Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = domoic acid and human health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1322 KiB  
Article
Transcriptomics as an Early Warning of Domoic Acid Exposure in Pacific Razor Clams (Siliqua patula)
by Lizabeth Bowen, Shannon Waters, Brenda Ballachey, Heather Coletti, Zachary Forster, Jie Li and Bradley Jenner
Toxins 2025, 17(4), 194; https://doi.org/10.3390/toxins17040194 - 11 Apr 2025
Viewed by 659
Abstract
As oceans warm, harmful algal blooms (HABs) are expected to increase, including blooms of Pseudo-nitzschia, a diatom that produces domoic acid (DA), which is a potent neurotoxin. Regulatory limits for human consumption (0.075–0.1 mg/kg/day; acute exposure) exist for the Pacific razor clam; [...] Read more.
As oceans warm, harmful algal blooms (HABs) are expected to increase, including blooms of Pseudo-nitzschia, a diatom that produces domoic acid (DA), which is a potent neurotoxin. Regulatory limits for human consumption (0.075–0.1 mg/kg/day; acute exposure) exist for the Pacific razor clam; however, fisheries currently do not have regulatory limits for chronic low-level exposure to DA even though razor clams can retain DA for over a year after an algal bloom. For bivalves, exposure to marine toxins may disrupt important cellular processes, leading to concerns about effects on their overall health and potential population- and ecosystem-level impacts. Transcriptomics was used to identify differentially expressed genes in razor clams (N = 30) from Long Beach, WA, collected prior to, during, and after a DA-producing bloom. Differentially expressed genes were identified that may indicate exposure of razor clams to DA, including clams with tissue DA concentrations that fall below regulatory limits for human consumption. Targeting these genes in real-time PCR assays may provide an early warning system for routine monitoring of DA in clams. Our results suggest DA exposure is associated with physiological responses ranging from decreased immune function to the potential disruption of cell communication, including retinoic acid catabolic processes, cell adhesion, collagen fibril organization, and immune effector processes. This work may also allow us to examine potential drivers of population-level change and whether chronic lower-level exposure to DA negatively impacts razor clam function, consequently affecting individual and population health. Full article
(This article belongs to the Special Issue Ecology and Evolution of Harmful Algal Blooms)
Show Figures

Graphical abstract

38 pages, 2970 KiB  
Review
The Toxic Effects of Environmental Domoic Acid Exposure on Humans and Marine Wildlife
by Ami E. Krasner, Margaret E. Martinez, Cara L. Field and Spencer E. Fire
Mar. Drugs 2025, 23(2), 61; https://doi.org/10.3390/md23020061 - 29 Jan 2025
Cited by 1 | Viewed by 2665
Abstract
Biotoxins produced by harmful algal blooms (HABs) are a substantial global threat to ocean and human health. Domoic acid (DA) is one such biotoxin whose negative impacts are forecasted to increase with climate change and coastal development. This manuscript serves as a review [...] Read more.
Biotoxins produced by harmful algal blooms (HABs) are a substantial global threat to ocean and human health. Domoic acid (DA) is one such biotoxin whose negative impacts are forecasted to increase with climate change and coastal development. This manuscript serves as a review of DA toxicosis after environmental exposure in humans and wildlife, including an introduction to HAB toxins, the history of DA toxicosis, DA production, toxicokinetic properties of DA, susceptibility, clinical signs, DA detection methods and other diagnostic tests, time course of toxicosis, treatment, prognostics, and recommendations for future research. Additionally, we highlight the utility of California sea lions (CSLs; Zalophus californianus) as a model and sentinel of environmental DA exposure. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

