Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = dominant leg

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2067 KiB  
Article
Ankle Joint Kinematics in Expected and Unexpected Trip Responses with Dual-Tasking and Physical Fatigue
by Sachini N. K. Kodithuwakku Arachchige, Harish Chander and Adam C. Knight
Biomechanics 2025, 5(3), 62; https://doi.org/10.3390/biomechanics5030062 (registering DOI) - 6 Aug 2025
Abstract
Concurrent cognitive tasks, such as avoiding visual, auditory, chemical, and electrical hazards, and concurrent motor tasks, such as load carriage, are prevalent in ergonomic settings. Trips are extremely common in the workplace, leading to fatal and non-fatal fall-related injuries. Intrinsic factors, such as [...] Read more.
Concurrent cognitive tasks, such as avoiding visual, auditory, chemical, and electrical hazards, and concurrent motor tasks, such as load carriage, are prevalent in ergonomic settings. Trips are extremely common in the workplace, leading to fatal and non-fatal fall-related injuries. Intrinsic factors, such as attention, fatigue, and anticipation, as well as extrinsic factors, including tasks at hand, affect trip recovery responses. Objective: The purpose of this study was to investigate the ankle joint kinematics in unexpected and expected trip responses during single-tasking (ST), dual-tasking (DT), and triple-tasking (TT), before and after a physically fatiguing protocol among young, healthy adults. Methods: Twenty volunteers’ (10 females, one left leg dominant, age 20.35 ± 1.04 years, height 174.83 ± 9.03 cm, mass 73.88 ± 15.55 kg) ankle joint kinematics were assessed using 3D motion capture system during unperturbed gait (NG), unexpected trip (UT), and expected trip (ET), during single-tasking (ST), cognitive dual-tasking (CDT), motor dual-tasking (MDT), and triple-tasking (TT), under both PRE and POST fatigue conditions. Results: Greater dorsiflexion angles were observed during UT compared to NG, MDT compared to ST, and TT compared to ST. Significantly greater plantar flexion angles were observed during ET compared to NG and during POST compared to PRE. Conclusions: Greater dorsiflexion angles during dual- and triple-tasking suggest that divided attention affects trip recovery. Greater plantar flexion angles following fatigue are likely an anticipatory mechanism due to altered muscle activity and increased postural control demands. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

10 pages, 470 KiB  
Article
Asymmetry in Muscle Activation and Co-Contraction Between Lower Limb During Zap-3 Flamenco Footwork
by Ningyi Zhang, Sebastián Gómez-Lozano, Ross Armstrong, Hui Liu, Ce Guo and Alfonso Vargas-Macías
Sensors 2025, 25(15), 4829; https://doi.org/10.3390/s25154829 - 6 Aug 2025
Abstract
This study aims to investigate asymmetries in muscle activation and co-contraction of main lower limb muscles during flamenco Zap-3 footwork with consideration of the footwork speed and dancer proficiency. Twelve flamenco dancers participated, including six professionals and six amateurs. Each participant performed the [...] Read more.
This study aims to investigate asymmetries in muscle activation and co-contraction of main lower limb muscles during flamenco Zap-3 footwork with consideration of the footwork speed and dancer proficiency. Twelve flamenco dancers participated, including six professionals and six amateurs. Each participant performed the Zap-3 sequence under three speed conditions: 160 beats per minute (bpm), 180 bpm and the fastest speed level (F). The normalized surface electromyography was recorded in the gastrocnemius medialis (GM), biceps femoris (BF), tibialis anterior (TA) and rectus femoris (RF) in the dominant (DL) and non-dominant leg (NDL). The co-contraction index was also calculated for selected muscle pairs. The results showed that significant asymmetries occurred only in professional dancers and exclusively at the F speed level. Specifically, the value of the GM in the NDL was higher than that of the DL (p < 0.05, d = 1.97); the value of the BF in the DL was higher than that of the NDL (p < 0.05, d = 1.86) and the co-contraction index of BF/RF in the DL was higher than that of the NDL (p < 0.05, d = 1.87). Understanding these asymmetries may help to inform individualized training strategies aimed at optimizing performance and reducing potential risks. Full article
Show Figures

