Species-Specific Effects of Litter Management on Soil Respiration Dynamics in Urban Green Spaces: Implications for Carbon Cycling and Climate Regulation
Abstract
:1. Introduction
- Fine-scale temporal dynamics: Monthly tracking of soil respiration (RS), temperature (T), and moisture (M) responses to litter removal (RL, simulating municipal cleaning) and doubling (DL, mimicking urban litter accumulation).
- Thermal sensitivity analysis: Quantification of Q10 > coefficients to assess how litter alterations affect temperature-RS > coupling in engineered urban soils.
- Multivariate interaction modeling: Decoupling synergistic effects of T > M > -litter inputs on RS > through structural equation modeling.
2. Materials and Methods
2.1. Study Area Characterization
- Urban–rural ecotone representativeness: Transitional zone between metropolitan Fuzhou (population > 7.6 million) and peri-urban agricultural landscapes;
- Anthropogenic gradient: Subject to intermediate levels of human disturbance compared to central urban parks and protected forest reserves;
- Vegetation homogeneity: Monospecific tree stands of six target species (Mangifera indica, Ficus microcarpa, etc.) established through municipal greening programs since 2005.
2.2. Methods
2.2.1. Sample Plot Setup
- Control (CK): Natural litter layer maintained without disturbance.
- Litter Removal (RL): All aboveground litter within the subplot was manually removed using non-metallic tools to avoid soil scraping, and a vertically suspended nylon mesh (0.5 m height; 1 mm aperture) was installed to intercept incoming litterfall [28].
- Double Litter (DL): Ambient litter was retained, and additional litter collected from adjacent RL subplots was evenly distributed within a 1 m radius around the collar. Litter mass was quantified using dry-weight equivalents (g m⁻2) to standardize treatment intensity [29].
2.2.2. RS and Soil Temperature and Moisture Measurement
2.2.3. Modeling RS Responses to Soil Temperature and Moisture
3. Results
3.1. Monthly Dynamics of RS with Removal and Addition of Litter
3.2. Monthly Dynamics of Soil Temperature and Moisture with Removal and Addition of Litter
3.3. Effects of Litter Removal and Addition on RS Contributions
3.4. Effect of Litter Removal and Addition on Temperature Sensitivity Coefficient Q10
3.5. Correlation of RS with Temperature and Moisture with Removal and Addition of Litter
4. Discussion
4.1. RS in Response to Changes in Litter Inputs
4.2. Response of RS to Temperature and Moisture Under Different Litter Treatments
4.3. Methodological Considerations and Future Directions
- (i)
- Mechanistic links between urban tree functional traits and RS sensitivity;
- (ii)
- Long-term monitoring of legacy effects from episodic disturbances (e.g., heatwaves and pollution pulses);
- (iii)
- Integration with belowground C flux networks to constrain urban carbon budgets.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Chen, H.Y.H.; Chen, X.; Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 2019, 10, 1332. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, T.; Chang, Y.; Wu, J.; Wang, Z.; Zhang, D. Effects of litter removal on soil organic carbon mineralization and temperature sensitivity of Pinus sylvestris var. mongolica forest in urban park. Soils Crops 2022, 11, 298–306. [Google Scholar] [CrossRef]