17 pages, 1822 KiB  
Review
Domoic Acid: A Review of Its Cytogenotoxicity Within the One Health Approach
by Goran Gajski, Marko Gerić, Ana Baričević and Mirta Smodlaka Tanković
Antioxidants 2024, 13(11), 1366; https://doi.org/10.3390/antiox13111366 - 8 Nov 2024
Cited by 1 | Viewed by 1904
Abstract
In this review, we toxicologically assessed the naturally occurring toxin domoic acid. We used the One Health approach because the impact of domoic acid is potentiated by climate change and water pollution on one side, and reflected in animal health, food security, human [...] Read more.
In this review, we toxicologically assessed the naturally occurring toxin domoic acid. We used the One Health approach because the impact of domoic acid is potentiated by climate change and water pollution on one side, and reflected in animal health, food security, human diet, and human health on the other. In a changing environment, algal blooms are more frequent. For domoic acid production, the growth of Pseudo-nitzschia diatoms is of particular interest. They produce this toxin, whose capability of accumulation and biomagnification through the food web impacts other organisms in the ecosystem. Domoic acid targets nervous system receptors inducing amnestic shellfish poisoning, among other less severe health-related problems. However, the impact of domoic acid on non-target cells is rather unknown, so we reviewed the currently available literature on cytogenetic effects on human and animal cells. The results of different studies indicate that domoic acid has the potential to induce early molecular events, such as oxidative imbalance and DNA damage, thus posing an additional threat which needs to be thoroughly addressed and monitored in the future. Full article
Show Figures

Figure 1

17 pages, 4648 KiB  
Article
Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay for the Rapid and Sensitive Detection of Pseudo-nitzschia multiseries
by Yuqing Yao, Ningjian Luo, Yujie Zong, Meng Jia, Yichen Rao, Hailong Huang and Haibo Jiang
Int. J. Mol. Sci. 2024, 25(2), 1350; https://doi.org/10.3390/ijms25021350 - 22 Jan 2024
Cited by 4 | Viewed by 2682
Abstract
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related [...] Read more.
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related to early detection is the accurate and sensitive detection of microalgae present in low abundance. Therefore, developing a sensitive and specific method that can rapidly detect P. multiseries is critical for expediting the monitoring and prediction of HABs. In this study, a novel assay method, recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD), is first developed for the detection of P. multiseries. To obtain the best test results, several important factors that affected the amplification effect were optimized. The internal transcribed spacer sequence of the nuclear ribosomal DNA from P. multiseries was selected as the target region. The results showed that the optimal amplification temperature and time for the recombinase polymerase amplification (RPA) of P. multiseries were 37 °C and 15 min. The RPA products could be visualized directly using the lateral flow dipstick after only 3 min. The RPA-LFD assay sensitivity for detection of recombinant plasmid DNA (1.9 × 100 pg/μL) was 100 times more sensitive than that of RPA, and the RPA-LFD assay sensitivity for detection of genomic DNA (2.0 × 102 pg/μL) was 10 times more sensitive than that of RPA. Its feasibility in the detection of environmental samples was also verified. In conclusion, these results indicated that the RPA-LFD detection of P. multiseries that was established in this study has high efficiency, sensitivity, specificity, and practicability. Management measures made based on information gained from early detection methods may be able to prevent certain blooms. The use of a highly sensitive approach for early warning detection of P. multiseries is essential to alleviate the harmful impacts of HABs on the environment, aquaculture, and human health. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 6029 KiB  
Article
Stress Response in Toxic Diatoms: The Effects of Abiotic Factors on Growth and RNA Content in Pseudo-nitzschia calliantha and in Pseudo-nitzschia multistriata
by Luca Ambrosino, Marco Miralto, Lucia Barra, Angela Sardo, Maria Luisa Chiusano, Radiana Cozza, Michele Ferrari and Silvestro Greco
J. Mar. Sci. Eng. 2023, 11(9), 1743; https://doi.org/10.3390/jmse11091743 - 5 Sep 2023
Cited by 1 | Viewed by 1394
Abstract
Pennate diatoms belonging to the genus Pseudo-nitzschia are important components of phytoplankton assemblages in aquatic environments. Among them, the bloom-forming species Pseudo-nitzschia calliantha and Pseudo-nitzschia multistriata are known as domoic acid producers, and are thus considered harmful for aquatic organisms and for human [...] Read more.
Pennate diatoms belonging to the genus Pseudo-nitzschia are important components of phytoplankton assemblages in aquatic environments. Among them, the bloom-forming species Pseudo-nitzschia calliantha and Pseudo-nitzschia multistriata are known as domoic acid producers, and are thus considered harmful for aquatic organisms and for human health. For these reasons, monitoring the abundance of such species, as well as identifying the growth conditions enhancing or inhibiting their growth, could help to predict eventual risks for aquatic communities and for humans by direct or indirect exposure to these toxic algae. In this work, we assessed the effects of different parameters (irradiance, temperature, salinity, and nutrients) on six Pseudo-nitzschia species by evaluating their specific growth rates and total RNA content. Our results—corroborated by statistical analyses of regression and correlation plots of control samples and samples exposed to stressful conditions, showed, as expected, a general decrease in growth rates under suboptimal levels of temperature, irradiance, salinity, and nutrient supply (especially under silicon depletion), that was usually accomplished by a general increase in RNA content inside cells. We hypothesized that increments in RNA levels in cells exposed to unfavorable conditions could be due to a relatively fast activation of the mechanisms of stress response. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 1058 KiB  
Article
SoundToxins: A Research and Monitoring Partnership for Harmful Phytoplankton in Washington State
by Vera L. Trainer and Teri L. King
Toxins 2023, 15(3), 189; https://doi.org/10.3390/toxins15030189 - 2 Mar 2023
Cited by 10 | Viewed by 3241
Abstract
The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest [...] Read more.
The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest because of their impact on human health are the saxitoxins that cause paralytic shellfish poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP), diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP) and the recent measurement of azaspiracids, known to cause azaspiracid poisoning (AZP), at low concentrations in Puget Sound shellfish. The flagellate, Heterosigma akashiwo, impacts the health and harvestability of aquacultured and wild salmon in Puget Sound. The more recently described flagellates that cause the illness or death of cultivated and wild shellfish, include Protoceratium reticulatum, known to produce yessotoxins, Akashiwo sanguinea and Phaeocystis globosa. This increased incidence of HABs, especially dinoflagellate HABs that are expected in increase with enhanced stratification linked to climate change, has necessitated the partnership of state regulatory programs with SoundToxins, the research, monitoring and early warning program for HABs in Puget Sound, that allows shellfish growers, Native tribes, environmental learning centers and citizens, to be the “eyes on the coast”. This partnership enables safe harvest of wholesome seafood for consumption in the region and helps to describe unusual events that impact the health of oceans, wildlife and humans. Full article
Show Figures

