Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = donor/acceptor junction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1279 KB  
Review
Circular RNA Formation and Degradation Are Not Directed by Universal Pathways
by Arvind Srinivasan, Emilia Mroczko-Młotek and Marzena Wojciechowska
Int. J. Mol. Sci. 2025, 26(2), 726; https://doi.org/10.3390/ijms26020726 - 16 Jan 2025
Cited by 6 | Viewed by 2473
Abstract
Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the [...] Read more.
Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5′ splice donor and an upstream 3′ splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic–intronic) and their isoforms. The intricate biogenesis of circRNAs is regulated by the interplay of cis-regulatory elements and trans-acting factors, with intronic Alu repeats and RNA-binding proteins playing pivotal roles, at least in the formation of exonic circRNAs. Various hypotheses regarding pathways of circRNA turnover are forwarded, including endonucleolytic cleavage and exonuclease-mediated degradation; however, similarly to the inconclusive nature of circRNA biogenesis, the process of their degradation and the factors involved remain largely unclear. There is a knowledge gap regarding whether these processes are guided by universal pathways or whether each category of circRNAs requires special tools and particular mechanisms for their life cycles. Understanding these factors is pivotal for fully comprehending the biological significance of circRNAs. This review provides an overview of the various pathways involved in the biogenesis and degradation of different types of circRNAs and explores key factors that have beneficial or adverse effects on the formation and stability of these unique transcripts in higher eukaryotes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 10000 KB  
Article
High-Efficiency Triple-Junction Polymer Solar Cell: A Theoretical Approach
by Fazli Sattar, Xiaozhuang Zhou and Zakir Ullah
Molecules 2024, 29(22), 5370; https://doi.org/10.3390/molecules29225370 - 14 Nov 2024
Cited by 6 | Viewed by 1691
Abstract
This study presents the theoretical design and evaluation of a triple-junction polymer solar cell architecture, incorporating oligomers of PDCBT, PPDT2FBT, and PDPP3T as donor materials and PC71BM as the electron acceptor. Using density functional theory (DFT) simulations and time-dependent DFT (TD-DFT) [...] Read more.
This study presents the theoretical design and evaluation of a triple-junction polymer solar cell architecture, incorporating oligomers of PDCBT, PPDT2FBT, and PDPP3T as donor materials and PC71BM as the electron acceptor. Using density functional theory (DFT) simulations and time-dependent DFT (TD-DFT) methods, the investigation covers essential photovoltaic parameters, including molecular geometries, UV-Vis spectra, and charge transport properties. The device is structured to maximize solar energy absorption across the spectrum, featuring front, middle, and back junctions with band gaps of 1.9 eV, 1.63 eV, and 1.33 eV, respectively. Each layer targets different regions of the solar spectrum, optimizing light harvesting and charge separation. This innovative multi-junction design offers a promising pathway to enhanced power conversion efficiencies in polymer solar cells, advancing the integration of renewable energy technologies. Full article
Show Figures