- Xing, X.; Fu, D.; Li, J.; Zhao, B.; Song, D.; Fu, Y. Effects of alteration in litter inputs on soil microbial population and enzyme activity in Pinus yunnanensis forest. J. Northwest A F Univ. (Nat. Sci. Ed.) 2023, 51, 62–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, F.; Ai, L.; Fan, X.; Yang, Y.; Zheng, X.; Zhu, J.; Ni, X. Litter input effects on soil dissolved organic carbon. Chin. J. Ecol. 2023, 42, 2107–2112. [Google Scholar] [CrossRef]
- Jing, Y.; Guan, D.; Wu, J.; Wang, A.; Yuan, F. Research progress on photosynthesis regulating and controlling soil respiration. Chin. J. Appl. Ecol. 2013, 24, 269–276. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Ma, Y.; Liu, C.E.; Duan, C.; Zi, Y.; Tang, B.; Zhang, W. Research progress on influencing factors of litter decomposition in forest ecosystem. Environ. Ecol. 2023, 5, 45–56. [Google Scholar]
- Lv, F.; Wang, X. Research progress on the contribution of litter to soil respiration. Soils 2017, 49, 225–231. [Google Scholar] [CrossRef]
- Wang, G.; Tian, D.; Yan, W.; Zhu, F.; Li, S. Response of Soil Respirations to Litterfall Exclusion and Addition in Pinus massoniana Plantation in Hunan, China. Sci. Silvae Sin. 2009, 45, 27–30. [Google Scholar]
- Aich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–89. [Google Scholar] [CrossRef]
- Yan, W.; Chen, X.; Tian, D.; Peng, Y.; Wang, G.; Zheng, W. Impacts of changed litter inputs on soil CO2 efflux in three forest types in central south China. Chin. Sci. Bull. 2012, 58, 750–757. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Tedeschi, V.; Parri, I.D.; Jarvis, P.G.; Valentini, R. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob. Change Biol. 2002, 8, 851–866. [Google Scholar] [CrossRef]
- Zhuang, W.; Liu, M.; Wu, Y.; Ma, J.; Zhang, Y.; Su, L.; Liu, Y.; Zhao, C.; Fu, S. Litter inputs exert greater influence over soil respiration and its temperature sensitivity than roots in a coniferous forest in north-south transition zone. Sci. Total Environ. 2023, 886, 164009. [Google Scholar] [CrossRef]
- Ngao, J.; Epron, D.; Brechet, C.; Granier, A. Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter. Glob. Change Biol. 2005, 11, 1768–1776. [Google Scholar] [CrossRef]
- Prasad, S.; Baishya, R. Interactive effects of soil moisture and temperature on soil respiration under native and non-native tree species in semi-arid forest of Delhi, India. Trop. Ecol. 2019, 60, 252–260. [Google Scholar] [CrossRef]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocka, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global change pressures on soils from land use and management. Glob. Change Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; Li, J.; Zhou, X.; Cao, J.; Wang, R.-W.; Wang, Y.; Shelton, S.; Jin, Z.; Walker, L.M.; et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Glob. Change Biol. 2017, 23, 1328–1337. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Tao, B.; Song, C.; Guo, Y. Short-term effects of nitrogen additions and increased temperature on wetland soil respiration, Sanjiang plain, China. Wetlands 2013, 33, 727–736. [Google Scholar]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Office of Chinese National Greening Committee. 2024 China Land Greening Status Bulletin. Available online: https://www.gov.cn/lianbo/bumen/202503/content_7013112.htm (accessed on 12 March 2025).
- Meyer, S.; Rusterholz, H.-P.; Salamon, J.-A.; Baur, B. Leaf litter decomposition and litter fauna in urban forests: Effect of the degree of urbanisation and forest size. Pedobiol.-J. Soil Ecol. 2020, 78, 150609. [Google Scholar] [CrossRef]
