Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = dorsal skinfold chamber model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2503 KiB  
Article
Absent in Melanoma (AIM)2 Promotes the Outcome of Islet Transplantation by Repressing Ischemia-Induced Interferon (IFN) Signaling
by Selina Wrublewsky, Cedric Wilden, Caroline Bickelmann, Michael D. Menger, Matthias W. Laschke and Emmanuel Ampofo
Cells 2024, 13(1), 16; https://doi.org/10.3390/cells13010016 - 20 Dec 2023
Viewed by 1766
Abstract
Clinical islet transplantation is limited by ischemia-induced islet cell death. Recently, it has been reported that the absent in melanoma (AIM)2 inflammasome is upregulated by ischemic cell death due to recognition of aberrant cytoplasmic self-dsDNA. However, it is unknown whether AIM2 determines the [...] Read more.
Clinical islet transplantation is limited by ischemia-induced islet cell death. Recently, it has been reported that the absent in melanoma (AIM)2 inflammasome is upregulated by ischemic cell death due to recognition of aberrant cytoplasmic self-dsDNA. However, it is unknown whether AIM2 determines the outcome of islet transplantation. To investigate this, isolated wild type (WT) and AIM2-deficient (AIM2−/−) islets were exposed to oxygen-glucose deprivation to mimic ischemia, and their viability, endocrine function, and interferon (IFN) signaling were assessed. Moreover, the revascularization and endocrine function of grafted WT and AIM2−/− islets were analyzed in the mouse dorsal skinfold chamber model and the diabetic kidney capsule model. Ischemic WT and AIM2−/− islets did not differ in their viability. However, AIM2−/− islets exhibited a higher protein level of p202, a transcriptional regulator of IFN-β and IFN-γ gene expression. Accordingly, these cytokines were upregulated in AIM2−/− islets, resulting in a suppressed gene expression and secretion of insulin. Moreover, the revascularization of AIM2−/− islet grafts was deteriorated when compared to WT controls. Furthermore, transplantation of AIM2−/− islets in diabetic mice failed to restore physiological blood glucose levels. These findings indicate that AIM2 crucially determines the engraftment and endocrine function of transplanted islets by repressing IFN signaling. Full article
(This article belongs to the Special Issue Islet Transplantation)
Show Figures

Figure 1

13 pages, 3568 KiB  
Article
Caloric Restriction: A Novel Conditioning Strategy to Improve the Survival of Ischemically Challenged Musculocutaneous Random Pattern Flaps
by Andrea Weinzierl, Maximilian Coerper, Yves Harder, Michael D. Menger and Matthias W. Laschke
Nutrients 2023, 15(18), 4076; https://doi.org/10.3390/nu15184076 - 20 Sep 2023
Cited by 1 | Viewed by 1600
Abstract
Caloric restriction (CR) is a cost-effective and easy-to-perform approach to counteracting surgical stress. The present study therefore evaluates the tissue-protective effects of a 30% CR in musculocutaneous flaps undergoing ischemia. For this purpose, a well-established murine dorsal skinfold chamber model, in combination with [...] Read more.
Caloric restriction (CR) is a cost-effective and easy-to-perform approach to counteracting surgical stress. The present study therefore evaluates the tissue-protective effects of a 30% CR in musculocutaneous flaps undergoing ischemia. For this purpose, a well-established murine dorsal skinfold chamber model, in combination with random pattern musculocutaneous flaps, was used. C57BL/6N mice were divided at random into a CR group (n = 8) and a control group with unrestricted access to standard chow (n = 8). The CR animals were subjected to a 30% reduction in caloric intake for 10 days before flap elevation. Intravital fluorescence microscopy was carried out on days 1, 3, 5, 7 and 10 after flap elevation to assess the nutritive blood perfusion, angiogenesis and flap necrosis. Subsequently, the flap tissue was harvested for additional histological and immunohistochemical analyses. The CR-treated animals exhibited a significantly higher functional capillary density and more newly formed microvessels within the flap tissue when compared to the controls; this was associated with a significantly higher flap survival rate. Immunohistochemical analyses showed a decreased invasion of myeloperoxidase-positive neutrophilic granulocytes into the flap tissue of the CR-treated mice. Moreover, the detection of cleaved caspase-3 revealed fewer cells undergoing apoptosis in the transition zone between the vital and necrotic tissue in the flaps of the CR-treated mice. These results demonstrate that a CR of 30% effectively prevents flap necrosis by maintaining microperfusion on a capillary level and inhibiting inflammation under ischemic stress. Hence, CR represents a promising novel conditioning strategy for improving the survival of musculocutaneous flaps with random pattern perfusion. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