Figure 1

13 pages, 1060 KiB  
Article
Condition Changes Before and After the Coronavirus Disease 2019 Pandemic in Adolescent Athletes and Development of a Non-Contact Medical Checkup Application
by Hiroaki Kijima, Toyohito Segawa, Kimio Saito, Hiroaki Tsukamoto, Ryota Kimura, Kana Sasaki, Shohei Murata, Kenta Tominaga, Yo Morishita, Yasuhito Asaka, Hidetomo Saito and Naohisa Miyakoshi
Sports 2025, 13(8), 256; https://doi.org/10.3390/sports13080256 - 4 Aug 2025
Viewed by 112
Abstract
During the coronavirus 2019 pandemic, sports activities were restricted, raising concerns about their impact on the physical condition of adolescent athletes, which remained largely unquantified. This study was designed with two primary objectives: first, to precisely quantify and elucidate the differences in the [...] Read more.
During the coronavirus 2019 pandemic, sports activities were restricted, raising concerns about their impact on the physical condition of adolescent athletes, which remained largely unquantified. This study was designed with two primary objectives: first, to precisely quantify and elucidate the differences in the physical condition of adolescent athletes before and after activity restrictions due to the pandemic; and second, to innovatively develop and validate a non-contact medical checkup application. Medical checks were conducted on 563 athletes designated for sports enhancement. Participants were junior high school students aged 13 to 15, and the sample consisted of 315 boys and 248 girls. Furthermore, we developed a smartphone application and compared self-checks using the application with in-person checks by orthopedic surgeons to determine the challenges associated with self-checks. Statistical tests were conducted to determine whether there were statistically significant differences in range of motion and flexibility parameters before and after the pandemic. Additionally, items with discrepancies between values self-entered by athletes using the smartphone application and values measured by specialists were detected, and application updates were performed. Student’s t-test was used for continuous variables, whereas the chi-square test was used for other variables. Following the coronavirus 2019 pandemic, athletes were stiffer than during the pre-pandemic period in terms of hip and shoulder joint rotation range of motion and heel–buttock distance. The dominant hip external rotation decreased from 53.8° to 46.8° (p = 0.0062); the non-dominant hip external rotation decreased from 53.5° to 48.0° (p = 0.0252); the dominant shoulder internal rotation decreased from 62.5° to 54.7° (p = 0.0042); external rotation decreased from 97.6° to 93.5° (p = 0.0282), and the heel–buttock distance increased from 4.0 cm to 10.4 cm (p < 0.0001). The heel–buttock distance and straight leg raising angle measurements differed between the self-check and face-to-face check. Although there are items that cannot be accurately evaluated by self-check, physical condition can be improved with less contact by first conducting a face-to-face evaluation under appropriate guidance and then conducting a self-check. These findings successfully address our primary objectives. Specifically, we demonstrated a significant decline in the physical condition of adolescent athletes following pandemic-related activity restrictions, thereby quantifying their impact. Furthermore, our developed non-contact medical checkup application proved to be a viable tool for monitoring physical condition with reduced contact, although careful consideration of measurable parameters is crucial. This study provides critical insights into the long-term effects of activity restrictions on young athletes and offers a practical solution for health monitoring during infectious disease outbreaks, highlighting the potential for hybrid checkup approaches. Full article
Show Figures

Graphical abstract

12 pages, 2851 KiB  
Article
Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study
by Álvaro Murillo-Ortiz, Luis Manuel Martínez-Aranda, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García and Javier Raya-González
J. Funct. Morphol. Kinesiol. 2025, 10(3), 279; https://doi.org/10.3390/jfmk10030279 - 18 Jul 2025
Viewed by 330
Abstract
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a [...] Read more.
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a valuable method to evaluate and train these mechanical variables separately for each leg. The aim of this study was twofold: (a) to characterise the mechanical variables derived from several lower-body strength exercises performed on rotational inertial devices, all targeting the same muscle group; and (b) to compare the mechanical variables between the dominant and non-dominant leg for each exercise. Methods: Twenty-six male professional soccer players (age = 26.3 ± 5.1 years; height = 182.3 ± 0.6 cm; weight = 75.9 ± 5.9 kg; body mass index = 22.8 ± 1.1 kg/m2; fat mass percentage = 9.1 ± 0.6%; fat-free mass = 68.8 ± 5.3 kg), all belonging to the same professional Belgian team, voluntarily participated in this study. The players completed a single assessment session consisting of six unilateral exercises (i.e., quadriceps hip, hamstring knee, adductor, quadriceps knee, hamstring hip, and abductor). For each exercise, they performed two sets of eight repetitions with each leg (i.e., dominant and non-dominant) in a randomised order. Results: The quadriceps hip exercise resulted in higher mechanical values compared to the quadriceps knee exercise in both limbs (p < 0.004). Similarly, the hamstring hip exercise produced greater values across all variables and limbs (p < 0.004), except for peak force, where the hamstring knee exercise exhibited higher values (p < 0.004). The adductor exercise showed higher peak force values for the dominant limb (p < 0.004). The between-limb comparison revealed differences only in the abductor exercise (p < 0.004). Conclusions: These findings suggest the necessity of prioritising movement selection based on targeted outcomes, although it should be considered that the differences between limb differences are very limited. Full article
(This article belongs to the Special Issue Sports-Specific Conditioning: Techniques and Applications)
Show Figures