- Tresch, S.; Frey, D.; Bayon, R.-C.L.; Zanetta, A.; Rasche, F.; Fliessbach, A.; Moretti, M. Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Sci. Total Environ. 2018, 658, 1614–1629. [Google Scholar] [CrossRef]
- Xie, C.; Lin, K.; Jiao, H.; Wu, Y.; Duan, S.; Tian, G.; Shujun, Y. Analysis of Urban Square Plant Community and Its Diversity in Fuzhou City. J. Chin. Urban For. 2016, 14, 34–38. [Google Scholar]
- Ye, B.; Lan, S.; Li, M.; Lin, W.; Chen, S.; Wu, M.; Chen, Y. A floristic study of plants in campus of Fujian Agriculture and Forestry University. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2013, 42, 51–56. [Google Scholar] [CrossRef]
- Peng, Y.; Thomas, S.C.; Tian, D. Forest management and soil respiration: Implications for carbon sequestration. Environ. Rev. 2008, 16, 93–111. [Google Scholar] [CrossRef]
- Schnecker, J.; Baldaszt, L.; Gündler, P.; Pleitner, M.; Sandén, T.; Simon, E.; Spiegel, F.; Spiegel, H.; Malo, C.U.; Zechmeister-Boltenstern, S.; et al. Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils. Geoderma 2023, 440, 116693. [Google Scholar] [CrossRef]
- Chen, H.; Dong, S.; Liu, L.; Ma, C.; Zhang, T.; Zhu, X.; Mo, J. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLoS ONE 2013, 8, e84101. [Google Scholar] [CrossRef]
- Luo, Y.; Wan, S.; Hui, D. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 2001, 413, 622–625. [Google Scholar] [CrossRef]
- Bahn, M.; Rodeghiero, M.; Anderson-Dunn, M.; Dore, S.; Gimeno, C.; Droesler, M.; Williams, M.; Ammann, C.; Berninger, F.; Flechard, C.; et al. Soil Respiration in European Grasslands in Relation to Climate and Assimilate Supply. Ecosystems 2008, 11, 1352–1367. [Google Scholar] [CrossRef]
- Yan, T.; Song, H.; Wang, Z.; Teramoto, M.; Wang, J.; Liang, N.; Ma, C.; Sun, Z.; Xi, Y.; Li, L.; et al. Temperature sensitivity of soil respiration across multiple time scales in a temperate plantation forest. Sci. Total Environ. 2019, 688, 479–485. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davidson, E.A.; Janssens, I.A.; Luo, Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Change Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Cairo, A. The Functional Art: An Introduction to Information Graphics; New Riders: Berkeley, CA, USA, 2012. [Google Scholar]
- Duan, B.; Man, X.; Song, H.; Liu, J. Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing’an Mountains of northeastern China. J. Beijing For. Univ. 2018, 40, 40–50. [Google Scholar] [CrossRef]
- Hou, T.; Wang, Y.; Guo, F.; Jia, Q.; Wu, X.; Wang, E.; Hong, J. Soil Respiration Characteristics and Influencing Factors for Apple Orchards in Different Regions on the Loess Plateau of Shaanxi Province. Sustainability 2021, 13, 4780. [Google Scholar] [CrossRef]
- Gong, C.; Song, C.; Zhang, D.; Zhang, J. Litter manipulation strongly affects CO2 emissions and temperature sensitivity in a temperate freshwater marsh of northeastern China. Ecol. Indic. 2019, 97, 410–418. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, C.; Fan, H.; Lin, Y.; Wu, C. Effects of removing/keeping litter on soil respiration in and outside the gaps in chinese fir plantation. Acta Ecol. Sin. 2017, 37, 102–109. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Yu, H.; Hu, J.; Liu, X.; Luo, M.; Ou, D.; Wu, D. Effects of litter manipulation on soil respiration in natural secondary forest in subalpine area of western Sichuan Province, China. Acta Ecol. Sin. 2021, 41, 2687–2697. [Google Scholar] [CrossRef]