Figure 1

35 pages, 8023 KB  
Article
Influence of Homo- and Hetero-Junctions on the Propagation Characteristics of Love Waves in a Piezoelectric Semiconductor Semi-Infinite Medium
by Xiao Guo, Yilin Wang, Chunyu Xu, Zibo Wei and Chenxi Ding
Mathematics 2024, 12(7), 1075; https://doi.org/10.3390/math12071075 - 2 Apr 2024
Cited by 3 | Viewed by 1300
Abstract
With the fast development and miniaturization of acoustic and electric smart devices, micro and nanoscale piezoelectric semiconductor materials are gradually being used to manufacture information communication, energy conversion, and nondestructive testing technologies. As the core components of the above piezoelectric semiconductor devices, homo- [...] Read more.
With the fast development and miniaturization of acoustic and electric smart devices, micro and nanoscale piezoelectric semiconductor materials are gradually being used to manufacture information communication, energy conversion, and nondestructive testing technologies. As the core components of the above piezoelectric semiconductor devices, homo- and hetero-junctions have an evident influence on the propagation performance of high-frequency and short-wavelength elastic waves inside the bulk piezoelectric semiconductor materials. Based on the Gurtin–Murdoch theory, a theoretical model of interface effect originating from homo- and hetero-junctions is established to investigate the propagation properties of Love waves in a piezoelectric semiconductor semi-infinite medium considering the electrical open circuit (insulation) and short circuit (metalized ground) surface boundary conditions and biasing electric fields. Four interface characteristic lengths are introduced to describe the electrical imperfect interface of homo- and hetero-junctions, which are legitimately confirmed through comparisons of the dispersion and attenuation curves of Love waves. The influence of homo- and hetero-junctions on the dispersion and attenuation characteristics of Love waves are elaborated in detail. Numerical results show that the interface characteristic lengths are independent of the electrical surface boundary conditions, acceptor and donor concentrations, thickness of the upper piezoelectric semiconductor layer, and biasing electric fields in the piezoelectric semiconductor semi-infinite medium. Moreover, the propagation characteristics of Love waves can be manipulated by changing the biasing electric field parallel to the homo- and hetero-junctions. Since the high-frequency and short-wavelength Love wave is an important class of surface acoustic waves propagating in micro- and nano-scale piezoelectric semiconductor materials, the establishment of mathematical models and the revelation of physical mechanisms are fundamental to the analysis and optimization of the above piezoelectric semiconductor devices. Full article
(This article belongs to the Special Issue Modeling and Analyses in Advanced Materials)
Show Figures

Figure 1

13 pages, 2852 KB  
Article
Integrating Continuous Transepithelial Flux Measurements into an Ussing Chamber Set-Up
by Çlirim Alija, Lukas Knobe, Ioanna Pouyiourou, Mikio Furuse, Rita Rosenthal and Dorothee Günzel
Int. J. Mol. Sci. 2024, 25(4), 2252; https://doi.org/10.3390/ijms25042252 - 13 Feb 2024
Cited by 3 | Viewed by 2302
Abstract
Fluorescently labelled compounds are often employed to study the paracellular properties of epithelia. For flux measurements, these compounds are added to the donor compartment and samples collected from the acceptor compartment at regular intervals. However, this method fails to detect rapid changes in [...] Read more.
Fluorescently labelled compounds are often employed to study the paracellular properties of epithelia. For flux measurements, these compounds are added to the donor compartment and samples collected from the acceptor compartment at regular intervals. However, this method fails to detect rapid changes in permeability. For continuous transepithelial flux measurements in an Ussing chamber setting, a device was developed, consisting of a flow-through chamber with an attached LED, optical filter, and photodiode, all encased in a light-impermeable container. The photodiode output was amplified and recorded. Calibration with defined fluorescein concentration (range of 1 nM to 150 nM) resulted in a linear output. As proof of principle, flux measurements were performed on various cell lines. The results confirmed a linear dependence of the flux on the fluorescein concentration in the donor compartment. Flux depended on paracellular barrier function (expression of specific tight junction proteins, and EGTA application to induce barrier loss), whereas activation of transcellular chloride secretion had no effect on fluorescein flux. Manipulation of the lateral space by osmotic changes in the perfusion solution also affected transepithelial fluorescein flux. In summary, this device allows a continuous recording of transepithelial flux of fluorescent compounds in parallel with the electrical parameters recorded by the Ussing chamber. Full article
(This article belongs to the Special Issue The Tight Junction and Its Proteins: From Structure to Pathologies)
Show Figures