Figure 1

28 pages, 16653 KiB  
Article
Integrated Assessment Methodology for Jack-Up Stability: Centrifuge Test of Entire Four-Legged Model for WTIVs
by Mingsheng Xiahou, Zhiyuan Wei, Yilin Wang, Deqing Yang, Jian Chi and Shuxiang Liu
Appl. Sci. 2025, 15(14), 7971; https://doi.org/10.3390/app15147971 - 17 Jul 2025
Viewed by 169
Abstract
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, [...] Read more.
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, and punch-through risk, thereby filling the gap in holistic platform stability analysis. An entire four-legged centrifuge test at 150× g was integrated with coupled Eulerian–Lagrangian (CEL) numerical simulations and theoretical methods to systematically investigate spudcan penetration mechanisms and global sliding/overturning evolution in clay/sand. The key findings reveal that soil properties critically influence penetration resistance and platform stability: Sand exhibited a six-times-higher ultimate bearing capacity than clay, yet its failure zone was 42% smaller. The sliding resistance in sand was 2–5 times greater than in clay, while the overturning behavior diverged significantly. Although the horizontal loads in clay were only 50% of those in sand, the tilt angles at equivalent sliding distances reached 8–10 times higher. Field validation at Guangdong Lemen Wind Farm confirmed the method’s reliability: penetration prediction errors of <5% and soil backflow/plugging effects were identified as critical control factors for punch-through risk assessment. Notably, the overturning safety factors for crane operation at 90° outreach and storm survival were equivalent, indicating operational load combinations dominate overturning risks. These results provide a theoretical and decision-making basis for the safe operation of large WTIVs, particularly applicable to engineering practices in complex stratified seabed areas. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

26 pages, 5716 KiB  
Article
Study on Vibration Control Systems for Spherical Water Tanks Under Earthquake Loads
by Jingshun Zuo, Jingchao Guan, Wei Zhao, Keisuke Minagawa and Xilu Zhao
Vibration 2025, 8(3), 41; https://doi.org/10.3390/vibration8030041 - 11 Jul 2025
Viewed by 265
Abstract
Ensuring the safety of large spherical water storage tanks in seismic environments is critical. Therefore, this study proposed a vibration control device applicable to general spherical water tanks. By utilizing the upper interior space of a spherical tank, a novel tuned mass damper [...] Read more.
Ensuring the safety of large spherical water storage tanks in seismic environments is critical. Therefore, this study proposed a vibration control device applicable to general spherical water tanks. By utilizing the upper interior space of a spherical tank, a novel tuned mass damper (TMD) system composed of a mass block and four elastic springs was proposed. To enable practical implementation, the vibration control mechanism and tuning principle of the proposed TMD were examined. Subsequently, an experimental setup, including the spherical water tank and the TMD, was developed. Subsequently, shaking experiments were conducted using two types of spherical tanks with different leg stiffness values under various seismic waves and excitation directions. Shaking tests using actual El Centro NS and Taft NW earthquake waves demonstrated vibration reduction effects of 34.87% and 43.38%, respectively. Additional shaking experiments were conducted under challenging conditions, where the natural frequency of the spherical tank was adjusted to align closely with the dominant frequency of the earthquake waves, yielding vibration reduction effects of 18.74% and 22.42%, respectively. To investigate the influence of the excitation direction on the vibration control performance, shaking tests were conducted at 15-degree intervals. These experiments confirmed that an average vibration reduction of more than 15% was achieved, thereby verifying the validity and practicality of the proposed TMD vibration control system for spherical water tanks. Full article
Show Figures

