Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = doped-ceria electrolytes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 301
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

12 pages, 3358 KiB  
Article
Water-Soluble Sacrificial Layer of Sr3Al2O6 for the Synthesis of Free-Standing Doped Ceria and Strontium Titanate
by Simone Sanna, Olga Krymskaya and Antonello Tebano
Appl. Sci. 2025, 15(4), 2192; https://doi.org/10.3390/app15042192 - 19 Feb 2025
Viewed by 2850
Abstract
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and [...] Read more.
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and micro-Solid Oxide Electrochemical Cells for portable energy conversion and storage devices. The sacrificial layer technique offers a pathway to engineering free-standing membranes of electrolytes, cathodes, and anodes with total thicknesses on the order of a few nanometers. Furthermore, the ability to etch the SAO sacrificial layer and transfer ultra-thin oxide films from single-crystal substrates to silicon-based circuits opens possibilities for creating a novel class of mixed electronic and ionic devices with unexplored potential. In this work, we report the growth mechanism and structural characterization of the SAO sacrificial layer. Epitaxial samarium-doped ceria films, grown on SrTiO3 substrates using Sr3Al2O6 as a buffer layer, were successfully transferred onto silicon wafers. This demonstration highlights the potential of the sacrificial layer method for integrating high-quality oxide thin films into advanced device architectures, bridging the gap between oxide materials and silicon-based technologies. Full article
(This article belongs to the Special Issue Advanced Materials for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

11 pages, 3009 KiB  
Article
Hybridizing Fabrications of Gd-CeO2 Thin Films Prepared by EPD and SILAR-A+ for Solid Electrolytes
by Taeyoon Kim, Yun Bin Kim, Sungjun Yang and Sangmoon Park
Molecules 2025, 30(3), 456; https://doi.org/10.3390/molecules30030456 - 21 Jan 2025
Viewed by 978
Abstract
Thin films of gadolinium-doped ceria (GDC) nanoparticles were fabricated as electrolytes for low-temperature solid oxide fuel cells (SOFCs) by combining electrophoretic deposition (EPD) and the successive ionic layer adsorption and reaction-air spray plus (SILAR-A+) method. The Ce1−xGdxO2− [...] Read more.
Thin films of gadolinium-doped ceria (GDC) nanoparticles were fabricated as electrolytes for low-temperature solid oxide fuel cells (SOFCs) by combining electrophoretic deposition (EPD) and the successive ionic layer adsorption and reaction-air spray plus (SILAR-A+) method. The Ce1−xGdxO2−x/2 solid solution was synthesized using hydrothermal (HY) and solid-state (SS) procedures to produce high-quality GDC nanoparticles suitable for EPD fabrication. The crystalline structure, cell parameters, and phases of the GDC products were analyzed using X-ray diffraction. Variations in oxygen vacancy concentrations in the GDC samples were achieved through the two synthetic methods. The ionic conductivities of pressed pellets from the HY, SS, and commercial G0.2DC samples, measured at 150 °C, were 0.6 × 10−6, 2.6 × 10−6, and 2.9 × 10−6 S/cm, respectively. These values were determined using electrochemical impedance spectroscopy (EIS) with a simplified equivalent circuit method. The morphologies of G0.2DC thin films prepared via EPD and SILAR-A+ processes were characterized, with particular attention to surface cracking. Crack-free GDC thin films, approximately 730–1200 nm thick, were successfully fabricated on conductive substrates through the hybridization of EPD and SILAR-A+, followed by hydrothermal annealing. EIS and ionic conductivity (1.39 × 10−9 S/cm) measurements of the G0.2DC thin films with thicknesses of 733 nm were performed at 300 °C. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