Figure 1

15 pages, 3831 KB  
Article
Protein/Protein and Quantum Dot/Protein Organization in Sequential Monolayer Materials Studied Using Resonance Energy Transfer
by Jakub Sławski, Katarzyna Walczewska-Szewc and Joanna Grzyb
Appl. Sci. 2023, 13(21), 11917; https://doi.org/10.3390/app132111917 - 31 Oct 2023
Cited by 2 | Viewed by 1947
Abstract
Controlled junctions of proteins and nanomaterials offer multiple potential applications in the further construction of nanobiodevices. One of the possible junction types is a set of sequential monolayers of various components deposited on a given substrate. The advantage of such an organization is [...] Read more.
Controlled junctions of proteins and nanomaterials offer multiple potential applications in the further construction of nanobiodevices. One of the possible junction types is a set of sequential monolayers of various components deposited on a given substrate. The advantage of such an organization is its high sensitivity, resulting from a huge surface covered by molecules or particles. What is more, the molecules/particles adsorbed on a substrate might be easier to handle than the assay in a cuvette. For further application, there should be crosstalk between monolayers; this is defined by the type of individuals forming a complex system. Here, we are studying, using mainly confocal microscopy and FLIM imaging, crosstalk through resonance energy transfer. The sequential monolayers of fluorescent proteins and CdTe quantum dots were deposited on a convenient substrate, a polyvinylidene difluoride membrane. First, we found that the degree of coverage is lower in the second monolayer. Hence, by manipulating the order of deposition, we obtained a system with a varied yield of resonance energy transfer with a donor excess or an acceptor excess. For a deeper understanding of the energy transfer and its limitations in this system influencing the assay pursuit, we utilized Monte Carlo computation. We found that, indeed, the distance between the monolayers, as well as the degree of coverage, is crucial. With the results of the simulation, we might estimate the relative degree of coverage in our sequential monolayers. We also found that in quantum-dots/protein-composed systems, the yield is stronger than predicted by Monte Carlo simulation. Hence, there should be protein reorientation on the nanoparticle surface, leading to such an effect. Finally, we showed that the yield of resonance energy transfer may be modulated by the external application of poly-L-lysines. These chemicals influenced QD fluorescence but not protein fluorescence and might be used, therefore, as a trigger or a switch in nanobiodevices employing those types of sequential monolayers. Full article
(This article belongs to the Special Issue Design and Applications of Artificial Biomolecule Assemblies)
Show Figures

Figure 1

12 pages, 4493 KB  
Communication
Rational Design of Photocontrolled Rectifier Switches in Single-Molecule Junctions Based on Diarylethene
by Ziye Wu, Peng Cui and Mingsen Deng
Molecules 2023, 28(20), 7158; https://doi.org/10.3390/molecules28207158 - 18 Oct 2023
Cited by 2 | Viewed by 1833
Abstract
The construction of multifunctional, single-molecule nanocircuits to achieve the miniaturization of active electronic devices is a challenging goal in molecular electronics. In this paper, we present an effective strategy for enhancing the multifunctionality and switching performance of diarylethene-based molecular devices, which exhibit photoswitchable [...] Read more.
The construction of multifunctional, single-molecule nanocircuits to achieve the miniaturization of active electronic devices is a challenging goal in molecular electronics. In this paper, we present an effective strategy for enhancing the multifunctionality and switching performance of diarylethene-based molecular devices, which exhibit photoswitchable rectification properties. Through a molecular engineering design, we systematically investigate a series of electron donor/acceptor-substituted diarylethene molecules to modulate the electronic properties and investigate the transport behaviors of the molecular junctions using the non-equilibrium Green’s function combined with the density functional theory. Our results demonstrate that the asymmetric configuration, substituted by both the donor and acceptor on the diarylethene molecule, exhibits the highest switching ratio and rectification ratio. Importantly, this rectification function can be switched on/off through the photoisomerization of the diarylethene unit. These modulations in the transport properties of these molecular junctions with different substituents were obtained with molecule-projected self-consistent Hamiltonian and bias-dependent transmission spectra. Furthermore, the current–voltage characteristics of these molecular junctions can be explained by the molecular energy level structure, showing the significance of energy level regulation. These findings have practical implications for constructing high-performance, multifunctional molecular-integrated circuits. Full article
Show Figures