Figure 1

16 pages, 722 KiB  
Article
Isokinetic Knee Strength as a Predictor of Performance in Elite Ski Mountaineering Sprint Athletes
by Burak Kural, Esin Çağla Çağlar, Mine Akkuş Uçar, Uğur Özer, Burcu Yentürk, Hüseyin Çayır, Nuri Muhammet Çelik, Erkan Çimen, Gökhan Arıkan and Levent Ceylan
Medicina 2025, 61(7), 1237; https://doi.org/10.3390/medicina61071237 - 9 Jul 2025
Viewed by 362
Abstract
Background and Objectives: This study aims to investigate the relationship between isokinetic knee strength and competition performance in elite male ski mountaineering sprint athletes and to identify strength parameters that predict performance and contribute to injury prevention. Materials and Methods: Thirteen [...] Read more.
Background and Objectives: This study aims to investigate the relationship between isokinetic knee strength and competition performance in elite male ski mountaineering sprint athletes and to identify strength parameters that predict performance and contribute to injury prevention. Materials and Methods: Thirteen male athletes participating in the Ski Mountaineering Turkey Cup final stage were included. Isokinetic knee flexion (FLX) and extension (EXT) strength of dominant (DM) and non-dominant (NDM) legs were measured at angular velocities of 60°/s and 180°/s using the DIERS-Myolin Isometric Muscle Strength Analysis System. Competition performance was evaluated using the ISMF scoring system. Data were analyzed using SPSS 26.0 with Pearson correlation and multiple regression analyses after normality, linearity, and homoscedasticity checks. Results: Strong positive correlations were found between hamstring strength at high angular velocities (180°/s) and performance (DM FLX: r = 0.809; NDM FLX: r = 0.880). Extension strength showed moderate correlations at low velocities (60°/s) (DM EXT: r = 0.677; NDM EXT: r = 0.699). Regression analysis revealed that DM FLX at 180°/s and DM EXT at 60°/s explained 49% of performance variance (Adj. R2 = 0.498). For NDM legs, only 180°/s FLX was a significant predictor (β = 1.468). Conclusions: High-velocity hamstring strength plays a critical role in ski mountaineering sprint performance, particularly during sudden directional changes and dynamic balance. Quadriceps strength at low velocities contributes to prolonged climbing phases. Moreover, identifying and addressing bilateral strength asymmetries may support injury prevention strategies in elite ski mountaineering athletes. These findings provide scientific support for designing training programs targeting explosive hamstring strength, bilateral symmetry, and injury risk reduction, essential for optimizing performance in the 2026 Winter Olympics sprint discipline. Full article
(This article belongs to the Special Issue Advances in Sports Rehabilitation and Injury Prevention)
Show Figures