Figure 1

16 pages, 2715 KiB  
Article
Residue Analysis and Assessment of the Risk of Dietary Exposure to Domoic Acid in Shellfish from the Coastal Areas of China
by Guanchao Zheng, Haiyan Wu, Hanyu Che, Xiaokang Li, Zhihua Zhang, Jixing Peng, Mengmeng Guo and Zhijun Tan
Toxins 2022, 14(12), 862; https://doi.org/10.3390/toxins14120862 - 8 Dec 2022
Cited by 9 | Viewed by 3155
Abstract
Harmful algal blooms in Chinese waters have caused serious domoic acid (DA) contamination in shellfish. Although shellfish are at particular risk of dietary exposure to DA, there have been no systematic DA risk assessments in Chinese coastal waters. A total of 451 shellfish [...] Read more.
Harmful algal blooms in Chinese waters have caused serious domoic acid (DA) contamination in shellfish. Although shellfish are at particular risk of dietary exposure to DA, there have been no systematic DA risk assessments in Chinese coastal waters. A total of 451 shellfish samples were collected from March to November 2020. The presence of DA and four of its isomers were detected using liquid chromatography–tandem mass spectrometry. The spatial-temporal distribution of DA occurrence and its potential health risks were examined. DA was detected in 198 shellfish samples (43.90%), with a maximum level of 942.86 μg/kg. DA was recorded in all 14 shellfish species tested and Pacific oysters (Crassostrea gigas) showed the highest average DA concentration (82.36 μg/kg). The DA concentrations in shellfish showed distinct spatial-temporal variations, with significantly higher levels of occurrence in autumn than in summer and spring (p < 0.01), and particularly high occurrence in Guangdong and Fujian Provinces. The detection rates and maximum concentrations of the four DA isomers were low. While C. gigas from Guangdong Province in September showed the highest levels of DA contamination, the risk to human consumers was low. This study improves our understanding of the potential risk of shellfish exposure to DA-residues. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