19 pages, 10777 KiB  
Article
Electrochemical Impedance Spectroscopy Study of Ceria- and Zirconia-Based Solid Electrolytes for Application Purposes in Fuel Cells and Gas Sensors
by Małgorzata Dziubaniuk, Robert Piech and Beata Paczosa-Bator
Materials 2024, 17(21), 5224; https://doi.org/10.3390/ma17215224 - 26 Oct 2024
Viewed by 1351
Abstract
In this study, the structural and electrochemical properties of commercial powders of the nominal compositions Ce0.8Gd0.2O1.9, Sc0.1Ce0.01Zr0.89O1.95, and Sc0.09Yb0.01Zr0.9O1.95 were investigated. The [...] Read more.
In this study, the structural and electrochemical properties of commercial powders of the nominal compositions Ce0.8Gd0.2O1.9, Sc0.1Ce0.01Zr0.89O1.95, and Sc0.09Yb0.01Zr0.9O1.95 were investigated. The materials are prospective candidates to be used in electrochemical devices, i.e., gas sensors and fuel cells. Based on a comparison of the EIS spectra in different atmospheres (synthetic air, 3000 ppm NH3 in argon, 10% H2 in argon), the reactions on the three-phase boundaries were proposed, as well as the conduction mechanisms of the electrolytes were described. The Ce0.8Gd0.2O1.9 material is a mixed ionic–electronic conductor, which makes it suitable for anode material in fuel cells. Moreover, it exhibits an apparent and reversible response for ammonia, indicating the possibility of usage as an NH3 gas-sensing element. In zirconia-based materials, electrical conduction is realized by oxygen ion carriers. Among them, the most promising from an applicative point of view seems to be Sc0.09Yb0.01Zr0.9O1.95, showing a high, reversible reaction with hydrogen. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Graphical abstract

26 pages, 9203 KiB  
Article
Synthesis and Characterisation of Nanocrystalline CoxFe1−xGDC Powders as a Functional Anode Material for the Solid Oxide Fuel Cell
by Laura Quinlan, Talia Brooks, Nasrin Ghaemi, Harvey Arellano-Garcia, Maryam Irandoost, Fariborz Sharifianjazi and Bahman Amini Horri
Materials 2024, 17(15), 3864; https://doi.org/10.3390/ma17153864 - 4 Aug 2024
Cited by 2 | Viewed by 1949
Abstract
The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including [...] Read more.
The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including crystallite size, lattice parameters, ionic and electronic conductivity, sinterability, and mechanical strength. This study proposes cobalt–iron-substituted gadolinium-doped ceria (CoxFe1-xGDC) as an innovative, nickel-free anode composite for developing ceramic fuel cells. A new co-precipitation technique using ammonium tartrate as the precipitant in a multi-cationic solution with Co2+, Gd3+, Fe3+, and Ce3+ ions was utilized. The physicochemical and morphological characteristics of the synthesized samples were systematically analysed using a comprehensive set of techniques, including DSC/TGA for a thermal analysis, XRD for a crystallographic analysis, SEM/EDX for a morphological and elemental analysis, FT-IR for a chemical bonding analysis, and Raman spectroscopy for a vibrational analysis. The morphological analysis, SEM, showed the formation of nanoparticles (≤15 nm), which corresponded well with the crystal size determined by the XRD analysis, which was within the range of ≤10 nm. The fabrication of single SOFC bilayers occurred within an electrolyte-supported structure, with the use of the GDC as the electrolyte layer and the CoO–Fe2O3/GDC composite as the anode. SEM imaging and the EIS analysis were utilized to examine the fabricated symmetrical cells. Full article
Show Figures