Figure 1

11 pages, 203 KiB  
Article
A Technical–Tactical Analysis of Medal Matches in Wrestling: Results from the 2024 European Senior Championships
by Mujde Atici, Abdullah Demirli, Bugrahan Cesur, Ozkan Isik, Laurentiu-Gabriel Talaghir, Marius Dumitru Cosoreanu, Viorel Dorgan and Adriana Neofit
Appl. Sci. 2025, 15(14), 7673; https://doi.org/10.3390/app15147673 - 9 Jul 2025
Viewed by 392
Abstract
Background and Objective: Match analysis plays a vital role in forming the scientific foundation of training and guiding strategic decision-making in wrestling. By objectively evaluating athletes’ technical and tactical performances, coaches and athletes can optimize preparation and in-match strategies. This study aimed to [...] Read more.
Background and Objective: Match analysis plays a vital role in forming the scientific foundation of training and guiding strategic decision-making in wrestling. By objectively evaluating athletes’ technical and tactical performances, coaches and athletes can optimize preparation and in-match strategies. This study aimed to analyze the technical and tactical characteristics of medal matches in Greco-Roman (GR), Freestyle (FS), and Women’s Wrestling (WW) at the 2024 European Wrestling Championships. Methods: A total of 54 elite-level matches (18 from each style), held in Bucharest between 12 and 18 February, 2024, were retrospectively analyzed. Three expert observers evaluated the matches using video footage from the United World Wrestling (UWW) archive. Descriptive statistics were performed using SPSS 25.0. Results: Across 301 recorded actions, 2-point techniques (52.16%) and 1-point techniques (43.85%) were dominant; only 3.99% were 4-point actions. GR primarily utilized body lock and gut wrench; FS favored single-leg attacks and leg lace. In WW, the scores were obtained from techniques applied in the par terre position with a high frequency (60.8%). Most victories in all styles occurred by points rather than technical superiority or falls. Conclusion: The findings reveal a strategic preference for low-risk, controlled techniques in high-level matches. These insights can inform evidence-based training and match preparation for future championships. Full article
(This article belongs to the Special Issue Innovative Approaches in Sports Science and Sports Training)
16 pages, 1292 KiB  
Article
Compartmentalization of Free Fatty Acids in Blood-Feeding Tabanus bovinus Females
by Mikołaj Drozdowski and Mieczysława Irena Boguś
Insects 2025, 16(7), 696; https://doi.org/10.3390/insects16070696 - 6 Jul 2025
Viewed by 460
Abstract
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the [...] Read more.
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the qualitative and quantitative profiles of free fatty acids (FFAs) in the female Tabanus bovinus, a hematophagous horsefly species, across different anatomical regions, including the head, wings, legs, thorax, and abdomen. The surface and internal lipid fractions were isolated using petroleum ether/dichloromethane extraction followed by sonication. GC-MS revealed the presence of 21 FFAs, including 16 saturated (C7:0, C8:0, C9:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C19:0, C20:0, C22:0, C24:0) and five unsaturated (C16:1, C18:2, C18:1, C20:5, C20:4). The head and wings showed the highest concentrations of cuticular FFAs. At the same time, internal lipid stores were most prominent in the thorax and abdomen (but four times lower than in the head cuticle), reflecting their role in energy storage and reproduction. All cuticular and internal extracts were dominated by C16:0, C18:0, and C18:1. Notably, several FFAs were undetected in specific compartments: C10:0 from inside the head, C11:0 and C13:0 from inside all examined body parts, C19:0 was absent from inside the head, wings and legs, while C20:5 and C20:4 were absent from both the cuticular and internal lipid pools of the wings. Interestingly, our analysis of the cuticle on the thorax and abdomen together revealed that both C13:0 and C19:0 were present only on the dorsal side, i.e., absent from the ventral side. These absences suggest a selective lipid metabolism tailored to the functional and ecological demands of T. bovinus females. Our findings suggest that the absence of specific compounds from individual body parts may serve as an indicator of physiological specialization. This work provides new insights into lipid compartmentalization in Tabanidae and offers a framework for future comparative and ecological lipidomics studies in insects. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