23 pages, 1682 KiB  
Review
Marine Neurotoxins’ Effects on Environmental and Human Health: An OMICS Overview
by Sophie Guillotin and Nicolas Delcourt
Mar. Drugs 2022, 20(1), 18; https://doi.org/10.3390/md20010018 - 23 Dec 2021
Cited by 13 | Viewed by 6302
Abstract
Harmful algal blooms (HAB), and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks. Marine wildlife can accumulate these toxins throughout the food chain, which presents a threat to consumers’ health. Some of these toxins, such as saxitoxin (STX), [...] Read more.
Harmful algal blooms (HAB), and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks. Marine wildlife can accumulate these toxins throughout the food chain, which presents a threat to consumers’ health. Some of these toxins, such as saxitoxin (STX), domoic acid (DA), ciguatoxin (CTX), brevetoxin (BTX), tetrodotoxin (TTX), and β-N-methylamino-L-alanine (BMAA), cause severe neurological symptoms in humans. Considerable information is missing, however, notably the consequences of toxin exposures on changes in gene expression, protein profile, and metabolic pathways. This information could lead to understanding the consequence of marine neurotoxin exposure in aquatic organisms and humans. Nevertheless, recent contributions to the knowledge of neurotoxins arise from OMICS-based research, such as genomics, transcriptomics, proteomics, and metabolomics. This review presents a comprehensive overview of the most recent research and of the available solutions to explore OMICS datasets in order to identify new features in terms of ecotoxicology, food safety, and human health. In addition, future perspectives in OMICS studies are discussed. Full article
(This article belongs to the Special Issue Marine Biotoxins 2.0)
Show Figures

Figure 1

20 pages, 3726 KiB  
Article
Domoic Acid and Pseudo-nitzschia spp. Connected to Coastal Upwelling along Coastal Inhambane Province, Mozambique: A New Area of Concern
by Holly Kelchner, Katie E. Reeve-Arnold, Kathryn M. Schreiner, Sibel Bargu, Kim G. Roques and Reagan M. Errera
Toxins 2021, 13(12), 903; https://doi.org/10.3390/toxins13120903 - 15 Dec 2021
Cited by 5 | Viewed by 4117
Abstract
Harmful algal blooms (HABs) are increasing globally in frequency, persistence, and geographic extent, posing a threat to ecosystem and human health. To date, no occurrences of marine phycotoxins have been recorded in Mozambique, which may be due to absence of a monitoring program [...] Read more.
Harmful algal blooms (HABs) are increasing globally in frequency, persistence, and geographic extent, posing a threat to ecosystem and human health. To date, no occurrences of marine phycotoxins have been recorded in Mozambique, which may be due to absence of a monitoring program and general awareness of potential threats. This study is the first documentation of neurotoxin, domoic acid (DA), produced by the diatom Pseudo-nitzschia along the east coast of Africa. Coastal Inhambane Province is a biodiversity hotspot where year-round Rhincodon typus (whale shark) sightings are among the highest globally and support an emerging ecotourism industry. Links between primary productivity and biodiversity in this area have not previously been considered or reported. During a pilot study, from January 2017 to April 2018, DA was identified year-round, peaking during Austral winter. During an intense study between May and August 2018, our research focused on identifying environmental factors influencing coastal productivity and DA concentration. Phytoplankton assemblage was diatom-dominated, with high abundances of Pseudo-nitzschia spp. Data suggest the system was influenced by nutrient pulses resulting from coastal upwelling. Continued and comprehensive monitoring along southern Mozambique would provide critical information to assess ecosystem and human health threats from marine toxins under challenges posed by global change. Full article
Show Figures

