Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = dopant passivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2623 KB  
Article
Temperature-Responsive Transmission Switching in Smart Glass Comprising a Biphasic Liquid Crystal
by Min-Han Lu, Yu-Cheng Chiang and Wei Lee
Materials 2025, 18(21), 4989; https://doi.org/10.3390/ma18214989 - 31 Oct 2025
Viewed by 199
Abstract
This study investigates the temperature-driven transmission switching behavior of our proposed smart glass, which utilizes a biphasic liquid crystal system under continuous application of a distinctive homeotropic (H) state voltage (VH). By ascertaining VH at temperatures near the phase [...] Read more.
This study investigates the temperature-driven transmission switching behavior of our proposed smart glass, which utilizes a biphasic liquid crystal system under continuous application of a distinctive homeotropic (H) state voltage (VH). By ascertaining VH at temperatures near the phase transition point, the minimum voltage required to sustain the H state in the smectic A* (SmA*) phase is identified. Interestingly, this minimum VH is unable to induce the H state in the chiral nematic (N*) phase, thereby maintaining a low-transmission scattering state; i.e., the focal conic (FC) state. This empowers passive, bidirectional optical switching between the transparent H state (in the SmA* phase) and the scattering FC state (in the N* phase) in an unaligned liquid crystal cell. This work employs two dissimilar chiral dopants, R811/S811 and CB7CB/R5011, both capable of inducing the SmA* phase. Neither resulting cell system underwent surface orientation treatment, and a black dye was incorporated to enhance the contrast ratio. The results indicate that the more efficacious CB7CB/R5011 system achieves a contrast ratio of 17 between the transparent and scattering states, with a corresponding haze level of 78%. To further reduce energy consumption, the experimental framework was transitioned from a continuous-voltage to a variable-voltage mode, giving rise to an increased haze level of 88%. The proposed switching scheme holds promise for diverse applications, notably in smart windows and light shutters. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Graphical abstract

13 pages, 1716 KB  
Article
Corrosion Resistance Study of Cyclocarboxypropyl Oleic Acid-Doped Polyaniline/Epoxy Composite Coatings
by Xinning Xu, Xiaofeng Li, Taihua Zhang, Wei Guo, Yan An and Tao Liu
Nanomaterials 2025, 15(18), 1416; https://doi.org/10.3390/nano15181416 - 15 Sep 2025
Viewed by 442
Abstract
Corrosion inhibitors can form dense, protective layers on metal surfaces, thereby preventing the penetration of corrosive media and ensuring the long-term safety of industrial equipment and energy facilities. Polyaniline (PANI), renowned for its excellent conductivity and redox activity, not only facilitates the formation [...] Read more.
Corrosion inhibitors can form dense, protective layers on metal surfaces, thereby preventing the penetration of corrosive media and ensuring the long-term safety of industrial equipment and energy facilities. Polyaniline (PANI), renowned for its excellent conductivity and redox activity, not only facilitates the formation of passivation layers on metals but also mitigates pitting corrosion. In this study, a novel doped PANI was synthesized through chemical oxidation using cyclic carboxypropyl oleic acid (CCHOA) as a dopant, and its anti-corrosion properties were evaluated by incorporation into epoxy resin coatings. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) analyses confirmed that CCHOA-doped PANI produced a more uniform and compact microstructure with reduced agglomeration. The corrosion resistance and toughness of the epoxy coatings initially improved with increasing CCHOA content, but then slightly declined, which allowed us to determine the optimal doping level for PANI. The ideal concentration was found to be 0.5 mol/L in the epoxy resin matrix. Full article
Show Figures