Graphical abstract

15 pages, 2592 KiB  
Article
Benchmarking Electrolytes for the Solid Oxide Electrolyzer Using a Finite Element Model
by Sriram Srinivas, Shankar Raman Dhanushkodi, Ramesh Kumar Chidambaram, Dorota Skrzyniowska, Anna Korzen and Jan Taler
Energies 2023, 16(18), 6419; https://doi.org/10.3390/en16186419 - 5 Sep 2023
Cited by 4 | Viewed by 2377
Abstract
The demand for green hydrogen is increasing, as it is estimated to reduce ten percent of total global green-house-gas emissions from fossil fuel. The solid oxide electrolysis cell (SOEC) is an electrochemical energy-conversion device (EECD) that produces green hydrogen via steam electrolysis. It [...] Read more.
The demand for green hydrogen is increasing, as it is estimated to reduce ten percent of total global green-house-gas emissions from fossil fuel. The solid oxide electrolysis cell (SOEC) is an electrochemical energy-conversion device (EECD) that produces green hydrogen via steam electrolysis. It is preferred to other EECDs for clean hydrogen production owing to its high efficiency, robust kinetics, and lack of precious-metal requirements for cell construction. Herein, we report a Multiphysics model describing the transport phenomena in the SOEC. The governing equations used in the model include a thorough description of the electrode kinetics and of the behavior of the three electrode–electrolyte interfaces in the cell. For the first time, the effect of the scandium-doped zirconia (SCGZ), yttrium-stabilized zirconia (YSZ), and gadolinium-doped ceria (GDC) electrolytes was modeled at different temperatures and pressures. By linking the convection and diffusion equations with the Butler–Volmer at shorter scales, a true representation of the cell operation was simulated. Our models show a R2 value of over 0.996 in predicting the cell-polarization curves and electrochemical properties at the given operating conditions. The impedance of the SCGZ was 0.0240 Ohm.cm2. This value was two- and four-fold lower than the values of the YSZ and GDC, respectively. Furthermore, our theoretical findings of both the polarization data and the impedance were in good agreement with the experimental data. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

18 pages, 5410 KiB  
Article
The La+3-, Nd+3-, Bi+3-Doped Ceria as Mixed Conductor Materials for Conventional and Single-Component Solid Oxide Fuel Cells
by Mahrukh Bukhari, Munazza Mohsin, Zohra Nazir Kayani, Shahzad Rasool and Rizwan Raza
Energies 2023, 16(14), 5308; https://doi.org/10.3390/en16145308 - 11 Jul 2023
Cited by 2 | Viewed by 1732
Abstract
Clean energy devices are essential in today’s environment to combat climate change and work towards sustainable development. In this paper, the potential materials A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) were analyzed for [...] Read more.
Clean energy devices are essential in today’s environment to combat climate change and work towards sustainable development. In this paper, the potential materials A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) were analyzed for clean energy devices, specifically for conventional and single-component solid oxide fuel cells (SC-SOFCs). The wet chemical route has been followed for the preparation of samples. X-ray diffraction patterns showed that all three samples exhibited a defected fluorite cubic structure. It also revealed the presence of dopants in the ceria, which was confirmed by the fingerprint region of FTIR. The optical behavior, fuel cell performance and electrochemical behavior were studied by UV–vis, fuel cell testing apparatus and EIS, respectively. The SEM results showed that all samples had irregular polygons. In Raman spectra, the F2g mode corresponding to the space group (Fm3m) confirms the fluorite structure. The Raman spectra showed that A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) have different trends. The conventional fuel cell performance showed that the maximum power density of Bi2Ce2O7 was 0.65 Wcm−2 at 600 °C. The performance of A2Ce2O7−δ (A = La3+, Nd3+, Bi3+) as a single-component fuel cell revealed that Nd2Ce2O7−δ is the best choice with semiconductors conductors ZnO and NCAL. The highest power density (Pmax) of the Nd2Ce2O7/ZnO was 0.58 Wcm−2, while the maximum power output (Pmax) of the Nd2Ce2O7/NCAL was 0.348 Wcm−2 at 650 °C. All the samples showed good agreement with the ZnO as compared to NCAL for SC-SOFCs. Full article
(This article belongs to the Special Issue Advances in Energy Materials and Clean Energy Technologies)
Show Figures