Figure 1

19 pages, 2985 KiB  
Article
Interactions between Filter-Feeding Bivalves and Toxic Diatoms: Influence on the Feeding Behavior of Crassostrea gigas and Pecten maximus and on Toxin Production by Pseudo-nitzschia
by Aurore Sauvey, Françoise Denis, Hélène Hégaret, Bertrand Le Roy, Christophe Lelong, Orianne Jolly, Marie Pavie and Juliette Fauchot
Toxins 2021, 13(8), 577; https://doi.org/10.3390/toxins13080577 - 19 Aug 2021
Cited by 10 | Viewed by 4117
Abstract
Among Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source of serious health problems for marine organisms. Filter-feeding organisms—e.g., bivalves feeding on toxigenic Pseudo-nitzschia spp.—are the main vector of DA in humans. However, little is known about the interactions between bivalves [...] Read more.
Among Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source of serious health problems for marine organisms. Filter-feeding organisms—e.g., bivalves feeding on toxigenic Pseudo-nitzschia spp.—are the main vector of DA in humans. However, little is known about the interactions between bivalves and Pseudo-nitzschia. In this study, we examined the interactions between two juvenile bivalve species—oyster (Crassostrea gigas) and scallop (Pecten maximus)—and two toxic Pseudo-nitzschia species—P. australis and P. fraudulenta. We characterized the influence of (1) diet composition and the Pseudo-nitzschia DA content on the feeding rates of oysters and scallops, and (2) the presence of bivalves on Pseudo-nitzschia toxin production. Both bivalve species fed on P. australis and P. fraudulenta. However, they preferentially filtered the non-toxic Isochrysis galbana compared to Pseudo-nitzschia. The presence of the most toxic P. australis species resulted in a decreased clearance rate in C. gigas. The two bivalve species accumulated DA in their tissues (up to 0.35 × 10−3 and 5.1 × 10−3 µg g−1 for C. gigas and P. maximus, respectively). Most importantly, the presence of bivalves induced an increase in the cellular DA contents of both Pseudo-nitzschia species (up to 58-fold in P. fraudulenta in the presence of C. gigas). This is the first evidence of DA production by Pseudo-nitzschia species stimulated in the presence of filter-feeding bivalves. The results of this study highlight complex interactions that can influence toxin production by Pseudo-nitzschia and accumulation in bivalves. These results will help to better understand the biotic factors that drive DA production by Pseudo-nitzschia and bivalve contamination during Pseudo-nitzschia blooms. Full article
(This article belongs to the Special Issue Phycotoxins: From Producers to Transfer in the Food Chain)
Show Figures