Figure 1

12 pages, 1513 KB  
Article
Impedance Spectroscopy for Interface Trap Effects Evaluation in Dopant-Free Silicon Solar Cells
by Ilaria Matacena, Laura Lancellotti, Eugenia Bobeico, Iurie Usatii, Marco della Noce, Elena Santoro, Pietro Scognamiglio, Lucia V. Mercaldo, Paola Delli Veneri and Santolo Daliento
Energies 2025, 18(17), 4558; https://doi.org/10.3390/en18174558 - 28 Aug 2025
Viewed by 601
Abstract
This work investigates the effect of interface traps on the impedance spectra of dopant-free silicon solar cells. The studied device consists of a crystalline silicon absorber with an a-Si:H/MoOx/ITO stack as the front passivating hole-collecting contact and an a-Si:H/LiF/Al stack as the rear [...] Read more.
This work investigates the effect of interface traps on the impedance spectra of dopant-free silicon solar cells. The studied device consists of a crystalline silicon absorber with an a-Si:H/MoOx/ITO stack as the front passivating hole-collecting contact and an a-Si:H/LiF/Al stack as the rear passivating electron-collecting contact. Experimental measurements, including illuminated current–voltage (I–V) characteristics and impedance spectroscopy, were performed on the fabricated devices and after a soft annealing treatment. The annealed cells exhibit an increased open-circuit voltage and a larger Nyquist plot radius. To interpret these results, a numerical model was developed in a TCAD environment. Simulations reveal that traps located at the p/i interface (MoOx/i-a-Si:H) significantly affect the impedance spectra, with higher trap concentrations leading to smaller Nyquist plot circumferences. The numerical impedance curves were aligned to the experimental data, enabling extraction of the interfacial traps concentration. The results highlight the sensitivity of impedance spectroscopy to interfacial quality and confirm that the performance improvement after soft annealing is primarily due to reduced defect density at the MoOx/i-a-Si:H interface. Full article
Show Figures

Figure 1

35 pages, 3949 KB  
Review
The Influence of Defect Engineering on the Electronic Structure of Active Centers on the Catalyst Surface
by Zhekun Zhang, Yankun Wang, Tianqi Guo and Pengfei Hu
Catalysts 2025, 15(7), 651; https://doi.org/10.3390/catal15070651 - 3 Jul 2025
Cited by 4 | Viewed by 1991
Abstract
Defect engineering has recently emerged as a cutting-edge discipline for precise modulation of electronic structures in nanomaterials, shifting the paradigm in nanoscience from passive ‘inherent defect tolerance’ to proactive ‘defect-controlled design’. The deliberate introduction of defect—including vacancies, dopants, and interfaces—breaks the rigid symmetry [...] Read more.
Defect engineering has recently emerged as a cutting-edge discipline for precise modulation of electronic structures in nanomaterials, shifting the paradigm in nanoscience from passive ‘inherent defect tolerance’ to proactive ‘defect-controlled design’. The deliberate introduction of defect—including vacancies, dopants, and interfaces—breaks the rigid symmetry of crystalline lattices, enabling new pathways for optimizing catalysis performance. This review systematically summarizes the mechanisms underlying defect-mediated electronic structure at active sites regulation, including (1) reconstruction of the electronic density of states, (2) tuning of coordination microenvironments, (3) charge transfer and localization effects, (4) spin-state and magnetic coupling modulation, and (5) dynamic defect and interface engineering. These mechanisms elucidate how defect-induced electronic restructuring governs catalytic activity and selectivity. We further assess advanced characterization techniques and computational methodologies for probing defects-induced electronic states, offering deeper mechanistic insights at atomic scales. Finally, we highlight recent breakthroughs in defect-engineered nanomaterials for catalytic applications, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and beyond, while discussing existing challenges in scalability, defect stability, and structure–property causality. This review aims to provide actionable principles for the rational design of defects to tailor electronic structures toward next-generation energy technologies. Full article
Show Figures

Graphical abstract

19 pages, 2782 KB  
Article
Recycling of Lead-Acid Battery Electrodes Using Sb2O3 and CuO: Characterization and Electrochemical Investigations
by Delia N. Piscoiu, Simona Rada, Sergiu Macavei, Lucian Barbu, Ramona Suciu and Eugen Culea
Materials 2025, 18(5), 935; https://doi.org/10.3390/ma18050935 - 21 Feb 2025
Cited by 1 | Viewed by 956
Abstract
The recycling of spent automotive batteries is essential for minimizing their environmental impact. This requires eco-innovative methods with low cost and energy use. The present study explores the recycling of battery electrodes through the melt quenching method, a process that incorporates spent anode [...] Read more.
The recycling of spent automotive batteries is essential for minimizing their environmental impact. This requires eco-innovative methods with low cost and energy use. The present study explores the recycling of battery electrodes through the melt quenching method, a process that incorporates spent anode and cathode plates into a vitreous host matrix. Samples with the xCuO·10Sb2O3·(90 − x)[4PbO2·Pb] composition, where x = 0 to 30 mol% CuO, were prepared by the melt quenching method. The XRD analysis indicates the vitroceramic structures of the obtained samples. Thus, the presence of varied crystalline phases such as Pb2(SO4)O, PbSO4, and metallic Pb was detected. The SEM micrographs highlighted heterogeneous regions within the samples and showed a decreases of the size of crystallites with increased dopant concentrations. IR and UV-Vis spectra suggest that the copper ions act as network modifiers, creating bond defects and free oxygen ions, and yielding a reduction of the optical bandgap energy at higher dopant contents. EPR data show that the shape of the resonance lines and the coordination geometry of the Cu2+ ions are influenced by the dopant concentrations. The analysis of the voltammetric data indicates that doping the recycled material with 20 mol% CuO and 10 mol% Sb2O3 eliminates the process of hydrogen evolution and reduces the anodic electrode passivation. Full article
Show Figures