Figure 1

12 pages, 3492 KB  
Review
Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency
by Boudia Mohamed El Amine, Yi Zhou, Hongying Li, Qiuwang Wang, Jun Xi and Cunlu Zhao
Energies 2023, 16(9), 3895; https://doi.org/10.3390/en16093895 - 4 May 2023
Cited by 32 | Viewed by 7427
Abstract
Single-junction organic solar cells have reached a power conversion efficiency of 20% with narrow bandgap non-fullerene electron acceptor materials such as Y6, as well as with large band gap electron donor materials and their derivatives. The power conversion efficiency improvement of single-junction organic [...] Read more.
Single-junction organic solar cells have reached a power conversion efficiency of 20% with narrow bandgap non-fullerene electron acceptor materials such as Y6, as well as with large band gap electron donor materials and their derivatives. The power conversion efficiency improvement of single-junction organic solar cells is a result of highly efficient light harvesting in the near-infrared light range and reduced energy losses with the most promising active layer layout currently available, Bulk-Heterojunction. Ternary blending is known to be the most advanced strategy to construct Bulk-Heterojunction structures in organic solar cells at present. In this review, we examine different devices based on Bulk-Heterojunction structures with efficient electron donors and acceptors. Then, we review the performance of binary and ternary organic solar cells with high power conversion efficiency, in conjunction with different anode and cathode interfaces used in recent studies of high-power conversion efficiency. Finally, we present perspectives on the future development of single-junction organic solar cells. Full article
(This article belongs to the Special Issue Advances in Solar Photovoltaic Power Generation)
Show Figures

Figure 1

11 pages, 5219 KB  
Article
On the Donor: Acceptor Features for Poly(3-hexylthiophene): TiO2 Quantum Dots Hybrid Materials Obtained via Water Vapor Flow Assisted Sol-Gel Growth
by Dominique Mombrú, Mariano Romero, Ricardo Faccio and Alvaro W. Mombrú
Polymers 2023, 15(7), 1706; https://doi.org/10.3390/polym15071706 - 29 Mar 2023
Cited by 1 | Viewed by 2307
Abstract
Here, we present a novel methodology for the preparation of P3HT:TiO2 quantum dots hybrid materials via water vapor flow-assisted sol-gel growth focusing on the structural, optical and electrical property characterization complemented with first-principles calculations as a promising donor–acceptor system for polymer and [...] Read more.
Here, we present a novel methodology for the preparation of P3HT:TiO2 quantum dots hybrid materials via water vapor flow-assisted sol-gel growth focusing on the structural, optical and electrical property characterization complemented with first-principles calculations as a promising donor–acceptor system for polymer and hybrid solar cells. X-ray diffraction and UV-Vis spectroscopy analyses suggest that the increasing concentration of TiO2 quantum dots leads to the formation of higher amounts of amorphous regions while the crystalline regions exhibited interesting aspect ratio modifications for the P3HT polymer. Raman spectra evidenced the formation of charge carriers in the P3HT with increasing TiO2 quantum dots content and the P3HT:TiO2 50:50 weight ratio resulted in the best composition for optimizing the bulk electronic conductivity, as evidenced by impedance spectroscopy studies. Our DFT calculations performed for a simplified model of the P3HT:TiO2 interface revealed that there is an important contribution of the thiophene carbon atoms states in the conduction band at the Fermi level. Finally, our DFT calculations also reveal an evident gain of electron density at the TiO2 (101) surface while the thiophene rings showed a loss of the electron density, thus confirming that the P3HT:TiO2 junction acts as a good donor–acceptor system. In our opinion, these results not only present a novel methodology for the preparation of P3HT:TiO2 quantum dots hybrid materials but also reveal some key aspects to guide the more rational design of polymer and hybrid solar cells. Full article
Show Figures