Figure 1

10 pages, 322 KiB  
Article
Long Term Memory Outcome of Repetitive, Low-Level Dietary Exposure to Domoic Acid in Native Americans
by Lynn M. Grattan, Laura Kaddis, J. Kate Tracy and John Glenn Morris
Int. J. Environ. Res. Public Health 2021, 18(8), 3955; https://doi.org/10.3390/ijerph18083955 - 9 Apr 2021
Cited by 9 | Viewed by 2731
Abstract
Domoic acid (DA) is a marine-based neurotoxin that, if ingested via tainted shellfish, is associated with Amnesic Shellfish Poisoning (ASP). These acute effects of elevated DA exposure in humans have been well described. In contrast, the long-term impacts of lower level, repetitive, presumably [...] Read more.
Domoic acid (DA) is a marine-based neurotoxin that, if ingested via tainted shellfish, is associated with Amnesic Shellfish Poisoning (ASP). These acute effects of elevated DA exposure in humans have been well described. In contrast, the long-term impacts of lower level, repetitive, presumably safe doses of DA (less than 20 ppm) are minimally known. Since Native Americans (NA) residing in coastal communities of the Pacific NW United States are particularly vulnerable to DA exposure, this study focuses on the long-term, 8-year memory outcome associated with their repeated dietary consumption of the neurotoxin. Measures of razor clam consumption, memory, clerical speed and accuracy, and depression were administered over eight years to 500 randomly selected adult NA men and women ages 18–64. Data were analyzed using GEE analyses taking into consideration the year of study, demographic factors, and instrumentation in examining the association between dietary exposure and outcomes. Findings indicated a significant but small decline in total recall memory within the context of otherwise stable clerical speed and accuracy and depression scores. There is reason to believe that a continuum of memory difficulties may be associated with DA exposure, rather than a unitary ASP syndrome. Full article
(This article belongs to the Special Issue Dietary Exposure to Food Contaminants and Residues)
16 pages, 2338 KiB  
Article
Rapid Domoic Acid Depuration in the Scallop Argopecten purpuratus and Its Transfer from the Digestive Gland to Other Organs
by Gonzalo Álvarez, José Rengel, Michael Araya, Francisco Álvarez, Roberto Pino, Eduardo Uribe, Patricio A. Díaz, Araceli E. Rossignoli, Américo López-Rivera and Juan Blanco
Toxins 2020, 12(11), 698; https://doi.org/10.3390/toxins12110698 - 3 Nov 2020
Cited by 21 | Viewed by 3255
Abstract
Domoic acid (DA), the main toxin responsible for Amnesic Shellfish Poisoning, frequently affects the marine resources of Chile and other countries across the South Pacific, thus becoming a risk for human health. One of the affected resources is the scallop Argopecten purpuratus. [...] Read more.
Domoic acid (DA), the main toxin responsible for Amnesic Shellfish Poisoning, frequently affects the marine resources of Chile and other countries across the South Pacific, thus becoming a risk for human health. One of the affected resources is the scallop Argopecten purpuratus. Even though this species has a high commercial importance in Northern Chile and Peru, the characteristics of its DA depuration are not known. In this work, the DA depuration was studied by means of two experiments: one in controlled (laboratory) and another in natural conditions. All organs of A. purpuratus depurated the toxin very quickly in both experiments. In some organs, an increase or a very small decrease of toxin was detected in the early depuration steps. Several models were used to describe this kinetics. The one that included toxin transfer between organs and independent depuration from each organ was the model that best fit the data. It seems, therefore, that the DA in this species is quickly transferred from the digestive gland to all other organs, which release it into the environment. Physiological differences in the two experiments have been shown to have some effect on the depuration from each organ but the actual reasons are still unknown. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

15 pages, 3048 KiB  
Article
Discovery of a Potential Human Serum Biomarker for Chronic Seafood Toxin Exposure Using an SPR Biosensor
by Kathi A. Lefebvre, Betsy Jean Yakes, Elizabeth Frame, Preston Kendrick, Sara Shum, Nina Isoherranen, Bridget E. Ferriss, Alison Robertson, Alicia Hendrix, David J. Marcinek and Lynn Grattan
Toxins 2019, 11(5), 293; https://doi.org/10.3390/toxins11050293 - 23 May 2019
Cited by 12 | Viewed by 5311
Abstract
Domoic acid (DA)-producing harmful algal blooms (HABs) have been present at unprecedented geographic extent and duration in recent years causing an increase in contamination of seafood by this common environmental neurotoxin. The toxin is responsible for the neurotoxic illness, amnesic shellfish poisoning (ASP), [...] Read more.
Domoic acid (DA)-producing harmful algal blooms (HABs) have been present at unprecedented geographic extent and duration in recent years causing an increase in contamination of seafood by this common environmental neurotoxin. The toxin is responsible for the neurotoxic illness, amnesic shellfish poisoning (ASP), that is characterized by gastro-intestinal distress, seizures, memory loss, and death. Established seafood safety regulatory limits of 20 μg DA/g shellfish have been relatively successful at protecting human seafood consumers from short-term high-level exposures and episodes of acute ASP. Significant concerns, however, remain regarding the potential impact of repetitive low-level or chronic DA exposure for which there are no protections. Here, we report the novel discovery of a DA-specific antibody in the serum of chronically-exposed tribal shellfish harvesters from a region where DA is commonly detected at low levels in razor clams year-round. The toxin was also detected in tribal shellfish consumers’ urine samples confirming systemic DA exposure via consumption of legally-harvested razor clams. The presence of a DA-specific antibody in the serum of human shellfish consumers confirms long-term chronic DA exposure and may be useful as a diagnostic biomarker in a clinical setting. Adverse effects of chronic low-level DA exposure have been previously documented in laboratory animal studies and tribal razor clam consumers, underscoring the potential clinical impact of such a diagnostic biomarker for protecting human health. The discovery of this type of antibody response to chronic DA exposure has broader implications for other environmental neurotoxins of concern. Full article
(This article belongs to the Special Issue Marine Biotoxins and Seafood Poisoning)
Show Figures

