO2 and HCHO following a double-peak pattern and O3, SO2, CH4, and CO exhibiting a single-peak pattern. (2) Pollutant concentrations were higher along the northern coast (Yellow Sea and Bohai Sea) and relatively lower in the South China Sea region. Specifically, NO2, SO2, and O3 were higher in the Bohai Sea region; HCHO and CO were more concentrated in the northern coastal area; and CH4 was elevated in the north and certain ports of the Yangtze River Delta. (3) Ship density displayed a significant positive correlation with NO2, SO2, HCHO, CO, and CH4, indicating that ship emissions are an important source of these pollutants. Although O3 is not directly emitted by ships, a positive correlation was observed in certain ship-dense areas, primarily due to photochemical reactions involving NO2 and volatile organic compounds (VOCs). (4) Higher concentrations of NO2, SO2, HCHO, CO, and CH4 were observed in northern ports (e.g., Tianjin Xingang, Qinhuangdao, Tangshan, and Dalian), whereas southern Chinese ports (e.g., Shenzhen, Xiamen, and Haikou) exhibited lower pollution levels. These findings provide a scientific foundation for coastal air pollution control and highlight the necessity of ship emission regulation and integrated multi-pollutant management. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

18 pages, 4297 KiB  
Article
Species-Specific Effects of Litter Management on Soil Respiration Dynamics in Urban Green Spaces: Implications for Carbon Cycling and Climate Regulation
by Qinqin Lin, Qiaoyun Wu, Can Chen, Han Lin, Anqiang Xie, Chuanyang Jiang and Xinhui Xia
Forests 2025, 16(4), 642; https://doi.org/10.3390/f16040642 - 7 Apr 2025
Viewed by 420
Abstract
The disposal of urban tree litter as waste has significant implications for material cycles, energy flows, and global climate change within urban ecosystems. However, the species-specific contributions of urban trees to atmospheric CO2 emissions through soil respiration (RS) remain [...] Read more.
The disposal of urban tree litter as waste has significant implications for material cycles, energy flows, and global climate change within urban ecosystems. However, the species-specific contributions of urban trees to atmospheric CO2 emissions through soil respiration (RS) remain poorly understood. This study investigates the effects of litter management on RS dynamics in urban green spaces, focusing on six common species (Mangifera indica, Ficus microcarpa, Cinnamomum camphora, Bauhinia purpurea, Triadica sebifera, and Celtis sinensis) in Fuzhou, China. Three litter treatments—litter retention (CK), litter removal (RL), and litter doubling (DL)—were established to monitor monthly RS fluctuations. Results indicate that DL significantly increased RS rates, while RL reduced them. The increase in RS due to litter addition was more pronounced than the decrease caused by litter removal for most species. RS rates exhibited a unimodal seasonal pattern, peaking in summer. Furthermore, litter treatments influenced the temperature sensitivity coefficient (Q10), with F. microcarpa showing the highest average Q10 (4.16) and M. indica the lowest (1.88). This study underscores the critical role of litter input in modulating RS in urban green spaces and highlights the joint but asymmetric effects of soil temperature and moisture on RS dynamics. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