8 pages, 203 KiB  
Article
Decisive Techniques for Ippon in Elite Women’s Judo: A Tactical Analysis from the Rio 2016 and Tokyo 2020 Olympic Games
by Alex Ojeda-Aravena, David Moronta, Bibi Calvo-Rico, Jairo Azócar-Gallardo and José Manuel García-García
Appl. Sci. 2025, 15(13), 7455; https://doi.org/10.3390/app15137455 - 2 Jul 2025
Viewed by 349
Abstract
Olympic women’s judo has increased in complexity and competitiveness, demanding detailed tactical analysis. This observational study aimed to examine the relationship between the results of combats (Wazari [half point] vs. Ippon [full point]) and the techniques used in women’s judo combats in [...] Read more.
Olympic women’s judo has increased in complexity and competitiveness, demanding detailed tactical analysis. This observational study aimed to examine the relationship between the results of combats (Wazari [half point] vs. Ippon [full point]) and the techniques used in women’s judo combats in the Rio 2016 and Tokyo 2020 Olympic Games. A significant association was found between technique type and contest outcome (χ2 = 40.004, df = 6, p < 0.001): Nage Waza (throwing techniques) produced 92.3% of Wazari, whereas Katame Waza (groundwork techniques) accounted for 61.1% of Ippon. Subgroup analysis confirmed these relationships (χ2 = 17.217, df = 6, p = 0.009; Cramer’s V = 0.745), with Ashiwaza (foot/leg techniques) dominating Wazari. Uchimata was the most frequently used technique in the repechage (20%), bronze medal (22.6%), and final (23.1%) matches. In lightweights, Katame Waza dominated Ippon in finals (53.8%, χ2 = 4.000, p = 0.046), while Nage Waza secured all Wazari. Middleweights also showed strong associations (χ2 = 14.745, df = 1, p < 0.001; 93.9% of Wazari by Nage Waza). Although no significant association was found for heavyweights (χ2 = 7.535, df = 1, p = 0.095), Katame Waza prevailed in Ippon (69.2%). These findings provide a tactical framework for tailoring technique-specific training by weight category and tournament phase to optimize outcomes in elite female judo. Full article
12 pages, 3556 KiB  
Article
Power Indices Through Rotational Inertial Devices for Lower Extremity Profiling and Injury Risk Stratification in Professional Soccer Players: A Cross-Sectional Study
by Álvaro Murillo-Ortiz, Javier Raya-González, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García and Luis Manuel Martínez-Aranda
Diagnostics 2025, 15(13), 1691; https://doi.org/10.3390/diagnostics15131691 - 2 Jul 2025
Cited by 1 | Viewed by 493
Abstract
Background/Objectives: Power indices may provide valuable information for performance and injury prevention in soccer players, so increasing the knowledge about them seems essential. Therefore, this study aimed to establish limb-specific normative values for flywheel-derived power indices in professional soccer players, while accounting [...] Read more.
Background/Objectives: Power indices may provide valuable information for performance and injury prevention in soccer players, so increasing the knowledge about them seems essential. Therefore, this study aimed to establish limb-specific normative values for flywheel-derived power indices in professional soccer players, while accounting for limb performance or ability, to explore the relationships between power indices across variables and to compare the power outcomes related to these indices between injured and non-injured players within four months post-assessment. Methods: Twenty-two male professional soccer players (age: 26.6 ± 4.6 years; competitive level: Belgian second division) were recruited from a single elite-tier club to participate in this cross-sectional diagnostic study. Participants underwent a standardized assessment protocol, executed in a rotational inertial device, comprising six unilateral exercises focused on the lower limbs: hip-dominant quadriceps (Qhip), knee-dominant quadriceps (Qknee), hip-dominant hamstrings (Hhip), knee-dominant hamstrings (Hknee), adductor (Add), and abductor (Abd). The testing session incorporated a randomized, counterbalanced design, with each exercise comprising two sets of eight maximal concentric–eccentric repetitions per limb. Leg dominance was operationally defined as the self-reported preferred limb for ball-striking tasks. Power indices were calculated from these exercises. Results: No significant differences in flywheel-derived power indices were found between limbs or between injured and non-injured players. However, significant correlations between indices were found in all power variables, with the Qhip:Qknee and Hhip:Hknee concentric ratios emerging as the most clinically actionable biomarkers for rapid screening. Conclusions: These results suggest the necessity of including more variables for injury prediction. Moreover, power indices could be considered based on the classification of limbs as “strong” or “weak”. Full article
Show Figures

Figure 1

14 pages, 684 KiB  
Article
Correlation Between Core Stability and Plantar Pressure Distribution During Double-Leg Stance, Single-Leg Stance, and Squat Positions in Healthy Male Athletes
by Reem Abdullah Babkair, Shibili Nuhmani, Turki Abualait and Qassim Muaidi
Medicina 2025, 61(7), 1188; https://doi.org/10.3390/medicina61071188 - 30 Jun 2025
Viewed by 345
Abstract
Background: Core stability is a cornerstone of optimum athletic performance, and its reduction is a risk factor for athletic injuries. Evidence has shown that core impairments can alter lower-limb mechanics through the kinetic chains. Additionally, plantar pressure can be influenced by proximal [...] Read more.
Background: Core stability is a cornerstone of optimum athletic performance, and its reduction is a risk factor for athletic injuries. Evidence has shown that core impairments can alter lower-limb mechanics through the kinetic chains. Additionally, plantar pressure can be influenced by proximal conditions, such as core muscle fatigue. Therefore, this study aimed to investigate the correlation between core endurance and plantar pressure distribution (PPD) during double-leg stance, single-leg stance, and single-leg squat positions in healthy male athletes. Methods: A total of 21 healthy male recreational athletes between 19 and 26 years of age volunteered to participate in this correlational study. The McGill core endurance test was used to measure the endurance of their core flexors, extensors, and lateral flexors. The participants’ PPD was evaluated using the Tekscan Mobile Mat pressure measurement system in three positions (double-leg stance, single-leg stance, and single-leg squat) for both the dominant and non-dominant feet. Results: There was a poor and insignificant correlation (p > 0.05) between the core flexors’, extensors’, and side flexors’ endurance and the peak and total PPD in all the tested positions for both the dominant and non-dominant feet. Conclusions: Core muscle endurance is neither a component that affects nor is affected by the PPD in this study population. Thus, the endurance of core flexors, extensors, and side flexors may not be considered in screening, examination, or intervention for the total and peak pressure during double-leg stance, single-leg stance, and single-leg squat positions for both the dominant and non-dominant feet in the study population. Further similar studies are warranted in various sports and during dynamic tasks to better understand the different dimensions of the studied relationship in athletes. Full article
(This article belongs to the Special Issue Clinical Recent Research in Rehabilitation and Preventive Medicine)
Show Figures