Figure 1

22 pages, 1981 KiB  
Article
Extended Targeted and Non-Targeted Strategies for the Analysis of Marine Toxins in Mussels and Oysters by (LC-HRMS)
by Inès Dom, Ronel Biré, Vincent Hort, Gwenaëlle Lavison-Bompard, Marina Nicolas and Thierry Guérin
Toxins 2018, 10(9), 375; https://doi.org/10.3390/toxins10090375 - 14 Sep 2018
Cited by 31 | Viewed by 7148
Abstract
When considering the geographical expansion of marine toxins, the emergence of new toxins and the associated risk for human health, there is urgent need for versatile and efficient analytical methods that are able to detect a range, as wide as possible, of known [...] Read more.
When considering the geographical expansion of marine toxins, the emergence of new toxins and the associated risk for human health, there is urgent need for versatile and efficient analytical methods that are able to detect a range, as wide as possible, of known or emerging toxins. Current detection methods for marine toxins rely on a priori defined target lists of toxins and are generally inappropriate for the detection and identification of emerging compounds. The authors describe the implementation of a recent approach for the non-targeted analysis of marine toxins in shellfish with a focus on a comprehensive workflow for the acquisition and treatment of the data generated after liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) analysis. First, the study was carried out in targeted mode to assess the performance of the method for known toxins with an extended range of polarities, including lipophilic toxins (okadaic acid, dinophysistoxins, azaspiracids, pectenotoxins, yessotoxins, cyclic imines, brevetoxins) and domoic acid. The targeted method, assessed for 14 toxins, shows good performance both in mussel and oyster extracts. The non-target potential of the method was then challenged via suspects and without a priori screening by blind analyzing mussel and oyster samples spiked with marine toxins. The data processing was optimized and successfully identified the toxins that were spiked in the blind samples. Full article
(This article belongs to the Special Issue Emerging Marine Biotoxins)
Show Figures

Graphical abstract

20 pages, 1908 KiB  
Review
Recent Trends in Marine Phycotoxins from Australian Coastal Waters
by Penelope Ajani, D. Tim Harwood and Shauna A. Murray
Mar. Drugs 2017, 15(2), 33; https://doi.org/10.3390/md15020033 - 9 Feb 2017
Cited by 46 | Viewed by 7963
Abstract
Phycotoxins, which are produced by harmful microalgae and bioaccumulate in the marine food web, are of growing concern for Australia. These harmful algae pose a threat to ecosystem and human health, as well as constraining the progress of aquaculture, one of the fastest [...] Read more.
Phycotoxins, which are produced by harmful microalgae and bioaccumulate in the marine food web, are of growing concern for Australia. These harmful algae pose a threat to ecosystem and human health, as well as constraining the progress of aquaculture, one of the fastest growing food sectors in the world. With better monitoring, advanced analytical skills and an increase in microalgal expertise, many phycotoxins have been identified in Australian coastal waters in recent years. The most concerning of these toxins are ciguatoxin, paralytic shellfish toxins, okadaic acid and domoic acid, with palytoxin and karlotoxin increasing in significance. The potential for tetrodotoxin, maitotoxin and palytoxin to contaminate seafood is also of concern, warranting future investigation. The largest and most significant toxic bloom in Tasmania in 2012 resulted in an estimated total economic loss of~AUD$23M, indicating that there is an imperative to improve toxin and organism detection methods, clarify the toxin profiles of species of phytoplankton and carry out both intra‐ and inter‐species toxicity comparisons. Future work also includes the application of rapid, real‐time molecular assays for the detection of harmful species and toxin genes. This information, in conjunction with a better understanding of the life histories and ecology of harmful bloom species, may lead to more appropriate management of environmental, health and economic resources. Full article
(This article belongs to the Special Issue Marine Neurotoxins)
Show Figures

Figure 1

Back to TopTop