16 pages, 30362 KiB  
Article
A Novel Preclinical Murine Model to Monitor Inflammatory Breast Cancer Tumor Growth and Lymphovascular Invasion
by Ashlyn G. Rickard, Dorababu S. Sannareddy, Alexandra Bennion, Pranalee Patel, Scott J. Sauer, Douglas C. Rouse, Samantha Bouchal, Harrison Liu, Mark W. Dewhirst, Gregory M. Palmer and Gayathri R. Devi
Cancers 2023, 15(8), 2261; https://doi.org/10.3390/cancers15082261 - 12 Apr 2023
Cited by 3 | Viewed by 3579
Abstract
Inflammatory breast cancer (IBC), an understudied and lethal breast cancer, is often misdiagnosed due to its unique presentation of diffuse tumor cell clusters in the skin and dermal lymphatics. Here, we describe a window chamber technique in combination with a novel transgenic mouse [...] Read more.
Inflammatory breast cancer (IBC), an understudied and lethal breast cancer, is often misdiagnosed due to its unique presentation of diffuse tumor cell clusters in the skin and dermal lymphatics. Here, we describe a window chamber technique in combination with a novel transgenic mouse model that has red fluorescent lymphatics (ProxTom RFP Nu/Nu) to simulate IBC clinicopathological hallmarks. Various breast cancer cells stably transfected to express green or red fluorescent reporters were transplanted into mice bearing dorsal skinfold window chambers. Intravital fluorescence microscopy and the in vivo imaging system (IVIS) were used to serially quantify local tumor growth, motility, length density of lymph and blood vessels, and degree of tumor cell lymphatic invasion over 0–140 h. This short-term, longitudinal imaging time frame in studying transient or dynamic events of diffuse and collectively migrating tumor cells in the local environment and quantitative analysis of the tumor area, motility, and vessel characteristics can be expanded to investigate other cancer cell types exhibiting lymphovascular invasion, a key step in metastatic dissemination. It was found that these models were able to effectively track tumor cluster migration and dissemination, which is a hallmark of IBC clinically, and was recapitulated in these mouse models. Full article
(This article belongs to the Special Issue Imaging the Tumor Microenvironment)
Show Figures

Figure 1

18 pages, 3356 KiB  
Article
Brassinin Promotes the Degradation of Tie2 and FGFR1 in Endothelial Cells and Inhibits Triple-Negative Breast Cancer Angiogenesis
by Yuan Gu, Vivien Becker, Moqin Qiu, Tianci Tang, Emmanuel Ampofo, Michael D. Menger and Matthias W. Laschke
Cancers 2022, 14(14), 3540; https://doi.org/10.3390/cancers14143540 - 21 Jul 2022
Cited by 12 | Viewed by 2675
Abstract
Brassinin, a phytoalexin derived from cruciferous vegetables, has been reported to exhibit anti-cancer activity in multiple cancer types. However, its effects on triple-negative breast cancer (TNBC) development and the underlying mechanisms have not been elucidated so far. In this study, we demonstrated in [...] Read more.
Brassinin, a phytoalexin derived from cruciferous vegetables, has been reported to exhibit anti-cancer activity in multiple cancer types. However, its effects on triple-negative breast cancer (TNBC) development and the underlying mechanisms have not been elucidated so far. In this study, we demonstrated in vitro that brassinin preferentially reduces the viability of endothelial cells (ECs) when compared to other cell types of the tumor microenvironment, including TNBC cells, pericytes, and fibroblasts. Moreover, brassinin at non-cytotoxic doses significantly suppressed the proliferation, migration, tube formation, and spheroid sprouting of ECs. It also efficiently inhibited angiogenesis in an ex-vivo aortic ring assay and an in-vivo Matrigel plug assay. Daily intraperitoneal injection of brassinin significantly reduced tumor size, microvessel density, as well as the perfusion of tumor microvessels in a dorsal skinfold chamber model of TNBC. Mechanistic analyses showed that brassinin selectively stimulates the degradation of Tie2 and fibroblast growth factor receptor 1 in ECs, leading to the down-regulation of the AKT and extracellular signal-regulated kinase pathways. These findings demonstrate a preferential and potent anti-angiogenic activity of brassinin, which may be the main mechanism of its anti-tumor action. Accordingly, this phytochemical represents a promising candidate for the future anti-angiogenic treatment of TNBC. Full article
Show Figures