Figure 1

12 pages, 3274 KiB  
Article
Sintering Aid Strategy for Promoting Oxygen Reduction Reaction on High-Performance Double-Layer LaNi0.6Fe0.4O3–δ Composite Electrode for Devices Based on Solid-State Membranes
by Denis Osinkin and Nina Bogdanovich
Membranes 2023, 13(6), 603; https://doi.org/10.3390/membranes13060603 - 15 Jun 2023
Cited by 7 | Viewed by 1676
Abstract
Strontium and cobalt-free LaNi0.6Fe0.4O3–δ is considered one of the most promising electrodes for solid-state electrochemical devices. LaNi0.6Fe0.4O3–δ has high electrical conductivity, a suitable thermal expansion coefficient, satisfactory tolerance to chromium poisoning, and chemical [...] Read more.
Strontium and cobalt-free LaNi0.6Fe0.4O3–δ is considered one of the most promising electrodes for solid-state electrochemical devices. LaNi0.6Fe0.4O3–δ has high electrical conductivity, a suitable thermal expansion coefficient, satisfactory tolerance to chromium poisoning, and chemical compatibility with zirconia-based electrolytes. The disadvantage of LaNi0.6Fe0.4O3–δ is its low oxygen-ion conductivity. In order to increase the oxygen-ion conductivity, a complex oxide based on a doped ceria is added to the LaNi0.6Fe0.4O3–δ. However, this leads to a decrease in the conductivity of the electrode. In this case, a two-layer electrode with a functional composite layer and a collector layer with the addition of sintering additives should be used. In this study, the effect of sintering additives (Bi0.75Y0.25O2–δ and CuO) in the collector layer on the performance of LaNi0.6Fe0.4O3–δ-based highly active electrodes in contact with the most common solid-state membranes (Zr0.84Sc0.16O2–δ, Ce0.8Sm0.2O2–δ, La0.85Sr0.15Ga0.85Mg0.15O3–δ, La10(SiO4)6O3–δ, and BaCe0.89Gd0.1Cu0.01O3–δ) was investigated. It was shown that LaNi0.6Fe0.4O3–δ has good chemical compatibility with the abovementioned membranes. The best electrochemical activity (polarization resistance about 0.02 Ohm cm2 at 800 °C) was obtained for the electrode with 5 wt.% Bi0.75Y0.25O1.5 and 2 wt.% CuO in the collector layer. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

14 pages, 5109 KiB  
Article
Solid Oxide Fuel Cells with Magnetron Sputtered Single-Layer SDC and Multilayer SDC/YSZ/SDC Electrolytes
by Andrey Solovyev, Anna Shipilova and Egor Smolyanskiy
Membranes 2023, 13(6), 585; https://doi.org/10.3390/membranes13060585 - 5 Jun 2023
Cited by 9 | Viewed by 3644
Abstract
Samarium-doped ceria (SDC) is considered as an alternative electrolyte material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) because its conductivity is higher than that of commonly used yttria-stabilized zirconia (YSZ). The paper compares the properties of anode-supported SOFCs with magnetron sputtered single-layer SDC [...] Read more.
Samarium-doped ceria (SDC) is considered as an alternative electrolyte material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) because its conductivity is higher than that of commonly used yttria-stabilized zirconia (YSZ). The paper compares the properties of anode-supported SOFCs with magnetron sputtered single-layer SDC and multilayer SDC/YSZ/SDC thin-film electrolyte, with the YSZ blocking layer 0.5, 1, and 1.5 μm thick. The thickness of the upper and lower SDC layers of the multilayer electrolyte are constant and amount to 3 and 1 μm, respectively. The thickness of single-layer SDC electrolyte is 5.5 μm. The SOFC performance is studied by measuring current–voltage characteristics and impedance spectra in the range of 500–800 °C. X-ray diffraction and scanning electron microscopy are used to investigate the structure of the deposited electrolyte and other fuel cell layers. SOFCs with the single-layer SDC electrolyte show the best performance at 650 °C. At this temperature, open circuit voltage and maximum power density are 0.8 V and 651 mW/cm2, respectively. The formation of the SDC electrolyte with the YSZ blocking layer improves the open circuit voltage up to 1.1 V and increases the maximum power density at the temperatures over 600 °C. It is shown that the optimal thickness of the YSZ blocking layer is 1 µm. The fuel cell with the multilayer SDC/YSZ/SDC electrolyte, with the layer thicknesses of 3/1/1 µm, has the maximum power density of 2263 and 1132 mW/cm2 at 800 and 650 °C, respectively. Full article
Show Figures