Figure 1

14 pages, 3191 KB  
Article
Three-Step Process for Efficient Solar Cells with Boron-Doped Passivated Contacts
by Saman Sharbaf Kalaghichi, Jan Hoß, Jonathan Linke, Stefan Lange and Jürgen H. Werner
Energies 2024, 17(6), 1319; https://doi.org/10.3390/en17061319 - 9 Mar 2024
Cited by 2 | Viewed by 2691
Abstract
Crystalline silicon (c-Si) solar cells with passivation stacks consisting of a polycrystalline silicon (poly-Si) layer and a thin interfacial silicon dioxide (SiO2) layer show high conversion efficiencies. Since the poly-Si layer in this structure acts as a carrier transport layer, high [...] Read more.
Crystalline silicon (c-Si) solar cells with passivation stacks consisting of a polycrystalline silicon (poly-Si) layer and a thin interfacial silicon dioxide (SiO2) layer show high conversion efficiencies. Since the poly-Si layer in this structure acts as a carrier transport layer, high doping of the poly-Si layer is crucial for high conductivity and the efficient transport of charge carriers from the bulk to a metal contact. In this respect, conventional furnace-based high-temperature doping methods are limited by the solid solubility of the dopants in silicon. This limitation particularly affects p-type doping using boron. Previously, we showed that laser activation overcomes this limitation by melting the poly-Si layer, resulting in an active concentration beyond the solubility limit after crystallization. High electrically active boron concentrations ensure low contact resistivity at the (contact) metal/semiconductor interface and allow for the maskless patterning of the poly-Si layer by providing an etch-stop layer in an alkaline solution. However, the high doping concentration degrades during long high-temperature annealing steps. Here, we performed a test of the stability of such a high doping concentration under thermal stress. The active boron concentration shows only a minor reduction during SiNx:H deposition at a moderate temperature and a fast-firing step at a high temperature and with a short exposure time. However, for an annealing time tanneal = 30 min and an annealing temperature 600 °C ≤ Tanneal≤ 1000 °C, the high conductivity is significantly reduced, whereas a high passivation quality requires annealing in this range. We resolve this dilemma by introducing a second, healing laser reactivation step, which re-establishes the original high conductivity of the boron-doped poly-Si and does not degrade the passivation. After a thermal annealing temperature Tanneal = 985 °C, the reactivated layers show high sheet conductance (Gsh) with Gsh = 24 mS sq and high passivation quality, with the implied open-circuit voltage (iVOC) reaching iVOC = 715 mV. Therefore, our novel three-step process consisting of laser activation, thermal annealing, and laser reactivation/healing is suitable for fabricating highly efficient solar cells with p++-poly-Si/SiO2 contact passivation layers. Full article
Show Figures