18 pages, 5953 KiB  
Article
Western Range Limit, Population Density, and Flight Dynamics of the Fruit Pest Grapholita inopinata (Lepidoptera: Tortricidae) in Russia
by Evgeny N. Akulov, Margarita G. Kovalenko, Julia A. Lovtsova, Dmitrii L. Musolin and Natalia I. Kirichenko
Life 2025, 15(4), 521; https://doi.org/10.3390/life15040521 - 22 Mar 2025
Viewed by 1354
Abstract
The Manchurian fruit moth, Grapholita inopinata (Heinrich) (Lepidoptera: Tortricidae), is an important pest of fruit crops, particularly apples (Malus spp., Rosaceae), and is classified as a quarantine pest in many European countries and other world regions. Until recently, this species was known [...] Read more.
The Manchurian fruit moth, Grapholita inopinata (Heinrich) (Lepidoptera: Tortricidae), is an important pest of fruit crops, particularly apples (Malus spp., Rosaceae), and is classified as a quarantine pest in many European countries and other world regions. Until recently, this species was known only in Northeastern China, Japan, and Russia (from Eastern Siberia and the Far East). To determine the westernmost distribution of G. inopinata and assess its abundance, we conducted nine-year pheromone monitoring across 13 administrative regions of Russia from 2014 to 2018 and 2021 to 2024. A total of 1866 traps were deployed, capturing 31,962 G. inopinata specimens in 1811 traps. The species was newly detected in eight regions—seven in Asian Russia and one in European Russia (Perm Krai). These findings doubled the moth’s known range on the Asian continent and extended its western boundary to 56° E in European Russia. Between 2021 and 2024, G. inopinata was generally found at low densities across the surveyed regions (≤10 males per trap per week), with the exception of Perm Krai, Omsk, and Novosibirsk Oblasts, where moderate abundance (up to 38 males per trap per week) was recorded. In contrast, from 2014 to 2018, moderate to high population densities (up to 94 males per trap per week), including mass occurrences (over 100 males per trap per week), were observed in Krasnoyarsk Krai, with an absolute peak capture of 303 males in one trap in June 2017. Notably, in 2015–2017, male flight activity in southern Krasnoyarsk Krai exhibited two distinct peaks: one in mid-to-late June and another from late July to mid-August, indicating the development of two generations. This is the first-ever record of a bivoltine seasonal cycle for G. inopinata in Siberia. These findings are critical for improving pest risk assessments and developing early detection strategies, supporting more effective monitoring and management approaches of this orchard pest. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

18 pages, 6149 KiB  
Article
Analyzing Traffic Operation Characteristics of Cold-Climate Cities Based on Multi-Source Data Fusion: A Case Study of Harbin
by Ting Wan and Jibo Gao
Sustainability 2025, 17(4), 1741; https://doi.org/10.3390/su17041741 - 19 Feb 2025
Viewed by 669
Abstract
This study introduces an innovative approach based on multi-source data fusion to address the challenges of traffic operation management in cold-climate cities. Taking Harbin City as the research object, GPS trajectory data and checkpoint data were integrated to systematically analyze the seasonal fluctuation [...] Read more.
This study introduces an innovative approach based on multi-source data fusion to address the challenges of traffic operation management in cold-climate cities. Taking Harbin City as the research object, GPS trajectory data and checkpoint data were integrated to systematically analyze the seasonal fluctuation patterns and spatial distribution characteristics of traffic operations from the dimensions of time and space. The study shows that low temperatures and snow in winter significantly reduce traffic efficiency, with prominent traffic pressure during morning and evening peak hours. On weekdays, there is a clear “double peak” characteristic, while on non-working days, traffic flow is relatively stable. Moreover, compared to southern cities with a more pronounced “long-tail effect”, the long period of traffic congestion recovery significantly increases the resilience requirements of the traffic system in cold-climate cities. In terms of space, the concentrated commuting demand in the core circle leads to much higher traffic pressure than in the peripheral areas, creating a marked traffic gradient. Frequently congested road sections are mostly concentrated on commuting arteries and functional nodes, while peripheral areas have higher operational efficiency due to a balanced work–residence distribution. The study reveals the spatiotemporal characteristics of traffic operations in cold-climate cities, offering data support for precise management. By verifying the application value of multi-source data fusion under extreme climate conditions, this study provides important references for intelligent transportation management and sustainable development in cold-climate cities. Full article
Show Figures