- Smorkalov, I.A.; Vorobeichik, E.L. The impact of a large industrial city on the soil respiration in forest ecosystems. Eurasian Soil Sci. 2015, 48, 106–114. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, L.; Pang, D.; Li, X.; Liu, R. Effect of different litter treatments on soil respiration of three forest stands in Helan mountain. Southwest China J. Agric. Sci. 2023, 36, 593–601. [Google Scholar] [CrossRef]
- Xiong, L.; Xu, Z.; Yang, W.; Yin, R.; Tang, S.; Wang, B.; Xu, L.; Chang, C. Aboveground litter contribution to soil respiration in a subalpine dragon spruce plantation of western Sichuan. Acta Ecol. Sin. 2015, 35, 4678–4686. [Google Scholar] [CrossRef]
- Yaalon, D.H. Human-induced Ecosystem and Landscape Processes Always Involve Soil Change. BioScience 2007, 57, 918–919. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Li, E.; Miao, Y.; Han, S.; Liu, Y.; Liu, Y.; Zhao, C.; Zhang, Y. Changes in carbon inputs affect soil respiration and its temperature sensitivity in a broadleaved forest in central China. Catena 2022, 213, 106197. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Jiang, Y.; Yin, G.; Cao, S.; Liu, X.; Wang, R.; Wu, Z.; Chen, F. Drivers of soil respiration and nitrogen mineralization change after litter management at a subtropical Chinese sweetgum tree plantation. Soil Use Manag. 2022, 39, 92–103. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Zhang, C.; Kang, F.; Shang, B.; Chi, Q. Changes of carbon input influence soil respiration in a Pinus tabulaeformis plantation. Acta Ecol. Sin. 2012, 32, 2768–2777. [Google Scholar] [CrossRef]
- Kaye, J.P.; McCulley, R.L.; Burke, I.C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob. Change Biol. 2005, 11, 575–587. [Google Scholar] [CrossRef]
- Groffman, P.M.; Pouyat, R.V.; Cadenasso, M.L.; Zipperer, W.C.; Szlavecz, K.; Yesilonis, I.D.; Band, L.E.; Brush, G.S. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For. Ecol. Manag. 2006, 236, 177–192. [Google Scholar] [CrossRef]
- Wu, X.; Yuan, J.; Ma, S.; Feng, S.; Zhang, X.; Hu, D. Seasonal spatial pattern of soil respiration in a temperate urban forest in Beijing. Urban For. Urban Green. 2015, 14, 1122–1130. [Google Scholar] [CrossRef]
- Goncharova, O.; Matyshak, G.; Udovenko, M.; Semenyuk, O.; Epstein, H.; Bobrik, A. Temporal dynamics, drivers, and components of soil respiration in urban forest ecosystems. Catena 2020, 185, 104299. [Google Scholar] [CrossRef]
- Luo, S.; Mao, Q.; Ma, K.; Wu, J. A review of carbon cycling and sequestration in urban soils. Acta Ecol. Sin. 2012, 32, 7177–7189. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barré, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef]
- Crow, S.E.; Lajtha, K.; Bowden, R.D.; Yano, Y.; Brant, J.B.; Caldwell, B.A.; Sulzman, E.W. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. For. Ecol. Manag. 2009, 258, 2224–2232. [Google Scholar] [CrossRef]
- Shen, J.; He, Z.; Dong, Q.; Lin, Y.; Gao, S.; Zhou, L. Effects of environmental factors on seasonal dynamics of soil respiration in coastal protection forests. J. For. Environ. 2022, 42, 640–647. [Google Scholar] [CrossRef]
- Fontaine, S.; Bardoux, G.; Abbadie, L.; Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 2004, 7, 314–320. [Google Scholar] [CrossRef]
- Chen, G.; Yang, Y.; Lv, P.; Zhang, Y.; Qian, X. Regional patterns of soil respiration in China’s forests. Acta Ecol. Sin. 2008, 28, 1748–1761. [Google Scholar]