Figure 1

19 pages, 6276 KB  
Article
Quantum Efficiency Measurement and Modeling of Silicon Sensors Optimized for Soft X-ray Detection
by Maria Carulla, Rebecca Barten, Filippo Baruffaldi, Anna Bergamaschi, Giacomo Borghi, Maurizio Boscardin, Martin Brückner, Tim A. Butcher, Matteo Centis Vignali, Roberto Dinapoli, Simon Ebner, Francesco Ficorella, Erik Fröjdh, Dominic Greiffenberg, Omar Hammad Ali, Shqipe Hasanaj, Julian Heymes, Viktoria Hinger, Thomas King, Pawel Kozlowski, Carlos Lopez Cuenca, Davide Mezza, Konstantinos Moustakas, Aldo Mozzanica, Giovanni Paternoster, Kirsty A. Paton, Sabina Ronchin, Christian Ruder, Bernd Schmitt, Patrick Sieberer, Dhanya Thattil, Konrad Vogelsang, Xiangyu Xie and Jiaguo Zhangadd Show full author list remove Hide full author list
Sensors 2024, 24(3), 942; https://doi.org/10.3390/s24030942 - 31 Jan 2024
Cited by 4 | Viewed by 2952
Abstract
Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor [...] Read more.
Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor quantum efficiency of the sensor and the difficulty in achieving single-photon resolution due to the low signal-to-noise ratio. In this paper, we address the quantum efficiency of silicon sensors by refining the design of the entrance window, mainly by passivating the silicon surface and optimizing the dopant profile of the n+ region. We present the measurement of the quantum efficiency in the soft X-ray energy range for silicon sensors with several process variations in the fabrication of planar sensors with thin entrance windows. The quantum efficiency for 250 eV photons is increased from almost 0.5% for a standard sensor to up to 62% as a consequence of these developments, comparable to the quantum efficiency of backside-illuminated scientific CMOS sensors. Finally, we discuss the influence of the various process parameters on quantum efficiency and present a strategy for further improvement. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

18 pages, 7476 KB  
Article
Microscale Engineering of n-Type Doping in Nanostructured Gallium Antimonide: AC Impedance Spectroscopy Insights on Grain Boundary Characterization and Strategies for Controlled Dopant Distribution
by Michael J. Hall and Daryoosh Vashaee
Micromachines 2023, 14(9), 1801; https://doi.org/10.3390/mi14091801 - 21 Sep 2023
Cited by 2 | Viewed by 1529
Abstract
This paper investigates the microscale engineering aspects of n-type doped GaSb to address the challenges associated with achieving high electrical conductivity and precise dopant distribution in this semiconductor material. AC impedance spectroscopy is employed as a reliable technique to characterize the microstructural and [...] Read more.
This paper investigates the microscale engineering aspects of n-type doped GaSb to address the challenges associated with achieving high electrical conductivity and precise dopant distribution in this semiconductor material. AC impedance spectroscopy is employed as a reliable technique to characterize the microstructural and electrical properties of GaSb, providing valuable insights into the impact of grain boundaries on overall electrical performance. The uneven distribution of dopants, caused by diffusion, and the incomplete activation of introduced dopants pose significant obstacles in achieving consistent material properties. To overcome these challenges, a careful selection of alloying elements, such as bismuth, is explored to suppress the formation of native acceptor defects and modulate band structures, thereby influencing the doping and compensator formation processes. Additionally, the paper examines the effect of microwave annealing as a potential solution for enhancing dopant activation, minimizing diffusion, and reducing precipitate formation. Microwave annealing shows promise due to its rapid heating and shorter processing times, making it a viable alternative to traditional annealing methods. The study underscores the need for a stable grain boundary passivation strategy to achieve significant improvements in GaSb material performance. Simple grain size reduction strategies alone do not result in better thermoelectric performance, for example, and increasing the grain boundary area per unit volume exacerbates the issue of free carrier compensation. These findings highlight the complexity of achieving optimal doping in GaSb materials and the importance of innovative analytical techniques and controlled doping processes. The comprehensive exploration of n-type doped GaSb presented in this research provides valuable insights for future advancements in the synthesis and optimization of high-conductivity nanostructured n-type GaSb, with potential applications in thermoelectric devices and other electronic systems. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in 'Materials and Processing' 2023)
Show Figures