Figure 1

9 pages, 3939 KiB  
Communication
Yttria-Doped Ceria Surface Modification Layer via Atomic Layer Deposition for Low-Temperature Solid Oxide Fuel Cells
by Hyeontaek Kim, Yongchan Park, Davin Jeong and Soonwook Hong
Coatings 2023, 13(3), 491; https://doi.org/10.3390/coatings13030491 - 23 Feb 2023
Cited by 6 | Viewed by 2389
Abstract
Atomic layer deposition (ALD) is performed to obtain less than 1 nm thick yttria-doped ceria (YDC) layers as cathode functional layers to increase the surface oxygen incorporation rate for low-temperature solid oxide fuel cells (LT-SOFCs). Introducing a YDC surface modification layer (SML) has [...] Read more.
Atomic layer deposition (ALD) is performed to obtain less than 1 nm thick yttria-doped ceria (YDC) layers as cathode functional layers to increase the surface oxygen incorporation rate for low-temperature solid oxide fuel cells (LT-SOFCs). Introducing a YDC surface modification layer (SML) has revealed that the optimized yttria concentration in YDC can catalyze surface oxygen exchange kinetics at the interface between the electrolyte and cathode. The YDC SML-containing fuel cell performs 1.5 times better than the pristine fuel cell; the result is an increased exchange current density at the modified surface. Moreover, a heavily doped YDC SML degrades the performance of LT-SOFCs, owing to the weakened oxygen surface kinetics due to the increased migration energy of the oxygen ions. Full article
(This article belongs to the Special Issue Surface Modification/Engineering for Electrochemical Applications)
Show Figures

Figure 1

7 pages, 1674 KiB  
Communication
The Properties of Intermediate-Temperature Solid Oxide Fuel Cells with Thin Film Gadolinium-Doped Ceria Electrolyte
by Andrey Solovyev, Anna Shipilova, Egor Smolyanskiy, Sergey Rabotkin and Vyacheslav Semenov
Membranes 2022, 12(9), 896; https://doi.org/10.3390/membranes12090896 - 17 Sep 2022
Cited by 16 | Viewed by 3071
Abstract
Mixed ionic-electronic conducting materials are not used as a single-layer electrolyte of solid oxide fuel cells (SOFCs) at relatively high operating temperatures of ~800 °C. This is because of a significant decrease in the open-circuit voltage (OCV) and, consequently, the SOFC power density. [...] Read more.
Mixed ionic-electronic conducting materials are not used as a single-layer electrolyte of solid oxide fuel cells (SOFCs) at relatively high operating temperatures of ~800 °C. This is because of a significant decrease in the open-circuit voltage (OCV) and, consequently, the SOFC power density. The paper presents a comparative analysis of the anode-supported SOFC properties obtained within the temperature range of 600 to 800 °C with yttria-stabilized zirconia (YSZ) electrolyte and gadolinium-doped ceria (GDC) electrolyte thin films. Electrolyte layers that are 3 µm thick are obtained by magnetron sputtering. It is shown that at 800 °C, the SOFC with the GDC electrolyte thin film provides an OCV over 0.9 V and power density of 2 W/cm2. The latter is comparable to the power density of SOFCs with the YSZ electrolyte, which is a purely ionic conductor. The GDC electrolyte manifests the high performance, despite the SOFC power density loss induced by electronic conductivity of the former, which, in turn, is compensated by its other positive properties. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