Figure 1

13 pages, 1346 KiB  
Article
The Impact of a Modality Switch During Isokinetic Leg Extensions on Performance Fatigability and Neuromuscular Patterns of Response
by John Paul V. Anders, Tyler J. Neltner, Robert W. Smith, Jocelyn E. Arnett, Richard J. Schmidt and Terry J. Housh
Sensors 2025, 25(13), 4013; https://doi.org/10.3390/s25134013 - 27 Jun 2025
Viewed by 322
Abstract
Bilateral (BL) and unilateral (UL) muscle actions are commonly incorporated in training programs to achieve distinct goals, however, the mechanisms driving modality-specific training adaptations remain unclear. This study examined peak force, electromyographic (EMG) amplitude (AMP), and mean power frequency (MPF) of the non-dominant [...] Read more.
Bilateral (BL) and unilateral (UL) muscle actions are commonly incorporated in training programs to achieve distinct goals, however, the mechanisms driving modality-specific training adaptations remain unclear. This study examined peak force, electromyographic (EMG) amplitude (AMP), and mean power frequency (MPF) of the non-dominant leg during isokinetic leg extensions performed as either a BL or BLUL combined modality. Twelve recreationally trained men (Mean ± SD; age = 20.8 ± 1.7 years; weight = 83.1 ± 15.7 kg; height = 178.2 ± 7.8 cm) attended 2 test visits that included BL and UL maximal isokinetic leg extensions at 180°·s−1 followed by a fatiguing task of either 50 BL or 25 BL followed immediately by 25 UL (BLUL) maximal, isokinetic leg extensions at 180°·s−1, in random order on separate days. The results demonstrated a 33.3% decline in peak force with a concomitant increase in EMG AMP across the fatiguing task, but there were no significant differences between conditions. For EMG MPF, the BLUL condition exhibited a 19.39% decline versus a 10.97% decline in the BL condition. Overall, the present study suggested there were no significant differences in neuromuscular activation strategies between the tested modalities. However, our findings indicated that incorporating UL muscle actions after a BL task may induce a greater degree of peripheral fatigue compared to sustained BL muscle actions. Practitioners might consider implementing UL exercises at the end of a training bout to induce greater metabolic stress. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