Figure 1

17 pages, 8571 KB  
Article
Electronic and Optical Properties of Finite Gallium Sulfide Nano Ribbons: A First-Principles Study
by Omar H. Abd-Elkader, Hazem Abdelsalam, Mahmoud A. S. Sakr, Nahed H. Teleb and Qinfang Zhang
Crystals 2023, 13(8), 1215; https://doi.org/10.3390/cryst13081215 - 5 Aug 2023
Cited by 6 | Viewed by 2105
Abstract
The electronic and optical properties of finite GaS nanoribbons are investigated using density functional theory calculations. The effect of size, edge termination, and chemical modification by doping and edge passivation are taken into account. The dynamical stability is confirmed by the positive vibration [...] Read more.
The electronic and optical properties of finite GaS nanoribbons are investigated using density functional theory calculations. The effect of size, edge termination, and chemical modification by doping and edge passivation are taken into account. The dynamical stability is confirmed by the positive vibration frequency from infrared spectra; further, the positive binding energies ensure the stable formation of the considered nanoribbons. Accurate control of the energy gap has been achieved. For instance, in armchair nanoribbons, energy gaps ranging from ~ 1 to 4 eV were obtained in varying sizes. Moreover, the energy gap can be increased by up to 5.98 eV through edge passivation with F-atoms or decreased to 0.98 eV through doping with Si-atoms. The density of states shows that the occupied molecular orbitals are dominated by S-atoms orbitals, while unoccupied ones are mostly contributed to by Ga orbitals. Thus, S-atoms will be the electron donor sites, and Ga-atoms will be the electron acceptors in the interactions that the nanoribbons might undergo. The nature of electron–hole interactions in the excited states was investigated using various indices, such as electron–hole overlapping, charge–transfer length, and hole–electron Coulomb attraction energy. The UV-Vis absorption spectra reveal a redshift by increasing the size in the armchair or the zigzag directions. Chemical functionalization shows a significant influence on the absorption spectra, where a redshift or blueshift can be achieved depending on the dopant or the attached element. Full article
(This article belongs to the Special Issue Crystalline Magnetic Compounds)
Show Figures

Figure 1

12 pages, 4475 KB  
Article
In/Ga-Doped Si as Anodes for Si–Air Batteries with Restrained Self-Corrosion and Surface Passivation: A First-Principles Study
by Dongxu Wang, Tingyu Zhao and Yingjian Yu
Molecules 2023, 28(9), 3784; https://doi.org/10.3390/molecules28093784 - 27 Apr 2023
Cited by 4 | Viewed by 2126
Abstract
Silicon–air batteries (SABs) are attracting considerable attention owing to their high theoretical energy density and superior security. In this study, In and Ga were doped into Si electrodes to optimize the capability of Si-air batteries. Varieties of Si-In/SiO2 and Si-Ga/SiO2 atomic [...] Read more.
Silicon–air batteries (SABs) are attracting considerable attention owing to their high theoretical energy density and superior security. In this study, In and Ga were doped into Si electrodes to optimize the capability of Si-air batteries. Varieties of Si-In/SiO2 and Si-Ga/SiO2 atomic interfaces were built, and their properties were analyzed using density functional theory (DFT). The adsorption energies of the SiO2 passivation layer on In- and Ga-doped silicon electrodes were higher than those on pure Si electrodes. Mulliken population analysis revealed a change in the average number of charge transfers of oxygen atoms at the interface. Furthermore, the local device density of states (LDDOS) of the modified electrodes showed high strength in the interfacial region. Additionally, In and Ga as dopants introduced new energy levels in the Si/SiO2 interface according to the projected local density of states (PLDOS), thus reducing the band gap of the SiO2. Moreover, the I-V curves revealed that doping In and Ga into Si electrodes enhanced the current flow of interface devices. These findings provide a mechanistic explanation for improving the practical efficiency of silicon–air batteries through anode doping and provide insight into the design of Si-based anodes in air batteries. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices)
Show Figures

Figure 1

31 pages, 12091 KB  
Review
Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells
by Bin Du, Kun He, Xiaoliang Zhao and Bixin Li
Polymers 2023, 15(9), 2010; https://doi.org/10.3390/polym15092010 - 24 Apr 2023
Cited by 19 | Viewed by 10611
Abstract
Organic-inorganic halide perovskite solar cells (PSCs) have attracted much attention in recent years due to their simple manufacturing process, low cost, and high efficiency. So far, all efficient organic-inorganic halide PSCs are mainly made of polycrystalline perovskite films. There are transmission barriers and [...] Read more.
Organic-inorganic halide perovskite solar cells (PSCs) have attracted much attention in recent years due to their simple manufacturing process, low cost, and high efficiency. So far, all efficient organic-inorganic halide PSCs are mainly made of polycrystalline perovskite films. There are transmission barriers and high-density defects on the surface, interface, and grain boundary of the films. Among them, the deep-level traps caused by specific charged defects are the main non-radiative recombination centers, which is the most important factor in limiting the photoelectric conversion efficiency of PSCs devices to the Shockley-Queisser (S-Q) theoretical efficiency limit. Therefore, it is imperative to select appropriate passivation materials and passivation strategies to effectively eliminate defects in perovskite films to improve their photovoltaic performance and stability. There are various passivation strategies for different components of PSCs, including interface engineering, additive engineering, antisolvent engineering, dopant engineering, etc. In this review, we summarize a large number of defect passivation work to illustrate the latest progress of different types of passivators in regulating the morphology, grain boundary, grain size, charge recombination, and defect density of states of perovskite films. In addition, we discuss the inherent defects of key materials in carrier transporting layers and the corresponding passivation strategies to further optimize PSCs components. Finally, some perspectives on the opportunities and challenges of PSCs in future development are highlighted. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