Figure 1

15 pages, 2502 KiB  
Article
Plasma-Derived Hemopexin as a Candidate Therapeutic Agent for Acute Vaso-Occlusion in Sickle Cell Disease: Preclinical Evidence
by Thomas Gentinetta, John D. Belcher, Valérie Brügger-Verdon, Jacqueline Adam, Tanja Ruthsatz, Joseph Bain, Daniel Schu, Lisa Ventrici, Monika Edler, Hadi Lioe, Kalpeshkumar Patel, Chunsheng Chen, Julia Nguyen, Fuad Abdulla, Ping Zhang, Andreas Wassmer, Meena Jain, Marcel Mischnik, Matthias Pelzing, Kirstee Martin, Roslyn Davis, Svetlana Didichenko, Alexander Schaub, Nathan Brinkman, Eva Herzog, Adrian Zürcher, Gregory M. Vercellotti, Gregory J. Kato and Gerald Höbarthadd Show full author list remove Hide full author list
J. Clin. Med. 2022, 11(3), 630; https://doi.org/10.3390/jcm11030630 - 26 Jan 2022
Cited by 26 | Viewed by 6778
Abstract
People living with sickle cell disease (SCD) face intermittent acute pain episodes due to vaso-occlusion primarily treated palliatively with opioids. Hemolysis of sickle erythrocytes promotes release of heme, which activates inflammatory cell adhesion proteins on endothelial cells and circulating cells, promoting vaso-occlusion. In [...] Read more.
People living with sickle cell disease (SCD) face intermittent acute pain episodes due to vaso-occlusion primarily treated palliatively with opioids. Hemolysis of sickle erythrocytes promotes release of heme, which activates inflammatory cell adhesion proteins on endothelial cells and circulating cells, promoting vaso-occlusion. In this study, plasma-derived hemopexin inhibited heme-mediated cellular externalization of P-selectin and von Willebrand factor, and expression of IL-8, VCAM-1, and heme oxygenase-1 in cultured endothelial cells in a dose-responsive manner. In the Townes SCD mouse model, intravenous injection of free hemoglobin induced vascular stasis (vaso-occlusion) in nearly 40% of subcutaneous blood vessels visualized in a dorsal skin-fold chamber. Hemopexin administered intravenously prevented or relieved stasis in a dose-dependent manner. Hemopexin showed parallel activity in relieving vascular stasis induced by hypoxia-reoxygenation. Repeated IV administration of hemopexin was well tolerated in rats and non-human primates with no adverse findings that could be attributed to human hemopexin. Hemopexin had a half-life in wild-type mice, rats, and non-human primates of 80–102 h, whereas a reduced half-life of hemopexin in Townes SCD mice was observed due to ongoing hemolysis. These data have led to a Phase 1 clinical trial of hemopexin in adults with SCD, which is currently ongoing. Full article
Show Figures

Figure 1

13 pages, 1845 KiB  
Article
The Marine-Derived Triterpenoid Frondoside A Inhibits Thrombus Formation
by Emmanuel Ampofo, Thomas Später, Lisa Nalbach, Michael D. Menger and Matthias W. Laschke
Mar. Drugs 2020, 18(2), 111; https://doi.org/10.3390/md18020111 - 14 Feb 2020
Cited by 8 | Viewed by 2941
Abstract
Background: The marine-derived triterpenoid frondoside A inhibits the phosphatidylinositol-3-kinase (PI3K) pathway in cancer cells. Because this pathway is also crucially involved in platelet activation, we studied the effect of frondoside A on thrombus formation. Methods: Frondoside A effects on platelet viability, surface adhesion [...] Read more.
Background: The marine-derived triterpenoid frondoside A inhibits the phosphatidylinositol-3-kinase (PI3K) pathway in cancer cells. Because this pathway is also crucially involved in platelet activation, we studied the effect of frondoside A on thrombus formation. Methods: Frondoside A effects on platelet viability, surface adhesion molecule expression, and intracellular signaling were analyzed by flow cytometry and Western blot. The effect of frondoside A was analyzed by photochemically induced thrombus formation in the mouse dorsal skinfold chamber model and by tail vein bleeding. Results: Concentrations of up to 15 µM frondoside A did not affect the viability of platelets, but reduced their surface expression of P-selectin (CD62P) and the activation of glycoprotein (GP)IIb/IIIa after agonist stimulation. Additional mechanistic analyses revealed that this was mediated by downregulation of PI3K-dependent Akt and extracellular-stimuli-responsive kinase (ERK) phosphorylation. Frondoside A significantly prolonged the complete vessel occlusion time in the mouse dorsal skinfold chamber model of photochemically induced thrombus formation and also the tail vein bleeding time when compared to vehicle-treated controls. Conclusion: Our findings demonstrated that frondoside A inhibits agonist-induced CD62P expression and activation of GPIIb/IIIa. Moreover, frondoside A suppresses thrombus formation. Therefore, this marine-derived triterpenoid may serve as a lead compound for the development of novel antithrombotic drugs. Full article
(This article belongs to the Special Issue Marine Molecules for the Treatment of Thrombosis)
Show Figures