Figure 1

10 pages, 4311 KB  
Article
Buffer Traps Effect on GaN-on-Si High-Electron-Mobility Transistor at Different Substrate Voltages
by Yuan Lin, Min-Lu Kao, You-Chen Weng, Chang-Fu Dee, Shih-Chen Chen, Hao-Chung Kuo, Chun-Hsiung Lin and Edward-Yi Chang
Micromachines 2022, 13(12), 2140; https://doi.org/10.3390/mi13122140 - 3 Dec 2022
Cited by 6 | Viewed by 4607
Abstract
Substrate voltage (VSUB) effects on GaN-on-Si high electron mobility transistors (HEMTs) power application performance with superlattice transition layer structure was investigated. The 2DEG conductivity and buffer stack charge redistribution can be affected by neutral/ionized donor and acceptor traps. As the donor/acceptor [...] Read more.
Substrate voltage (VSUB) effects on GaN-on-Si high electron mobility transistors (HEMTs) power application performance with superlattice transition layer structure was investigated. The 2DEG conductivity and buffer stack charge redistribution can be affected by neutral/ionized donor and acceptor traps. As the donor/acceptor traps are excessively ionized or de-ionized by applying VSUB, the depletion region between the unintentionally doped (UID)/Carbon-doped (C-doped) GaN layer may exhibit a behavior similar to the p–n junction. An applied negative VSUB increases the concentration of both the ionized donor and acceptor traps, which increases the breakdown voltage (BV) by alleviating the non-uniform distribution of the vertical electric field. On the other hand, an applied positive VSUB causes the energy band bending flattener to refill the ionized traps and slightly improves the dynamic Ron degradation. Moreover, the amount of electrons injected into the buffer stack layer from the front side (2DEG channel/Ohmic contact) and the back side (AlN nucleation layer/superlattice transition layer) are asymmetric. Therefore, different VSUB can affect the conductivity of 2DEG through the field effect, buffer trapping effect, and charge redistribution, which can change the electrical performance of the device. Full article
(This article belongs to the Special Issue GaN-Based Semiconductor Devices, Volume II)
Show Figures

Figure 1

9 pages, 2020 KB  
Article
Controlling Charge Transport in Molecular Wires through Transannular π–π Interaction
by Jianjian Song, Jianglin Zhu, Zhaoyong Wang and Gang Liu
Materials 2022, 15(21), 7801; https://doi.org/10.3390/ma15217801 - 4 Nov 2022
Cited by 1 | Viewed by 1990
Abstract
This paper describes the influence of the transannular π–π interaction in controlling the carrier transport in molecular wires by employing the STM break junction technique. Five pentaphenylene-based molecular wires that contained [2.2]paracyclophane-1,9-dienes (PCD) as the building block were prepared as model compounds. Functional [...] Read more.
This paper describes the influence of the transannular π–π interaction in controlling the carrier transport in molecular wires by employing the STM break junction technique. Five pentaphenylene-based molecular wires that contained [2.2]paracyclophane-1,9-dienes (PCD) as the building block were prepared as model compounds. Functional substituents with different electronic properties, ranging from strong acceptors to strong donors, were attached to the top parallel aromatic ring and used as a gate. It was found that the carrier transport features of these molecular wires, such as single-molecule conductance and a charge-tunneling barrier, can be systematically controlled through the transannular π–π interaction. Full article
(This article belongs to the Special Issue Advanced Science and Technology of Polymer Matrix Nanomaterials)
Show Figures

Figure 1

23 pages, 5156 KB  
Article
Unique and Repeated Stwintrons (Spliceosomal Twin Introns) in the Hypoxylaceae
by Erzsébet Fekete, Fruzsina Pénzes, Norbert Ág, Viktória Ág-Rácz, Erzsébet Sándor, Claudio Scazzocchio, Michel Flipphi and Levente Karaffa
J. Fungi 2022, 8(4), 397; https://doi.org/10.3390/jof8040397 - 13 Apr 2022
Cited by 1 | Viewed by 2507
Abstract
Introns are usually non-coding sequences interrupting open reading frames in pre-mRNAs [D1,2]. Stwintrons are nested spliceosomal introns, where an internal intron splits a second donor sequence into two consecutive splicing reactions leading to mature mRNA. In Hypoxylon sp. CO27-5, 36 highly sequence-similar [D1,2] [...] Read more.
Introns are usually non-coding sequences interrupting open reading frames in pre-mRNAs [D1,2]. Stwintrons are nested spliceosomal introns, where an internal intron splits a second donor sequence into two consecutive splicing reactions leading to mature mRNA. In Hypoxylon sp. CO27-5, 36 highly sequence-similar [D1,2] stwintrons are extant (sister stwintrons). An additional 81 [D1,2] sequence-unrelated stwintrons are described here. Most of them are located at conserved gene positions rooted deep in the Hypoxylaceae. Absence of exonic sequence bias at the exon–stwintron junctions and a very similar phase distribution were noted for both groups. The presence of an underlying sequence symmetry in all 117 stwintrons was striking. This symmetry, more pronounced near the termini of most of the full-length sister stwintrons, may lead to a secondary structure that brings into close proximity the most distal splice sites, the donor of the internal and the acceptor of the external intron. The Hypoxylon stwintrons were overwhelmingly excised by consecutive splicing reactions precisely removing the whole intervening sequence, whereas one excision involving the distal splice sites led to a frameshift. Alternative (mis)splicing took place for both sister and uniquely occurring stwintrons. The extraordinary symmetry of the sister stwintrons thus seems dispensable for the infrequent, direct utilisation of the distal splice sites. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

