Yttria-Doped Ceria Surface Modification Layer via Atomic Layer Deposition for Low-Temperature Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Fuel Cell Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandon, N.P.; Skinner, S.; Steele, B.C. Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 2003, 33, 183–213. [Google Scholar] [CrossRef]
- Park, S.; Vohs, J.M.; Gorte, R.J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 2000, 404, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Boldrin, P.; Brandon, N.P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2019, 2, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Sreedhar, I.; Agarwal, B.; Goyal, P.; Singh, S.A. Recent advances in material and performance aspects of solid oxide fuel cells. J. Electroanal. Chem. 2019, 848, 113315. [Google Scholar] [CrossRef]
- Ellen, I.T.; André, W.; Dirk, H. Materials and technologies for SOFC-components. J. Eur. Ceram. Soc. 2001, 21, 1805–1811. [Google Scholar]
- Albert, T. Strategies for lowering solid oxide fuel cells operating temperature. Energies 2009, 2, 1130–1150. [Google Scholar]
- Wachsman, E.D.; Lee, K.T. Lowering the temperature of solid oxide fuel cells. Science 2011, 334, 935–939. [Google Scholar] [CrossRef]
- Raza, R.; Zhu, B.; Rafique, A.; Muhammad, R.N.; Lund, P. Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: A comprehensive review. Mater. Today Energy 2020, 15, 100373. [Google Scholar] [CrossRef]
- Shi, H.; Su, C.; Ran, R.; Cao, J.; Shao, Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci. 2020, 30, 764–774. [Google Scholar] [CrossRef]
- Zakaria, Z.; Mat, Z.A.; Hassan, S.H.A.; Kar, Y.B. A review of solid oxide fuel cell component fabrication methods toward lowering temperature. Int. J. Energy Res. 2019, 44, 594–611. [Google Scholar] [CrossRef]
- Hussain, S.; Li, Y. Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transit. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Chao, C.C.; Kim, Y.B.; Prinz, F.B. Surface modification of yttria-stabilized zirconia electrolyte by atomic layer deposition. Nano Lett. 2009, 9, 3626–3628. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Hong, S.; Koo, B.; An, J.; Prinz, F.B.; Kim, Y.B. Influence of the grain size of samaria-doped ceria cathodic interlayer for enhanced surface oxygen kinetics of low-temperature solid oxide fuel cell. J. Eur. Ceram. Soc. 2014, 34, 3763–3768. [Google Scholar] [CrossRef]
- Jaiswal, N.; Tanwar, K.; Suman, R.; Kumar, D.; Upadhyay, S.; Parkash, O. A brief review on ceria based solid electrolytes for solid oxide fuel cells. J. Alloys Compd. 2019, 781, 984–1005. [Google Scholar] [CrossRef]
- Fan, Z.; Chao, C.C.; Faraz, H.B.; Prinz, F.B. Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition. J. Mater. Chem. 2011, 21, 10903–10906. [Google Scholar] [CrossRef]
- Fan, Z.; An, J.; Iancu, A.; Prinz, F.B. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells. J. Power Sources 2012, 218, 187–191. [Google Scholar] [CrossRef]
- Gupta, B.K.; Haranath, D.; Saini, S.; Singh, V.N.; Shanker, V. Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 2010, 21, 055607. [Google Scholar] [CrossRef]
- Dwivedi, A.; Srivastava, M.; Dwivedi, A.; Srivastava, A.; Mishra, A.; Srivastava, S.V. Synthesis and enhanced photoluminescence properties of red emitting divalent ion (Ca2+) doped Eu:Y2O3 nanophosphors for optoelectronic applications. J. Rare Earths 2022, 40, 1187–1198. [Google Scholar] [CrossRef]
- Kumar, P.; Dwivedi, J.; Gupta, B.K. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J. Mater. Chem. C 2014, 2, 10468–10475. [Google Scholar] [CrossRef] [Green Version]
- Steele, B.C.H.; Hori, K.M.; Uchino, S. Kinetic parameters influencing the performance of IT-SOFC composite electrodes. Solid State Ion. 2000, 135, 445–450. [Google Scholar] [CrossRef]
- Huang, H.; Holme, T.; Prinz, F.B. Increased cathodic kinetics on platinum in IT-SOFCs by inserting highly ionic-conducting nanocrystalline materials. J. Fuel Cell Sci. Technol. 2010, 7, 041012. [Google Scholar] [CrossRef]
- Shao, Z.; Haile, S.M. A high-performance cathode for the next generation of solid oxide fuel cells. Nature 2004, 431, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Buchanan, R.; Ou, D.R.; Ye, F.; Kobayashi, T.; Kim, J.-D.; Zou, J.; Drennan, j. Design of nanostructured ceria-based solid electrolytes for development of IT-SOFC. J. Solid State Electrochem. 2008, 12, 841–849. [Google Scholar] [CrossRef]