Figure 1

18 pages, 3630 KiB  
Article
Junctional Adhesion Molecule-C Mediates the Recruitment of Embryonic-Endothelial Progenitor Cells to the Perivascular Niche during Tumor Angiogenesis
by Marcus Czabanka, Lucia Lisa Petrilli, Susanne Elvers-Hornung, Karen Bieback, Beat Albert Imhof, Peter Vajkoczy and Maria Vinci
Int. J. Mol. Sci. 2020, 21(4), 1209; https://doi.org/10.3390/ijms21041209 - 11 Feb 2020
Cited by 11 | Viewed by 3733
Abstract
The homing of Endothelial Progenitor Cells (EPCs) to tumor angiogenic sites has been described as a multistep process, involving adhesion, migration, incorporation and sprouting, for which the underlying molecular and cellular mechanisms are yet to be fully defined. Here, we studied the expression [...] Read more.
The homing of Endothelial Progenitor Cells (EPCs) to tumor angiogenic sites has been described as a multistep process, involving adhesion, migration, incorporation and sprouting, for which the underlying molecular and cellular mechanisms are yet to be fully defined. Here, we studied the expression of Junctional Adhesion Molecule-C (JAM-C) by EPCs and its role in EPC homing to tumor angiogenic vessels. For this, we used mouse embryonic-Endothelial Progenitor Cells (e-EPCs), intravital multi-fluorescence microscopy techniques and the dorsal skin-fold chamber model. JAM-C was found to be expressed by e-EPCs and endothelial cells. Blocking JAM-C did not affect adhesion of e-EPCs to endothelial monolayers in vitro but, interestingly, it did reduce their adhesion to tumor endothelium in vivo. The most striking effect of JAM-C blocking was on tube formation on matrigel in vitro and the incorporation and sprouting of e-EPCs to tumor endothelium in vivo. Our results demonstrate that JAM-C mediates e-EPC recruitment to tumor angiogenic sites, i.e., coordinated homing of EPCs to the perivascular niche, where they cluster and interact with tumor blood vessels. This suggests that JAM-C plays a critical role in the process of vascular assembly and may represent a potential therapeutic target to control tumor angiogenesis. Full article
(This article belongs to the Special Issue Cell Adhesion and Migration in Health and Diseases)
Show Figures

Figure 1

18 pages, 1206 KiB  
Article
The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity
by Emmanuel Ampofo, Thomas Später, Isabelle Müller, Hermann Eichler, Michael D. Menger and Matthias W. Laschke
Mar. Drugs 2015, 13(11), 6774-6791; https://doi.org/10.3390/md13116774 - 9 Nov 2015
Cited by 18 | Viewed by 6210
Abstract
Background: The marine-derived kinase inhibitor fascaplysin down-regulates the PI3K pathway in cancer cells. Since this pathway also plays an essential role in platelet signaling, we herein investigated the effect of fascaplysin on thrombosis. Methods: Fascaplysin effects on platelet activation, platelet aggregation and platelet-leukocyte [...] Read more.
Background: The marine-derived kinase inhibitor fascaplysin down-regulates the PI3K pathway in cancer cells. Since this pathway also plays an essential role in platelet signaling, we herein investigated the effect of fascaplysin on thrombosis. Methods: Fascaplysin effects on platelet activation, platelet aggregation and platelet-leukocyte aggregates (PLA) formation were analyzed by flow cytometry. Mouse dorsal skinfold chambers were used to determine in vivo the effect of fascaplysin on photochemically induced thrombus formation and tail-vein bleeding time. Results: Pre-treatment of platelets with fascaplysin reduced the activation of glycoprotein (GP)IIb/IIIa after protease-activated receptor-1-activating peptide (PAR-1-AP), adenosine diphosphate (ADP) and phorbol-12-myristate-13-acetate (PMA) stimulation, but did not markedly affect the expression of P-selectin. This was associated with a decreased platelet aggregation. Fascaplysin also decreased PLA formation after PMA but not PAR-1-AP and ADP stimulation. This may be explained by an increased expression of CD11b on leukocytes in PAR-1-AP- and ADP-treated whole blood. In the dorsal skinfold chamber model of photochemically induced thrombus formation, fascaplysin-treated mice revealed a significantly extended complete vessel occlusion time when compared to controls. Furthermore, fascaplysin increased the tail-vein bleeding time. Conclusion: Fascaplysin exerts anti-thrombotic activity, which represents a novel mode of action in the pleiotropic activity spectrum of this compound. Full article
(This article belongs to the Special Issue Marine Anticoagulants and Antithrombotics)
Show Figures

Figure 1

Back to TopTop