22 pages, 9901 KB  
Article
Analysis of Hybrid Hetero-Homo Junction Lead-Free Perovskite Solar Cells by SCAPS Simulator
by Marwa. S. Salem, Ahmed Shaker, Abdelhalim Zekry, Mohamed Abouelatta, Adwan Alanazi, Mohammad T. Alshammari and Christian Gontand
Energies 2021, 14(18), 5741; https://doi.org/10.3390/en14185741 - 12 Sep 2021
Cited by 62 | Viewed by 4332
Abstract
In this work, we report on the effect of substituting the active intrinsic i-layer on a conventional pin structure of lead-free perovskite solar cell (PSC) by a homo p-n junction, keeping the thickness of the active layer constant. It is expected that when [...] Read more.
In this work, we report on the effect of substituting the active intrinsic i-layer on a conventional pin structure of lead-free perovskite solar cell (PSC) by a homo p-n junction, keeping the thickness of the active layer constant. It is expected that when the active i-layer is substituted by a p-n homo junction, one can increase the collection efficiency of the photo-generated electrons and holes due to the built-in electric field of the homo junction. The impact of the technological and physical device parameters on the performance parameters of the solar cell have been worked out. It was found that p-side thickness must be wider than the n-side, while its acceptor concentration should be slightly lower than the donor concentration of the n-side to achieve maximum efficiency. In addition, different absorber types, namely, i-absorber, n-absorber and p-absorber, are compared to the proposed pn-absorber, showing a performance-boosting effect when using the latter. Moreover, the proposed structure is made without a hole transport layer (HTL) to avoid the organic issues of the HTL materials. The back metal work function, bulk trap density and ETL material are optimized for best performance of the HTL-free structure, giving Jsc = 26.48, Voc = 0.948 V, FF = 77.20 and PCE = 19.37% for AM1.5 solar spectra. Such results highlight the prospective of the proposed structure and emphasize the importance of using HTL-free solar cells without deteriorating the efficiency. The solar cell is investigated by using SCAPS simulator. Full article
Show Figures

Graphical abstract

10 pages, 3129 KB  
Article
Interface Structures and Electronic States of Epitaxial Tetraazanaphthacene on Single-Crystal Pentacene
by Yuki Gunjo, Hajime Kamebuchi, Ryohei Tsuruta, Masaki Iwashita, Kana Takahashi, Riku Takeuchi, Kaname Kanai, Tomoyuki Koganezawa, Kazuhiko Mase, Makoto Tadokoro and Yasuo Nakayama
Materials 2021, 14(5), 1088; https://doi.org/10.3390/ma14051088 - 26 Feb 2021
Cited by 8 | Viewed by 3178
Abstract
The structural and electronic properties of interfaces composed of donor and acceptor molecules play important roles in the development of organic opto-electronic devices. Epitaxial growth of organic semiconductor molecules offers a possibility to control the interfacial structures and to explore precise properties at [...] Read more.
The structural and electronic properties of interfaces composed of donor and acceptor molecules play important roles in the development of organic opto-electronic devices. Epitaxial growth of organic semiconductor molecules offers a possibility to control the interfacial structures and to explore precise properties at the intermolecular contacts. 5,6,11,12-tetraazanaphthacene (TANC) is an acceptor molecule with a molecular structure similar to that of pentacene, a representative donor material, and thus, good compatibility with pentacene is expected. In this study, the physicochemical properties of the molecular interface between TANC and pentacene single crystal (PnSC) substrates were analyzed by atomic force microscopy, grazing-incidence X-ray diffraction (GIXD), and photoelectron spectroscopy. GIXD revealed that TANC molecules assemble into epitaxial overlayers of the (010) oriented crystallites by aligning an axis where the side edges of the molecules face each other along the [1¯10] direction of the PnSC. No apparent interface dipole was found, and the energy level offset between the highest occupied molecular orbitals of TANC and the PnSC was determined to be 1.75 eV, which led to a charge transfer gap width of 0.7 eV at the interface. Full article
Show Figures