- Fan, Z.; Prinz, F.B. Enhancing oxide ion incorporation kinetics by nanoscale yttria-doped ceria interlayers. Nano Lett. 2011, 11, 2202–2205. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.; Kamarudin, S.K. Advanced modification of scandia-stabilized zirconia electrolytes for solid oxide fuel cells application-A riview. Int. J. Energy Res. 2020, 45, 4871–4887. [Google Scholar] [CrossRef]
- Han, G.D.; Bae, K.; Kang, E.H.; Choi, H.J.; Shim, J.H. Inkjet printing for manufacturing solid oxide fuel cells. ACS Energy Lett. 2020, 5, 1586–1592. [Google Scholar] [CrossRef]
- Hong, S.; Son, J.; Lim, Y.; Yang, H.; Prinz, F.B.; Kim, Y.B. A homogeneous grain-controlled ScSZ functional layer for high performance low-temperature solid oxide fuel cells. J. Mater. Chem. A 2018, 6, 16506–16514. [Google Scholar] [CrossRef]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Richey, N.E.; Paula, C.; Bent, S.F. Understanding chemical and physical mechanisms in atomic layer deposition. J. Chem. Phys. 2020, 152, 040902. [Google Scholar] [CrossRef]
- Shahmohammadi, M.; Mukherjee, R.; Sukotjo, C.; Diwekar, U.M.; Takoudis, C.G. Recent advances in theoretical development of thermal atomic layer deposition: A review. Nanomaterials 2022, 12, 831. [Google Scholar] [CrossRef] [PubMed]
- Dussarrat, C.; Blasco, N.; Noh, W.; Lee, J.; Greer, J.; Teramoto, T.; Kamimura, S.; Gosset, N.; Ono, T. Thermal atomic layer deposition of yttrium oxide films and their properties in anticorrosion and water repellent coating applications. Coatings 2021, 11, 497. [Google Scholar] [CrossRef]
- Raiford, J.A.; Oyakhire, S.T.; Bent, S.F. Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energy Environ. Sci. 2020, 13, 1997–2023. [Google Scholar] [CrossRef]
- Cai, J.; Han, X.; Wang, X.; Meng, X. Atomic layer deposition of two-dimensional layer materials: Processes, growth mechanisms, and characteristics. Matter 2020, 2, 587–630. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Ji, S.; Cho, G.Y.; Noh, S.; Tanveer, W.H.; An, J.; Cha, S.W. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate. J. Vac. Sci. Technol. A 2015, 33, 01A145. [Google Scholar] [CrossRef]
- Oh, J.; Seo, G.; Kim, J.; Bae, S.; Park, J.W.; Hwang, J.A. Plasma-enhanced atomic layer deposition of zirconium oxide thin films and its application to solid oxide fuel cells. Coatings 2021, 11, 362. [Google Scholar] [CrossRef]
- Päiväsaari, J.; Putkonen, M.; Niinisto, L. Cerium dioxide buffer layers at low temperature by atomic layer deposition. J. Mater. Chem. 2002, 12, 1828–1832. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lee, S.F.; Hong, C.W. Ionic dynamics of an intermediate-temperature yttria-doped ceria electrolyte. J. Electrochem. Soc. 2007, 154, E158–E163. [Google Scholar] [CrossRef]
Y1/Ce6 | Y2/Ce5 | Y3/Ce4 | Y4/Ce3 | Y5/Ce2 | Y6/Ce1 |
---|---|---|---|---|---|
Ce | Ce | Ce | Y | Y | Y |
Ce | Ce | Y | Ce | Y | Y |
Ce | Y | Ce | Y | Ce | Y |
Y | Ce | Y | Ce | Y | Ce |
Ce | Ce | Ce | Y | Y | Y |
Ce | Y | Y | Ce | Ce | Y |
Ce | Ce | Ce | Y | Y | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Park, Y.; Jeong, D.; Hong, S. Yttria-Doped Ceria Surface Modification Layer via Atomic Layer Deposition for Low-Temperature Solid Oxide Fuel Cells. Coatings 2023, 13, 491. https://doi.org/10.3390/coatings13030491
Kim H, Park Y, Jeong D, Hong S. Yttria-Doped Ceria Surface Modification Layer via Atomic Layer Deposition for Low-Temperature Solid Oxide Fuel Cells. Coatings. 2023; 13(3):491. https://doi.org/10.3390/coatings13030491
Chicago/Turabian StyleKim, Hyeontaek, Yongchan Park, Davin Jeong, and Soonwook Hong. 2023. "Yttria-Doped Ceria Surface Modification Layer via Atomic Layer Deposition for Low-Temperature Solid Oxide Fuel Cells" Coatings 13, no. 3: 491. https://doi.org/10.3390/coatings13030491
APA StyleKim, H., Park, Y., Jeong, D., & Hong, S. (2023). Yttria-Doped Ceria Surface Modification Layer via Atomic Layer Deposition for Low-Temperature Solid Oxide Fuel Cells. Coatings, 13(3), 491. https://doi.org/10.3390/coatings13030491