- Wu, P.; Cui, Y.; Zhao, W.; Shu, D.; Yang, W.; Ding, F. Effects of litter exclusion and addition on soil respiration of major forest communities at two successional stages in Maolan karst forest of southwestern China. J. Beijing For. Univ. 2015, 37, 17–27. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, W.; Zheng, W.; Zhao, L.; Yang, S. Influence of Litter on Soil Respiration in Camphor Tree-Masson Pine Mixed Forest. J. Northwest For. Univ. 2013, 28, 22–27. [Google Scholar] [CrossRef]
- Wang, G.; Tian, D.; Yan, W.; Zhu, F.; Li, S. Impact of litter addition and exclusion on soil respiration in a Liquidambar formosana forest and a nearby Cinnamomum camphora forest of central southern China. Acta Ecol. Sin. 2009, 29, 643–652. [Google Scholar]
- Li, W.; Liu, X.; Chen, G.; Zhao, B.; Qiu, X.; Yang, Y. Effects of Litter Manipulation on Soil Respiration in the Natural Forests and Plantations of Castanopsis carlesii in Mid-Subtropical China. Sci. Silvae Sin. 2016, 52, 11–18. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 3rd ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
- Bignell, D.E. Termites as soil engineers and soil processors. Biol. Rev. 2010, 85, 1–17. [Google Scholar]
- Gavrichkova, O.; Kuzyakov, Y. The above-belowground coupling of the C cycle: Fast and slow mechanisms of C transfer for root and rhizomicrobial respiration. Plant Soil 2017, 410, 73–85. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nat. Int. Wkly. J. Sci. 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Su, F.; Jiang, J.; Wang, C.; Yu, M.; Yan, J. The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests. Glob. Change Biol. 2020, 26, 6015–6024. [Google Scholar] [CrossRef]
- Adekalu, K.O.; Olorunfemi, I.A.; Osunbitan, J.A. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. Bioresour. Technol. 2007, 98, 912–917. [Google Scholar] [CrossRef]
- Ma, H.; Guo, Q.; Li, J.; Zhou, C. Soil respiration and its influencing factors of four forest types in Sejila Mountain. Acta Pedol. Sin. 2016, 53, 253–260. [Google Scholar] [CrossRef]
- Feng, J.; Wang, J.; Song, Y.; Zhu, B. Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China. Biogeosciences 2018, 15, 5329–5341. [Google Scholar] [CrossRef]
- Meyer, N.; Welp, G.; Amelung, W. The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes. Glob. Biogeochem. Cycles 2018, 32, 306–323. [Google Scholar] [CrossRef]
- Shen, J.; He, Z.; Dong, Q.; Gao, S.; Cao, G.; Lin, Y.; Huang, Z. Monthly dynamics and influencing factors of soil respiration in two shelter plantations in coastal sandy land. Chin. J. Appl. Environ. Biol. 2023, 29, 432–439. [Google Scholar] [CrossRef]
- Luo, L.; Du, S. Research Progress on the Effects of Rainfall Gradient on the Temperature Sensitivity of Soil Respiration in Woodland. J. Northwest For. Univ. 2023, 38, 76–83+112. [Google Scholar] [CrossRef]
- Maier, C.A.; Kress, L.W. Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can. J. For. Res. 2000, 30, 347–359. [Google Scholar] [CrossRef]
- Wei, S.; Luo, B.; Sun, L.; Wei, S.; Liu, F.; Hu, H. Spatial and temporal heterogeneity and effect factors of soil respiration in forest ecosystems: A review. Ecol. Environ. Sci. 2013, 22, 689–704. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, S.; Hu, N.; Lou, Y.; Wang, S. Predicting soil fauna effect on plant litter decomposition by using boosted regression trees. Soil Biol. Biochem. 2015, 82, 81–86. [Google Scholar] [CrossRef]
