An Insight into the Excitation States of Small Molecular Semiconductor Y6
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Structure and Steady-State Optical Properties
2.2. Excited State Properties of Y6 Solution and Film
3. Materials and Methods
3.1. Sample Information
3.2. Steady State Absorption and Photoluminescence (PL) Spectrum Measurement
3.3. Absolute Photoluminescence Quantum Yield (PLQY) and Time-Resolved Photoluminescence (TRPL) Measurements
3.4. Transient Absorption (TA) Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef] [Green Version]
- Halls, J.J.M.; Walsh, C.A.; Greenham, N.C.; Marseglia, E.A.; Friend, R.H.; Moratti, S.C.; Holmes, A.B. Efficient photodiodes from interpenetrating polymer networks. Nature 1995, 376, 498–500. [Google Scholar] [CrossRef]
- Polman, A.; Knight, M.; Garnett, E.C.; Ehrler, B.; Sinke, W.C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Jiang, H.; Liu, X.; Liang, J.; Zhang, L.; Qing, L.; Wang, Q.; Zhang, W.; Cao, Y.; Chen, J. Significantly enhanced electron transport of a nonfullerene acceptor in a blend film with a high hole mobility polymer of high molecular weight: Thick-film nonfullerene polymer solar cells showing a high fill factor. J. Mater. Chem. A 2020, 8, 7765–7774. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Cheng, J.; Chen, Y.; Zhang, W.; Liu, H. Effect of [6,6]-phenyl c61-butyric acid methyl ester phase on the charge generation of poly(3-hexylthiophene)-based polymer solar cells. J. Power Sources 2018, 390, 87–92. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, R.; Zeng, X.; Su, X.; Chen, Z.; Zou, X.; Peng, J.; Zhang, C.; Yartsev, A. Effect of post-thermal annealing on the performance and charge photogeneration dynamics of pffbt4t-2od/pc71bm solar cells. Polymers 2019, 11, 408. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Su, X.; Liu, H.; Liu, Y.; Huo, M.-M.; Zhang, W. Recycled indium tin oxide transparent conductive electrode for polymer solar cells. J. Mater. Sci. 2020, 55, 11403–11410. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, J.; Wang, R.; Han, G.; Huang, T.; Huang, W.; Xue, J.; Wang, H.C.; Zhang, C.; Zhu, C.; et al. Rational tuning of molecular interaction and energy level alignment enables high-performance organic photovoltaics. Adv. Mater. 2019, 31, 1904215. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Feng, K.; Bi, Z.; Ma, W.; Zhang, G.; Peng, Q. Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(II) complexation strategy. Adv. Mater. 2019, 31, 1901872. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Song, W.; Huang, J.; Peng, R.; Huang, L.; Ge, Z. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv. Mater. 2019, 31, 1902210. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhao, J.; Zhang, H.; Lu, X.; Zhou, L.; Chen, Z.; Lin, H.; Zheng, C.; Tao, S. Modulating the molecular packing and distribution enables fullerene-free ternary organic solar cells with high efficiency and long shelf-life. J. Mater. Chem. A 2019, 7, 20139–20150. [Google Scholar] [CrossRef]
- Lin, Y.; Adilbekova, B.; Firdaus, Y.; Yengel, E.; Faber, H.; Sajjad, M.; Zheng, X.; Yarali, E.; Seitkhan, A.; Bakr, O.M.; et al. 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS. Adv. Mater. 2019, 31, 1902965. [Google Scholar] [CrossRef]
- Karki, A.; Vollbrecht, J.; Dixon, A.L.; Schopp, N.; Schrock, M.; Reddy, G.N.M.; Nguyen, T.Q. Understanding the high performance of over 15% efficiency in single-junction bulk heterojunction organic solar cells. Adv. Mater. 2019, 31, 1903868. [Google Scholar] [CrossRef]
- Pan, M.-A.; Lau, T.-K.; Tang, Y.; Wu, Y.-C.; Liu, T.; Li, K.; Chen, M.-C.; Lu, X.; Ma, W.; Zhan, C. 16.7%-efficiency ternary blended organic photovoltaic cells with pcbm as the acceptor additive to increase the open-circuit voltage and phase purity. J. Mater. Chem. A 2019, 7, 20713–20722. [Google Scholar] [CrossRef]
- Yu, R.; Yao, H.; Cui, Y.; Hong, L.; He, C.; Hou, J. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Adv. Mater. 2019, 31, 1902302. [Google Scholar] [CrossRef]
- Li, S.; Ye, L.; Zhao, W.; Yan, H.; Yang, B.; Liu, D.; Li, W.; Ade, H.; Hou, J. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 2018, 140, 7159–7167. [Google Scholar] [CrossRef]
- Gao, X.; Gao, J.; Xue, Z.; Wang, H.; Wang, J.; Cheng, Y.; Li, Z.; Zhu, F.; Huettner, S.; Li, H.; et al. Benzodithiophene-modified terpolymer acceptors with reduced molecular planarity and crystallinity: Improved performance and stability for all-polymer solar cells. J. Mater. Chem. C 2019, 7, 10338–10351. [Google Scholar] [CrossRef]
- Qian, D.; Zheng, Z.; Yao, H.; Tress, W.; Hopper, T.R.; Chen, S.; Li, S.; Liu, J.; Chen, S.; Zhang, J.; et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 2018, 17, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Wang, Y.; Zhang, M.; Wu, B.; Guo, X.; Jiang, Y.; Li, W.; Guo, B.; Ye, C.; Su, W.; et al. High-performance as-cast nonfullerene polymer solar cells with thicker active layer and large area exceeding 11% power conversion efficiency. Adv. Mater. 2018, 30, 1704546. [Google Scholar] [CrossRef] [PubMed]