Figure 1

27 pages, 7459 KiB  
Article
Flood Modelling of the Zhabay River Basin Under Climate Change Conditions
by Aliya Nurbatsina, Zhanat Salavatova, Aisulu Tursunova, Iulii Didovets, Fredrik Huthoff, María-Elena Rodrigo-Clavero and Javier Rodrigo-Ilarri
Hydrology 2025, 12(2), 35; https://doi.org/10.3390/hydrology12020035 - 15 Feb 2025
Cited by 2 | Viewed by 1221
Abstract
Flood modelling in snow-fed river basins is critical for understanding the impacts of climate change on hydrological extremes. The Zhabay River in northern Kazakhstan exemplifies a basin highly vulnerable to seasonal floods, which pose significant risks to infrastructure, livelihoods, and water resource management. [...] Read more.
Flood modelling in snow-fed river basins is critical for understanding the impacts of climate change on hydrological extremes. The Zhabay River in northern Kazakhstan exemplifies a basin highly vulnerable to seasonal floods, which pose significant risks to infrastructure, livelihoods, and water resource management. Traditional flood forecasting in Central Asia still relies on statistical models developed during the Soviet era, which are limited in their ability to incorporate non-stationary climate and anthropogenic influences. This study addresses this gap by applying the Soil and Water Integrated Model (SWIM) to project climate-driven changes in the hydrological regime of the Zhabay River. The study employs a process-based, high-resolution hydrological model to simulate flood dynamics under future climate conditions. Historical hydrometeorological data were used to calibrate and validate the model at the Atbasar gauge station. Future flood scenarios were simulated using bias-corrected outputs from an ensemble of General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5 for the periods 2011–2040, 2041–2070, and 2071–2099. This approach enables the assessment of seasonal and interannual variability in flood magnitudes, peak discharges, and their potential recurrence intervals. Findings indicate a substantial increase in peak spring floods, with projected discharge nearly doubling by mid-century under both climate scenarios. The study reveals a 1.8-fold increase in peak discharge between 2010 and 2040, and a twofold increase from 2041 to 2070. Under the RCP 4.5 scenario, extreme flood events exceeding a 100-year return period (2000 m3/s) are expected to become more frequent, whereas the RCP 8.5 scenario suggests a stabilization of extreme event occurrences beyond 2071. These findings underscore the growing flood risk in the region and highlight the necessity for adaptive water resource management strategies. This research contributes to the advancement of climate-resilient flood forecasting in Central Asian river basins. The integration of process-based hydrological modelling with climate projections provides a more robust framework for flood risk assessment and early warning system development. The outcomes of this study offer crucial insights for policymakers, hydrologists, and disaster management agencies in mitigating the adverse effects of climate-induced hydrological extremes in Kazakhstan. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

21 pages, 7437 KiB  
Article
Transcriptomic Insights into Higher Anthocyanin Accumulation in ‘Summer Black’ Table Grapes in Winter Crop Under Double-Cropping Viticulture System
by Congqiao Wang, Chengyue Li, Youhuan Li, Yue Zeng, Jie Jiang, Linhui Wu, Siyu Yang, Dan Yuan, Lifang Chen, Zekang Pei, Viola Kayima, Haidi Liu, Zhipeng Qiu and Dongliang Qiu
Plants 2025, 14(1), 26; https://doi.org/10.3390/plants14010026 - 25 Dec 2024
Viewed by 892
Abstract
Anthocyanins are responsible for grape (Vitis vinifera L.) skin color. To obtain a more detailed understanding of the anthocyanin regulatory networks across’ the summer and winter seasons in grapes under a double-cropping viticulture system, the transcriptomes of ‘Summer Black’ grapes were analyzed [...] Read more.
Anthocyanins are responsible for grape (Vitis vinifera L.) skin color. To obtain a more detailed understanding of the anthocyanin regulatory networks across’ the summer and winter seasons in grapes under a double-cropping viticulture system, the transcriptomes of ‘Summer Black’ grapes were analyzed using RNA sequencing. The average daily temperature during the harvest stage in the summer crop, ranging from 26.18 °C to 32.98 °C, was higher than that in the winter crop, ranging from 11.03 °C to 23.90 °C. Grapes from the winter crop accumulated a greater content of anthocyanins than those from the summer crop, peaking in the harvest stage (E-L38) with 207.51 mg·100 g−1. Among them, malvidin-3-O-glucoside (Mv-3-G) had the highest monomer content, accounting for 32%. The content of Cy-3-G during winter increased by 55% compared to summer. KEGG analysis indicated that the flavonoid biosynthesis and circadian rhythm—plant pathways are involved in the regulation of anthocyanin biosynthesis during fruit development. Pearson’s coefficient showed significant positive correlations between anthocyanin content and the VvDFR, VvUFGT, VvOMT, VvMYB, and VvbHLH genes in the winter crop; at full veraison stage, their expressions were 1.34, 1.98, 1.28, 1.17, and 1.34 times greater than in summer, respectively. The higher expression of VvUFGT and VvOMT led to higher contents of Cy-3-G and Mv-3-G in the winter berries, respectively. Full article
(This article belongs to the Special Issue Horticultural Plant Cultivation and Fruit Quality Enhancement)
Show Figures