10 pages, 3822 KiB  
Article
Preparation and Properties of Ce0.8Sm0.16Y0.03Gd0.01O1.9-BaIn0.3Ti0.7O2.85 Composite Electrolyte
by Yajun Wang, Changan Tian, Minzheng Zhu, Jie Yang, Xiaoling Qu, Cao Chen, Cao Wang and Yang Liu
Materials 2022, 15(16), 5591; https://doi.org/10.3390/ma15165591 - 15 Aug 2022
Cited by 1 | Viewed by 1687
Abstract
Samarium, gadolinium, and yttrium co-doped ceria (Ce0.8Sm0.16Y0.03Gd0.01O1.9, CSYG) and BaIn0.3Ti0.7O2.85 (BIT07) powders were prepared by sol-gel and solid-state reaction methods, respectively. CSYG-BIT07 composite materials were obtained by mechanically [...] Read more.
Samarium, gadolinium, and yttrium co-doped ceria (Ce0.8Sm0.16Y0.03Gd0.01O1.9, CSYG) and BaIn0.3Ti0.7O2.85 (BIT07) powders were prepared by sol-gel and solid-state reaction methods, respectively. CSYG-BIT07 composite materials were obtained by mechanically mixing the two powders in different ratios and calcining at 1300 °C for 5 h. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as electrical properties and thermal expansion coefficient (TEC) measurements. A series of CSYG-BIT07 composite materials with relative densities higher than 95% were fabricated by sintering at 1300 °C for 5 h. The performance of the CSYG-BIT07 composite electrolyte was found to be related to the content of BIT07. The CSYG-15% BIT07 composite exhibited high oxide ion conductivity (σ800°C = 0.0126 S·cm−1 at 800 °C), moderate thermal expansion (TEC = 9.13 × 10−6/K between room temperature and 800 °C), and low electrical activation energy (Ea = 0.89 eV). These preliminary results indicate that the CSYG-BIT07 material is a promising electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

11 pages, 2820 KiB  
Article
Performance and Degradation of Electrolyte-Supported Single Cell Composed of Mo-Au-Ni/GDC Fuel Electrode and LSCF Oxygen Electrode during High Temperature Steam Electrolysis
by Vaibhav Vibhu, Izaak C. Vinke, Fotios Zaravelis, Stylianos G. Neophytides, Dimitrios K. Niakolas, Rüdiger-A. Eichel and L. G. J. (Bert) de Haart
Energies 2022, 15(8), 2726; https://doi.org/10.3390/en15082726 - 8 Apr 2022
Cited by 28 | Viewed by 3852
Abstract
Ni-gadolinia-doped ceria (GDC) based electrode materials have drawn significant attention as an alternative fuel electrode for solid oxide cells (SOCs) owing to mixed ionic conductivity of GDC and high electronic and catalytic activity of Ni. Moreover, the catalytic activity and electrochemical performance of [...] Read more.
Ni-gadolinia-doped ceria (GDC) based electrode materials have drawn significant attention as an alternative fuel electrode for solid oxide cells (SOCs) owing to mixed ionic conductivity of GDC and high electronic and catalytic activity of Ni. Moreover, the catalytic activity and electrochemical performance of the Ni-GDC electrode can be further improved by dispersing small quantities of other metal additives, such as gold or molybdenum. Therefore, herein, we considered gold and molybdenum modified Ni-GDC electrodes and focused on the upscaling; hence, we prepared 5 × 5 cm2 electrolyte-supported single cells. Their electrochemical performance was investigated at different temperatures and fuel gas compositions. The long-term steam electrolysis test, up to 1700 h, was performed at 900 °C with −0.3 A·cm−2 current load. Lastly, post-test analyses of measured cells were carried out to investigate their degradation mechanisms. Sr-segregation and cobalt oxide formation towards the oxygen electrode side, and Ni-particle coarsening and depletion away from the electrolyte towards the fuel electrode side, were observed, and can be considered as a main reason for the degradation. Thus, modification of Ni/GDC with Au and Mo seems to significantly improve the electro-catalytic activity of the electrode; however, it does not significantly mitigate the Ni-migration phenomenon after prolonged operation. Full article
(This article belongs to the Special Issue High Temperature Electrolysis)
Show Figures