Figure 1

11 pages, 2051 KB  
Article
An Insight into the Excitation States of Small Molecular Semiconductor Y6
by Xianshao Zou, Guanzhao Wen, Rong Hu, Geng Dong, Chengyun Zhang, Wei Zhang, Hao Huang and Wei Dang
Molecules 2020, 25(18), 4118; https://doi.org/10.3390/molecules25184118 - 9 Sep 2020
Cited by 43 | Viewed by 8560
Abstract
Y6 is a new type of non-fullerene acceptor, which has led to power conversion efficiencies of single-junction polymer solar cells over 17% when combined with a careful choice of polymeric donors. However, the excited state characteristics of Y6, which is closely correlated with [...] Read more.
Y6 is a new type of non-fullerene acceptor, which has led to power conversion efficiencies of single-junction polymer solar cells over 17% when combined with a careful choice of polymeric donors. However, the excited state characteristics of Y6, which is closely correlated with its opto-electronic applications, are not clear yet. In this work, we studied the excited state properties of the Y6 solution and Y6 film, by using steady-state and time-resolved spectroscopies as well as time-dependent density functional theory (TD-DFT) calculations. UV-Vis absorption and fluorescence simulation, natural transition orbitals (NTOs) and hole-electron distribution analysis of Y6 solution were performed for understanding the excitation properties of Y6 by using TD-DFT calculations. The lifetimes of the lowest singlet excited state in Y6 solution and film were estimated to be 0.98 and 0.8 ns, respectively. Combining the exciton lifetime and photoluminescence (PL) quantum yield, the intrinsic radiative decay lifetimes of Y6 in the solution and film were estimated, which were 1.3 and 10.5 ns for the Y6 solution and film, respectively. Long exciton lifetime (~0.8 ns) and intrinsic radiative decay lifetime (~10.5 ns) of Y6 film enable Y6 to be a good acceptor material for the application of polymer solar cells. Full article
(This article belongs to the Special Issue Advanced Materials for Solar Energy)
Show Figures

Figure 1

8 pages, 2686 KB  
Article
Donor/Acceptor Photovoltaic Cells Fabricated on p-Doped Organic Single-Crystal Substrates
by Yusuke Yabara, Seiichiro Izawa and Masahiro Hiramoto
Materials 2020, 13(9), 2068; https://doi.org/10.3390/ma13092068 - 30 Apr 2020
Cited by 3 | Viewed by 2823
Abstract
In this study, the operation of donor/acceptor photovoltaic cells fabricated on homoepitaxially grown p-doped rubrene single-crystal substrates is demonstrated. The photocurrent density is dominated by the sheet conductivity (σ) of the p-type single-crystal layer doped to 100 ppm with [...] Read more.
In this study, the operation of donor/acceptor photovoltaic cells fabricated on homoepitaxially grown p-doped rubrene single-crystal substrates is demonstrated. The photocurrent density is dominated by the sheet conductivity (σ) of the p-type single-crystal layer doped to 100 ppm with an iron chloride (Fe2Cl6) acceptor. A 65 μm thick p-type rubrene single-crystal substrate is expected to be required for a photocurrent density of 20 mA·cm−2. An entire bulk doping technique for rubrene single crystals is indispensable for the fabrication of practical organic single-crystal solar cells. Full article
(This article belongs to the Special Issue Organic Solar Cell and Optoelectronic Functional Materials)
Show Figures

Figure 1

Back to TopTop