Figure 1

11 pages, 3456 KiB  
Article
Patterns of Childhood Cancer Mortality in Hungary Since the Turn of the Millennium, Including the Two Years of the COVID-19 Pandemic
by Kristóf Németh, Tibor András Nyári and Tamás Lantos
Cancers 2024, 16(23), 3961; https://doi.org/10.3390/cancers16233961 - 26 Nov 2024
Viewed by 1373
Abstract
Objectives: We aimed to analyse the pattern of childhood cancer mortality among children under 15 years in Hungary between 2001 and 2021. In addition, annual and cyclical trends were examined. Methods: The number of deaths was obtained from the nationwide population [...] Read more.
Objectives: We aimed to analyse the pattern of childhood cancer mortality among children under 15 years in Hungary between 2001 and 2021. In addition, annual and cyclical trends were examined. Methods: The number of deaths was obtained from the nationwide population register over the study period by gender, age group, and region for each year. Data were analysed using the Poisson regression method and cyclic trends were investigated using the Walter–Elwood method. Results: Overall, 14,931 childhood deaths (1092 from cancers) were registered between 2001 and 2021. The cancer mortality risk was significantly higher among boys than girls. A significantly decreasing trend was detected for yearly childhood cancer mortality rates, with an annual IRR of 0.976 (95% CI: 0.966–0.986; p < 0.001). This tendency was not influenced by the pandemic. However, different patterns of seasonal variation were revealed in childhood cancer mortality rates during 2020–2021 and 2001–2019. Conclusions: The annual trend in childhood cancer mortality was not affected by the coronavirus pandemic. However, there was a different pattern of childhood cancer mortality during the pandemic and non-pandemic period in Hungary. Considering the seasonal variation in monthly childhood cancer mortality rates, we hypothesized that environmental factors might play an important role in the aetiology of childhood cancer deaths. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

19 pages, 3950 KiB  
Article
Reawakening of Voragine, the Oldest of Etna’s Summit Craters: Insights from a Recurrent Episodic Eruptive Behavior
by Sonia Calvari and Giuseppe Nunnari
Remote Sens. 2024, 16(22), 4278; https://doi.org/10.3390/rs16224278 - 17 Nov 2024
Cited by 4 | Viewed by 1615
Abstract
Paroxysmal explosive activity at Etna volcano (Italy) has become quite frequent over the last three decades, raising concerns with the civil protection authorities due to its significant impact on the local population, infrastructures, viability and air traffic. Between 4 July and 15 August [...] Read more.
Paroxysmal explosive activity at Etna volcano (Italy) has become quite frequent over the last three decades, raising concerns with the civil protection authorities due to its significant impact on the local population, infrastructures, viability and air traffic. Between 4 July and 15 August 2024, during the tourist season peak when the local population doubles, Etna volcano gave rise to a sequence of six paroxysmal explosive events from the summit crater named Voragine. This is the oldest and largest of Etna’s four summit craters and normally only produces degassing, with the previous explosive sequences occurring in December 2015 and May 2016. In this paper, we use thermal images recorded by the monitoring system maintained by the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV–OE), and an automatic procedure previously tested in order to automatically define the eruptive parameters of the six lava fountain episodes. These data allowed us to infer the eruptive processes and gain some insights on the evolution of the explosive sequences that are useful for hazard assessment. Specifically, our results lead to the hypothesis that the Voragine shallow storage has a capacity of ~12–15 Mm3, which was not completely emptied with the last two paroxysmal events. It is thus possible that one or two additional explosive paroxysmal events could occur in the future. It is noteworthy that an additional paroxysmal episode occurred at Voragine on 10 November 2024, after the submission of this paper, thus confirming our hypothesis. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