Figure 1

20 pages, 5293 KiB  
Article
Deeper Understanding of Ternary Eutectic Carbonates/Ceria-Based Oxide Composite Electrolyte through Thermal Cycling
by André Grishin, Manel Ben Osman, Haïtam Meskine, Valérie Albin, Virginie Lair, Michel Cassir and Armelle Ringuedé
Energies 2022, 15(7), 2688; https://doi.org/10.3390/en15072688 - 6 Apr 2022
Cited by 6 | Viewed by 2969
Abstract
Due to a high conductivity of about 0.1 S·cm−1, Li-Na-K carbonate eutectic and Sm-doped ceria composite material is a good electrolyte candidate for hybrid fuel cells operating between 500 °C and 600 °C. The present paper aims at a deeper understanding [...] Read more.
Due to a high conductivity of about 0.1 S·cm−1, Li-Na-K carbonate eutectic and Sm-doped ceria composite material is a good electrolyte candidate for hybrid fuel cells operating between 500 °C and 600 °C. The present paper aims at a deeper understanding of the species and mechanisms involved in the ionic transport through impedance spectroscopy and thermal analyses, in oxidizing and reducing atmospheres, wet and dry, and during two heating/cooling cycles. Complementary structural analyses of post-mortem phases allowed us to evidence the irreversible partial transformation of molten carbonates into hydrogenated species, when water and/or hydrogen are added in the surrounding atmospheres. Furthermore, this modification was avoided by adding CO2 in anodic and/or cathodic compartments. Finally, a mechanistic model of such composite electrical behavior is suggested, according to the surrounding atmospheres used. It leads to the conclusions that cells based on this kind of electrolyte would preferably operate in molten carbonate fuel cell conditions, than in solid oxide fuel cell conditions, and confirms the name of “Hybrid Fuel Cells” instead of Intermediate Temperature (or even Low Temperature) Solid Oxide Fuel Cells. Full article
(This article belongs to the Special Issue Solid Oxide Cells: Technology, Design and Applications)
Show Figures

Figure 1

16 pages, 4988 KiB  
Article
Solid Oxide Cell Electrode Nanocomposites Fabricated by Inkjet Printing Infiltration of Ceria Scaffolds
by Simone Anelli, Luis Moreno-Sanabria, Federico Baiutti, Marc Torrell and Albert Tarancón
Nanomaterials 2021, 11(12), 3435; https://doi.org/10.3390/nano11123435 - 18 Dec 2021
Cited by 5 | Viewed by 3617
Abstract
The enhancement of solid oxide cell (SOC) oxygen electrode performance through the generation of nanocomposite electrodes via infiltration using wet-chemistry processes has been widely studied in recent years. An efficient oxygen electrode consists of a porous backbone and an active catalyst, which should [...] Read more.
The enhancement of solid oxide cell (SOC) oxygen electrode performance through the generation of nanocomposite electrodes via infiltration using wet-chemistry processes has been widely studied in recent years. An efficient oxygen electrode consists of a porous backbone and an active catalyst, which should provide ionic conductivity, high catalytic activity and electronic conductivity. Inkjet printing is a versatile additive manufacturing technique, which can be used for reliable and homogeneous functionalization of SOC electrodes via infiltration for either small- or large-area devices. In this study, we implemented the utilization of an inkjet printer for the automatic functionalization of different gadolinium-doped ceria scaffolds, via infiltration with ethanol:water-based La1−xSrxCo1−yFeyO3−δ (LSCF) ink. Scaffolds based on commercial and mesoporous Gd-doped ceria (CGO) powders were used to demonstrate the versatility of inkjet printing as an infiltration technique. Using yttrium-stabilized zirconia (YSZ) commercial electrolytes, symmetrical LSCF/LSCF–CGO/YSZ/LSCF–CGO/LSCF cells were fabricated via infiltration and characterized by SEM-EDX, XRD and EIS. Microstructural analysis demonstrated the feasibility and reproducibility of the process. Electrochemical characterization lead to an ASR value of ≈1.2 Ω cm2 at 750 °C, in the case of nanosized rare earth-doped ceria scaffolds, with the electrode contributing ≈0.18 Ω cm2. These results demonstrate the feasibility of inkjet printing as an infiltration technique for SOC fabrication. Full article
(This article belongs to the Special Issue Inkjet Printing of Nanomaterials for Renewable and Sustainable Energy)
Show Figures

Figure 1

Back to TopTop