15 pages, 337 KiB  
Article
Effects of Integrated Neuromuscular Training on Physical Fitness in Badminton Athletes of Different Maturity Statuses
by Ming-Chia Weng, Xiang Dai, Chih-Hui Chiu, Chien-Chang Ho, Chia-Cheng Liu, Shuo-Min Hsu and Che-Hsiu Chen
Children 2025, 12(7), 830; https://doi.org/10.3390/children12070830 - 23 Jun 2025
Viewed by 525
Abstract
Background/Objectives: Dominant leg use in badminton may contribute to lower limb asymmetry, potentially affecting performance and injury risk. This study investigated the effects of a 12-week integrated neuromuscular training (NMT) program on sports performance. Methods: Twenty-four well-trained male badminton players (age: 13.5 ± [...] Read more.
Background/Objectives: Dominant leg use in badminton may contribute to lower limb asymmetry, potentially affecting performance and injury risk. This study investigated the effects of a 12-week integrated neuromuscular training (NMT) program on sports performance. Methods: Twenty-four well-trained male badminton players (age: 13.5 ± 1.15 years) were randomly assigned to groups based on maturation status (pre-peak height velocity [pre-PHV] and post-peak height velocity [post-PHV]; n = 12 each). All participants completed two NMT sessions weekly. Pre- and post-training assessments included a 20 m sprint, countermovement jump (CMJ), agility t-text, hexagon test, and Y-balance test. Results: Both groups improved significantly across most tests. The post-PHV group (ES: 0.70–1.35) showed greater improvements in sprinting, CMJ, and agility, while the pre-PHV group (ES: 0.39–1.23) improved more in balance and asymmetry. Conclusions: These results underscore the need for age- and maturity-specific training strategies to optimize performance and address asymmetries in youth athletes. Full article
(This article belongs to the Section Pediatric Orthopedics & Sports Medicine)
Show Figures

Figure 1

16 pages, 622 KiB  
Article
Relationship Between Intermuscular Synchronization of Upper Leg Muscles and Training Level in Karate Kumite Practitioners
by Velimir Jeknić, Milivoj Dopsaj and Nenad Koropanovski
J. Funct. Morphol. Kinesiol. 2025, 10(3), 234; https://doi.org/10.3390/jfmk10030234 - 20 Jun 2025
Viewed by 352
Abstract
Objectives: This study aimed to compare the involuntary stimulated neuromuscular response of thigh muscles in karate subgroups and non-athletes. We investigated whether karate training creates neuromuscular adaptations and if the synchronization of knee flexor and extensor muscles in karate practitioners is level-dependent. [...] Read more.
Objectives: This study aimed to compare the involuntary stimulated neuromuscular response of thigh muscles in karate subgroups and non-athletes. We investigated whether karate training creates neuromuscular adaptations and if the synchronization of knee flexor and extensor muscles in karate practitioners is level-dependent. Methods: The study included 7 elite karate athletes (KE), 14 sub-elite karate athletes (KSE), 16 individuals with basic karate training (KB), and 14 non–athletes (NA). Tensiomyographic (TMG) measurements were obtained from the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, and semitendinosus muscles. Indexes of Intermuscular Synchronization (IIS) were calculated for contraction time (Tc), total contraction time (TcT), and rate of muscle tension development (RMTD) as variables for the observed muscles of a given muscle group (extensors of the dominant leg, flexors of the dominant leg, extensors of the non-dominant leg, and flexors of the non-dominant leg). Results: Statistically significant differences were observed in the intermuscular synchronization indexes between karate experience levels and non-athletes. Compared to non-athletes, elite (KE), sub-elite (KSE), and beginner karateka (KB) all demonstrated shorter contraction time indexes in dominant knee extensors (p = 0.042, 0.040, and 0.013, respectively). In the non-dominant flexors, KE exhibited significantly better synchronization than KSE (p = 0.001), KB (p = 0.033), and NA (p = 0.002). For the total contraction time index, both KSE and KB outperformed NA in dominant extensors (p = 0.023 and p = 0.008), while KE showed superiority in non-dominant extensors and flexors compared to all other groups (p-values ranging from 0.002 to 0.038). Significant RMTD differences were found in the dominant leg between KE and KSE (p = 0.036) and KE and KB (p = 0.001), as well as in the non-dominant leg between KE and KB (p = 0.011) and KE and NA (p = 0.025). These findings were accompanied by statistical powers exceeding 0.80 in most cases, underscoring the robustness of the observed differences. Conclusions: These findings highlight that muscle coordination patterns, as revealed through non-invasive TMG-based indexes, are sensitive to training level and laterality in karate practitioners. Importantly, elite athletes demonstrated more synchronized activation in key muscle groups, suggesting a neuromuscular adaptation specific to high-level combat sports. From a biomechanical perspective, improved intermuscular synchronization may reflect optimized neural strategies for stability, speed, and efficiency—key components in competitive karate. Thus, this method holds promise not only for performance diagnostics but also for refining individualized training strategies in combat sports and broader athletic contexts. Full article
(This article belongs to the Special Issue Innovative Approaches in Monitoring Individual Sports)
Show Figures

Figure 1

Back to TopTop