20 pages, 5042 KiB  
Article
Advancing Water Security and Agricultural Productivity: A Case Study of Transboundary Cooperation Opportunities in the Kabul River Basin
by Yar M. Taraky, Ed McBean, Andrew Binns and Bahram Gharabaghi
Environments 2024, 11(11), 253; https://doi.org/10.3390/environments11110253 - 13 Nov 2024
Cited by 1 | Viewed by 1862
Abstract
The Kabul River Basin (KRB) is witnessing frequent flood and drought events that influence food production and distribution. The KRB is one of the world’s poorest regions regarding food security. Food security issues in the KRB include shifts in short-term climate cycles with [...] Read more.
The Kabul River Basin (KRB) is witnessing frequent flood and drought events that influence food production and distribution. The KRB is one of the world’s poorest regions regarding food security. Food security issues in the KRB include shifts in short-term climate cycles with significant river flow variations that result in inadequate water distribution. Due to the lack of hydro-infrastructure, low irrigation efficiency, and continuing wars, the Afghanistan portion of the KRB has experienced low agricultural land expansion opportunities for food production. This research assesses the relationship between flood mitigation, flow balances, and food production and, cumulatively, assesses the social and economic well-being of the population of the KRB. SWAT modeling and climate change (CCSM4) implications are utilized to assess how these relationships impact the social and economic well-being of the population in the KRB. The intricacies of transboundary exchange and cooperation indicate that the conservation of ~38% of the water volume would nearly double the low flows in the dry season and result in the retention of ~2B m3/y of water for agricultural developmental use. Results show that the peak flood flow routing in reservoirs on the Afghanistan side of the KRB would have a substantial positive impact on agricultural products and, therefore, food security. Water volume conservation has the potential to provide ~44% more arable land with water, allowing a ~51% increase in crop yield, provided that improved irrigation efficiency techniques are utilized. Full article
Show Figures

Figure 1

21 pages, 7175 KiB  
Article
Investigating Factors Impacting Power Generation Efficiency in Photovoltaic Double-Skin Facade Curtain Walls
by Xiaoxuan Zhou, Xue Zhou, Xiangyuan Zhu, Jiying Liu and Shiyu Zhou
Buildings 2024, 14(9), 2632; https://doi.org/10.3390/buildings14092632 - 25 Aug 2024
Viewed by 1773
Abstract
Photovoltaic double-skin glass is a low-carbon energy-saving curtain wall system that uses ventilation heat exchange and airflow regulation to reduce heat gain and generate a portion of electricity. By developing a theoretical model of the ventilated photovoltaic curtain wall system and conducting numerical [...] Read more.
Photovoltaic double-skin glass is a low-carbon energy-saving curtain wall system that uses ventilation heat exchange and airflow regulation to reduce heat gain and generate a portion of electricity. By developing a theoretical model of the ventilated photovoltaic curtain wall system and conducting numerical simulations, this study analyzes the variation patterns of the power generation efficiency of photovoltaic glass for different inclination angles, seasons, thermal ventilation spacing, and glass transmittance in the photovoltaic double-skin curtain wall system. The results indicate a positive correlation between the surface temperature of photovoltaic glass and both ground temperature and solar radiation intensity. Additionally, photovoltaic power generation efficiency is generally higher in spring and autumn than in summer and winter, with enhanced power generation performance observed. At an inclination angle of 40°, photovoltaic panels receive optimal solar radiation and, consequently, produce the maximum electricity. Furthermore, as the ventilation spacing increases, the efficiency of power generation initially rises, reaching a peak at approximately 0.4 m, where it is 0.4% greater than at a spacing of 0.012 m. For a photovoltaic glass transmittance of 40%, the highest photovoltaic power generation efficiency is 63%, while the average efficiency is 35.3%. This has significant implications for the application and promotion of photovoltaic double-skin glass curtain walls. Full article
Show Figures

Figure 1

Back to TopTop