15 pages, 6878 KB  
Article
Evaluation of Fracture Toughness of Plasma Electrolytic Oxidized Al2O3-ZrO2 Coatings Utilizing Nano-Scratch Technique
by Mehri Hashemzadeh, Frank Simchen, Lisa Winter and Thomas Lampke
Coatings 2023, 13(4), 799; https://doi.org/10.3390/coatings13040799 - 20 Apr 2023
Cited by 5 | Viewed by 4347
Abstract
Al2O3 coatings, which can be produced by plasma electrolytic oxidation (PEO) on aluminum substrates, provide an excellent protection against corrosion and wear. However, due to the brittle nature of the oxide ceramic, the fracture toughness is limited. One approach to [...] Read more.
Al2O3 coatings, which can be produced by plasma electrolytic oxidation (PEO) on aluminum substrates, provide an excellent protection against corrosion and wear. However, due to the brittle nature of the oxide ceramic, the fracture toughness is limited. One approach to enhance the tolerance to fracture is the incorporation of ZrO2 to form zirconia toughened alumina (ZTA). In addition to its use as a bulk material, the application as a coating material enables a broader field of application. In this study, an Al2O3-ZrO2 composite coating was applied on a 6082 aluminum alloy using an aluminate-phosphate-based electrolytic solution containing a Zr-based salt. Polarization measurement as an indicator of the passivability of a given system revealed that Zr-based salt improves the passivation of the aluminum alloy. The coatings’ characteristics were evaluated by SEM, EDS, and XRD. ZrO2 incorporated into alumina as a metastable high-temperature modification led to a thicker coating with new morphologies including lamellar and dendritic structures. Nano-indentation showed that the incorporated Zr increase the average hardness of the compact layer from 16 GPa to 18 GPa. The fracture toughness of the coatings was investigated locally with nano-scratches applied on the compact outer layer of the coatings’ cross-sections. The Zr-containing electrolytic solution resulted in a coating with significantly higher fracture toughness (6.9 MPa∙m1/2) in comparison with the Zr-free electrolytic solution (4.6 MPa∙m1/2). Therefore, it is shown, that the PEO process stabilized a high-temperature allotrope of zirconia at room temperature without the need for rare-earth dopants such as Y2O3. Furthermore, it was demonstrated that the nano-scratch method is a suitable and accurate technique for the investigation of the fracture toughness of coatings with inherent cracks. Full article
(This article belongs to the Special Issue Functional Coatings for Metallic and Ceramic Materials)
Show Figures