- He, K.; Shen, Y.; Feng, J.; Han, M.; Zhou, Y.; Zhu, B. Effects of Altered Plant Detritus Input on Soil Respiration and Its Temperature Sensitivity in a Pinus sylvestris var. mongolica Plantation. Acta Sci. Nat. Univ. Pekin. 2021, 57, 361–370. [Google Scholar] [CrossRef]
- Shen, J.; He, Z.; Dong, Q.; Gao, S.; Lin, Y.; Shi, Y. Changes of Soil Respiration and Temperature Sensitivity in Pinus elliottii Plantation Under Different Treatments. J. Northwest For. Univ. 2023, 38, 10–18. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, Z.; Tang, Y.; Xue, B.; Fan, B.; Zheng, W. Daily variation of soil respiration and its response to soil temperature and humidity in dolomite areas. Resour. Environ. Yangtze Basin 2021, 30, 1947–1956. [Google Scholar] [CrossRef]
Species | Height/m | DBH/cm | Crown/m | Clear Length/m |
---|---|---|---|---|
Mangifera indica | 9.08 ± 0.41 | 34.67 ± 2.35 | 6.38 ± 1.10 | 2.20 ± 0.25 |
Ficus microcarpa | 10.35 ± 1.36 | 25.47 ± 3.12 | 7.54 ± 2.05 | 2.64 ± 0.08 |
Cinnamomum camphora | 8.13 ± 0.95 | 20.00 ± 1.65 | 5.42 ± 0.96 | 1.80 ± 0.14 |
Bauhinia purpurea | 9.73 ± 2.33 | 19.67 ± 3.10 | 6.50 ± 1.21 | 2.13 ± 0.10 |
Celtis sinensis | 6.99 ± 1.11 | 21.30 ± 2.73 | 6.00 ± 1.05 | 2.07 ± 0.55 |
Triadica sebifera | 10.66 ± 2.16 | 26.33 ± 3.52 | 6.67 ± 1.25 | 2.47 ± 0.99 |
Species | Treatment | Multiple Regression Equations | R2 |
---|---|---|---|
Mangifera indica | CK | RS = −0.9079 + 0.1540T + 0.0025M | 0.7898 |
RL | RS = −0.5441 + 0.1250T − 0.0058M | 0.7909 | |
DL | RS = −1.6878 + 0.2271T − 0.0126M | 0.8592 | |
Cinnamomum camphora | CK | RS = −8.6875 + 0.5531T − 0.0317M | 0.8218 |
RL | RS = −7.8850 + 0.4409T − 0.0066M | 0.8238 | |
DL | RS = −13.2848 + 0.8194T − 0.0500M | 0.8081 | |
Ficus microcarpa | CK | RS = −4.6105 + 0.4673T − 0.0569M | 0.8095 |
RL | RS = −4.0007 + 0.3580T − 0.0365M | 0.8498 | |
DL | RS = −7.5529 + 0.6962T − 0.0742M | 0.6074 | |
Bauhinia purpurea | CK | RS = −7.7607 + 0.2186T − 0.0501M | 0.8185 |
RL | RS = −0.8113 + 0.1456T − 0.0226M | 0.7009 | |
DL | RS = −0.3306 + 0.2450T − 0.0646M | 0.8120 | |
Triadica sebifera | CK | RS = −6.5042 + 0.4144T − 0.0233M | 0.6524 |
RL | RS = −4.7890 + 0.2564T + 0.0497M | 0.6583 | |
DL | RS = −6.2573 + 0.4402T − 0.0270M | 0.7167 | |
Celtis sinensis | CK | RS = −3.3435 + 0.3702T − 0.0509M | 0.8241 |
RL | RS = −3.8145 + 0.3290T − 0.0341M | 0.8261 | |
DL | RS = −2.6455 + 0.3717T − 0.0381M | 0.7899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Wu, Q.; Chen, C.; Lin, H.; Xie, A.; Jiang, C.; Xia, X. Species-Specific Effects of Litter Management on Soil Respiration Dynamics in Urban Green Spaces: Implications for Carbon Cycling and Climate Regulation. Forests 2025, 16, 642. https://doi.org/10.3390/f16040642
Lin Q, Wu Q, Chen C, Lin H, Xie A, Jiang C, Xia X. Species-Specific Effects of Litter Management on Soil Respiration Dynamics in Urban Green Spaces: Implications for Carbon Cycling and Climate Regulation. Forests. 2025; 16(4):642. https://doi.org/10.3390/f16040642
Chicago/Turabian StyleLin, Qinqin, Qiaoyun Wu, Can Chen, Han Lin, Anqiang Xie, Chuanyang Jiang, and Xinhui Xia. 2025. "Species-Specific Effects of Litter Management on Soil Respiration Dynamics in Urban Green Spaces: Implications for Carbon Cycling and Climate Regulation" Forests 16, no. 4: 642. https://doi.org/10.3390/f16040642
APA StyleLin, Q., Wu, Q., Chen, C., Lin, H., Xie, A., Jiang, C., & Xia, X. (2025). Species-Specific Effects of Litter Management on Soil Respiration Dynamics in Urban Green Spaces: Implications for Carbon Cycling and Climate Regulation. Forests, 16(4), 642. https://doi.org/10.3390/f16040642