- Baran, D.; Gasparini, N.; Wadsworth, A.; Tan, C.H.; Wehbe, N.; Song, X.; Hamid, Z.; Zhang, W.; Neophytou, M.; Kirchartz, T.; et al. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. Nat. Commun. 2018, 9, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 27–61. [Google Scholar]
- Martin, R.L. Natural transition orbitals. J. Chem. Phys. 2003, 118, 4775–4777. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Yu, X.; Xing, R.; Liu, J.; Han, Y. Structure and morphology control in thin films of conjugated polymers for an improved charge transport. Polymers 2013, 5, 1272–1324. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhang, C.; Li, Q.; Zhang, Z.; Wang, X.; Xiao, M. Charge separation from an intra-moiety intermediate state in the high-performance pm6:Y6 organic photovoltaic blend. J. Am. Chem. Soc. 2020, 142, 12751–12759. [Google Scholar] [CrossRef] [PubMed]
- Shalhoub, G.M. Visible spectra conjugated dyes: Integrating quantum chemical concepts with experimental data. J. Chem. Educ. 1997, 74, 1317–1319. [Google Scholar] [CrossRef]
- Strickler, S.J.; Berg, R.A. Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 1962, 37, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Albert, E. The quantum theory of radiation. Phys. Z. 1917, 18, 121. [Google Scholar]
- Li, Z.; Zhang, W.; Xu, X.; Genene, Z.; Di Carlo Rasi, D.; Mammo, W.; Yartsev, A.; Andersson, M.R.; Janssen, R.A.J.; Wang, E. High-performance and stable all-polymer solar cells using donor and acceptor polymers with complementary absorption. Adv. Energy Mater. 2017, 7. [Google Scholar] [CrossRef]
- Park, S.; Son, H.J. Intrinsic photo-degradation and mechanism of polymer solar cells: The crucial role of non-fullerene acceptors. J. Mater. Chem. A 2019, 7, 25830–25837. [Google Scholar] [CrossRef]
- Cheyns, D.; Beaujuge, P.M.; van Elsbergen, V.; Ribierre, J.-C.; Gerhard, M.; Gehrig, D.; Howard, I.A.; Arndt, A.P.; Bilal, M.; Rahimi-Iman, A.; et al. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence. In Proceedings of the Organic Photonics VII, Brussels, Belgium, 3–7 April 2016. [Google Scholar] [CrossRef] [Green Version]
- Alamoudi, M.A.; Khan, J.I.; Firdaus, Y.; Wang, K.; Andrienko, D.; Beaujuge, P.M.; Laquai, F. Impact of nonfullerene acceptor core structure on the photophysics and efficiency of polymer solar cells. ACS Energy Lett. 2018, 3, 802–811. [Google Scholar] [CrossRef]
- Zhu, W.; Spencer, A.P.; Mukherjee, S.; Alzola, J.M.; Sangwan, V.K.; Amsterdam, S.H.; Swick, S.M.; Jones, L.O.; Heiber, M.C.; Herzing, A.A.; et al. Crystallography, morphology, electronic structure, and transport in non-fullerene/non-indacenodithienothiophene polymer:Y6 solar cells. J. Am. Chem. Soc. 2020, 142, 14532–14547. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Zhou, G.; Hao, T.; Xu, J.; Wang, J.; Qiu, C.; Prine, N.; Ali, J.; Feng, W.; et al. Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties. Adv. Energy Mater. 2020, 10, 1904234. [Google Scholar] [CrossRef]
- Xiao, C.; Li, C.; Liu, F.; Zhang, L.; Li, W. Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities. J. Mater. Chem. C 2020, 8, 5370–5374. [Google Scholar] [CrossRef]
- Zou, X.; Li, C.; Su, X.; Liu, Y.; Finkelstein-Shapiro, D.; Zhang, W.; Yartsev, A. Carrier recombination processes in GaAs wafers passivated by wet nitridation. ACS Appl. Mater. Interfaces 2020, 12, 28360–28367. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zeng, X.; Nemec, H.; Zou, X.; Zhang, W.; Borgstrom, M.T.; Yartsev, A. Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires. Nanoscale 2019, 11, 18550–18558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Xu, Y.; Zhou, X.; Zhang, W.; Zhou, K.; Yu, L.; Ma, W.; Xu, X. Synergistic effects of copolymerization and fluorination on acceptor polymers for efficient and stable all-polymer solar cells. J. Mater. Chem. C 2019, 7, 14130–14140. [Google Scholar] [CrossRef]
Sample Availability: Sample of the compound Y6 are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Wen, G.; Hu, R.; Dong, G.; Zhang, C.; Zhang, W.; Huang, H.; Dang, W. An Insight into the Excitation States of Small Molecular Semiconductor Y6. Molecules 2020, 25, 4118. https://doi.org/10.3390/molecules25184118
Zou X, Wen G, Hu R, Dong G, Zhang C, Zhang W, Huang H, Dang W. An Insight into the Excitation States of Small Molecular Semiconductor Y6. Molecules. 2020; 25(18):4118. https://doi.org/10.3390/molecules25184118
Chicago/Turabian StyleZou, Xianshao, Guanzhao Wen, Rong Hu, Geng Dong, Chengyun Zhang, Wei Zhang, Hao Huang, and Wei Dang. 2020. "An Insight into the Excitation States of Small Molecular Semiconductor Y6" Molecules 25, no. 18: 4118. https://doi.org/10.3390/molecules25184118