Figure 1

11 pages, 2847 KB  
Article
Enhanced Electroluminescence from a Silicon Nanocrystal/Silicon Carbide Multilayer Light-Emitting Diode
by Teng Sun, Dongke Li, Jiaming Chen, Yuhao Wang, Junnan Han, Ting Zhu, Wei Li, Jun Xu and Kunji Chen
Nanomaterials 2023, 13(6), 1109; https://doi.org/10.3390/nano13061109 - 20 Mar 2023
Cited by 4 | Viewed by 2910
Abstract
Developing high-performance Si-based light-emitting devices is the key step to realizing all-Si-based optical telecommunication. Usually, silica (SiO2) as the host matrix is used to passivate silicon nanocrystals, and a strong quantum confinement effect can be observed due to the large band [...] Read more.
Developing high-performance Si-based light-emitting devices is the key step to realizing all-Si-based optical telecommunication. Usually, silica (SiO2) as the host matrix is used to passivate silicon nanocrystals, and a strong quantum confinement effect can be observed due to the large band offset between Si and SiO2 (~8.9 eV). Here, for further development of device properties, we fabricate Si nanocrystals (NCs)/SiC multilayers and study the changes in photoelectric properties of the LEDs induced by P dopants. PL peaks centered at 500 nm, 650 nm and 800 nm can be detected, which are attributed to surface states between SiC and Si NCs, amorphous SiC and Si NCs, respectively. PL intensities are first enhanced and then decreased after introducing P dopants. It is believed that the enhancement is due to passivation of the Si dangling bonds at the surface of Si NCs, while the suppression is ascribed to enhanced Auger recombination and new defects induced by excessive P dopants. Un-doped and P-doped LEDs based on Si NCs/SiC multilayers are fabricated and the performance is enhanced greatly after doping. As fitted, emission peaks near 500 nm and 750 nm can be detected. The current density-voltage properties indicate that the carrier transport process is dominated by FN tunneling mechanisms, while the linear relationship between the integrated EL intensity and injection current illustrates that the EL mechanism is attributed to recombination of electron–hole pairs at Si NCs induced by bipolar injection. After doping, the integrated EL intensities are enhanced by about an order of magnitude, indicating that EQE is greatly improved. Full article
Show Figures

Figure 1

10 pages, 20760 KB  
Article
Enhanced Optical and Electronic Properties of Silicon Nanosheets by Phosphorus Doping Passivation
by Ye Lei, Deren Yang and Dongsheng Li
Materials 2023, 16(3), 1079; https://doi.org/10.3390/ma16031079 - 26 Jan 2023
Cited by 4 | Viewed by 2528
Abstract
In this paper, we use the spin-on-dopant technique for phosphorus doping to improve the photoelectric properties of soft-chemical-prepared silicon nanosheets. It was found that the luminescence intensity and luminescence lifetime of the doped samples was approximately 4 fold that of the undoped samples, [...] Read more.
In this paper, we use the spin-on-dopant technique for phosphorus doping to improve the photoelectric properties of soft-chemical-prepared silicon nanosheets. It was found that the luminescence intensity and luminescence lifetime of the doped samples was approximately 4 fold that of the undoped samples, due to passivation of the surface defects by phosphorus doping. Meanwhile, phosphorus doping combined with high-temperature heat treatment can reduce the resistivity of multilayer silicon nanosheets by 6 fold compared with that of as-prepared samples. In conclusion, our work brings soft-chemical-prepared silicon nanosheets one step closer to practical application in the field of optoelectronics. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

9 pages, 2534 KB  
Article
Fabrication of UV-Stable Perovskite Solar Cells with Compact Fe2O3 Electron Transport Layer by FeCl3 Solution and Fe3O4 Nanoparticles
by Bangkai Gu, Yi Du, Song Fang, Xi Chen, Xiabing Li, Qingyu Xu and Hao Lu
Nanomaterials 2022, 12(24), 4415; https://doi.org/10.3390/nano12244415 - 10 Dec 2022
Cited by 10 | Viewed by 2457
Abstract
Even though Fe2O3 is reported as the electron-transporting layer (ETL) in perovskite solar cells (PSCs), its fabrication and defects limit its performance. Herein, we report a Fe2O3 ETL prepared from FeCl3 solution with a dopant Fe [...] Read more.
Even though Fe2O3 is reported as the electron-transporting layer (ETL) in perovskite solar cells (PSCs), its fabrication and defects limit its performance. Herein, we report a Fe2O3 ETL prepared from FeCl3 solution with a dopant Fe3O4 nanoparticle modification. It is found that the mixed solution can reduce the defects and enhance the performance of Fe2O3 ETL, contributing to improved electron transfer and suppressed charge recombination. Consequently, the best efficiency is improved by more than 118% for the optimized device. The stability efficiency of the Fe2O3-ETL-based device is nearly 200% higher than that of the TiO2-ETL-based device after 7 days measurement under a 300 W Xe lamp. This work provides a facile method to fabricate environmentally friendly, high-quality Fe2O3 ETL for perovskite photovoltaic devices and provides a guide for defect passivation research. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Applications)
Show Figures

Figure 1

Back to TopTop