Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = diurnal emissions profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5766 KiB  
Article
Studying the Improvement of Solar Collector Mechanism with Phase Change Materials
by Maha Rahman Rahi, Saba Ostadi, Amin Rahmani, Mahdieh Dibaj and Mohammad Akrami
Energies 2024, 17(6), 1432; https://doi.org/10.3390/en17061432 - 16 Mar 2024
Cited by 10 | Viewed by 2615
Abstract
This study delves into the integration of phase change materials (PCM) in solar thermal collector systems to address this challenge. By incorporating nano encapsulated PCMs, researchers have mitigated concerns surrounding PCM leakage, revolutionizing the potential of solar collector systems to elevate energy efficiency, [...] Read more.
This study delves into the integration of phase change materials (PCM) in solar thermal collector systems to address this challenge. By incorporating nano encapsulated PCMs, researchers have mitigated concerns surrounding PCM leakage, revolutionizing the potential of solar collector systems to elevate energy efficiency, diminish carbon emissions, and yield manifold benefits. This article comprehensively investigates the design and utilization of solar phase change energy storage devices and examines the transformative impact of employing nano-coated phase change materials (Nano capsules) to augment solar collector performance. The integration of paraffin-based PCM and the insulation of the collector system have been crucial in optimizing heat retention and operational efficacy. The composition of the PCM involves a balanced blend of octadecane phase-change particles and water as the base fluid, designed to maximize thermal performance. Analysis of the experimental findings demonstrates the dynamic thermal behavior of the nano encapsulated phase change material, revealing distinctive temperature profiles about fluid dynamics and absorbent characteristics. Notably, the study emphasizes the nuanced trade-offs associated with the conductivity and melting temperature of the Nano encapsulated PCM, yielding valuable insights into energy storage capacity limitations and thermal performance variations throughout diurnal cycles. Central to the investigation, the optimal nanoparticle proportion is elucidated, shedding light on its pivotal role in modulating PCM performance. Furthermore, findings underscore the complex interplay between nanoparticle volume fraction and thermal fluid temperature, providing critical perspectives on optimizing PCM-enhanced solar collector systems. Full article
Show Figures

Figure 1

10 pages, 1574 KiB  
Article
Application of a Machine Learning Method for Prediction of Urban Neighborhood-Scale Air Pollution
by Ka-Ming Wai and Peter K. N. Yu
Int. J. Environ. Res. Public Health 2023, 20(3), 2412; https://doi.org/10.3390/ijerph20032412 - 29 Jan 2023
Cited by 9 | Viewed by 2751
Abstract
Urban air pollution has aroused growing attention due to its associated adverse health effects. A model which could promptly predict urban air quality with considerable accuracy is, therefore, important and will benefit the development of smart cities. However, only a computational fluid dynamics [...] Read more.
Urban air pollution has aroused growing attention due to its associated adverse health effects. A model which could promptly predict urban air quality with considerable accuracy is, therefore, important and will benefit the development of smart cities. However, only a computational fluid dynamics (CFD) model could better resolve the dispersion behavior within an urban canyon layer. A machine learning (ML) model using the Artificial Neural Network (ANN) approach was formulated in the current study to investigate vehicle-derived airborne particulate (PM10) dispersion within a compact high-rise-built environment. Various measured meteorological parameters and PM10 concentrations were adopted as the model inputs to train the ANN model. A building-resolved CFD model under the same environmental settings was also set up to compare its model performance with the ANN model. Our results showed that the ANN model exhibited promising performance (r = 0.82, fractional bias = 0.002) when comparing the > 1000 h PM10 measurements. When comparing the diurnal hourly measured PM10 variations in a clear-sky day, both the ANN and CFD models performed well (r > 0.8). The good performance of the CFD model relied on the knowledge of the in situ diurnal traffic profile, the adoption of suitable mobile source emission factor(s) (e.g., from MOBILE 6 and COPERT4), and the use of urban thermal and dynamical variables to capture PM10 variations in both neutral and unstable atmospheric conditions. These requirements/constraints make it impractical for daily operation. On the contrary, the ML (ANN) model adopted here is free from these constraints and is fast (less than 0.1% computational time relative to the CFD model). These results demonstrate that the ANN model is a superior option for a smart city application. Full article
(This article belongs to the Special Issue Urban Environment and Public Health)
Show Figures

Figure 1

14 pages, 3098 KiB  
Article
Worldwide Evaluation of CAMS-EGG4 CO2 Data Re-Analysis at the Surface Level
by Danilo Custódio, Carlos Borrego and Hélder Relvas
Toxics 2022, 10(6), 331; https://doi.org/10.3390/toxics10060331 - 17 Jun 2022
Cited by 2 | Viewed by 2809
Abstract
This study systematically examines the global uncertainties and biases in the carbon dioxide (CO2) mixing ratio provided by the Copernicus Atmosphere Monitoring Service (CAMS). The global greenhouse gas re-analysis (EGG4) data product from the European Centre for Medium-Range Weather Forecasts (ECMWF) [...] Read more.
This study systematically examines the global uncertainties and biases in the carbon dioxide (CO2) mixing ratio provided by the Copernicus Atmosphere Monitoring Service (CAMS). The global greenhouse gas re-analysis (EGG4) data product from the European Centre for Medium-Range Weather Forecasts (ECMWF) was evaluated against ground-based in situ measurements from more than 160 of stations across the world. The evaluation shows that CO2 re-analysis can capture the general features in the tracer distributions, including the CO2 seasonal cycle and its strength at different latitudes, as well as the global CO2 trend. The emissions and natural fluxes of CO2 at the surface are evaluated on a wide range of scales, from diurnal to interannual. The results highlight re-analysis compliance, reproducing biogenic fluxes as well the observed CO2 patterns in remote environments. CAMS consistently reproduces observations at marine and remote regions with low CO2 fluxes and smooth variability. However, the model’s weaknesses were observed in continental areas, regions with complex sources, transport circulations and large CO2 fluxes. A strong variation in the accuracy and bias are displayed among those stations with different flux profiles, with the largest uncertainties in the continental regions with high CO2 anthropogenic fluxes. Displaying biased estimation and root-mean-square error (RMSE) ranging from values below one ppmv up to 70 ppmv, the results reveal a poor response from re-analysis to high CO2 mixing ratio, showing larger uncertainty of the product in the boundaries where the CAMS system misses solving sharp flux variability. The mismatch at regions with high fluxes of anthropogenic emission indicate large uncertainties in inventories and constrained physical parameterizations in the CO2 at boundary conditions. The current study provides a broad uncertainty assessment for the CAMS CO2 product worldwide, suggesting deficiencies and methods that can be used in the future to overcome failures and uncertainties in regional CO2 mixing ratio and flux estimates. Full article
(This article belongs to the Special Issue Modelling & Impacts Assessments of Air Quality)
Show Figures

Graphical abstract

13 pages, 3503 KiB  
Article
Ozone Profiles, Precursors, and Vertical Distribution in Urban Lhasa, Tibetan Plateau
by Jiayan Yu, Lingshuo Meng, Yang Chen, Huifang Zhang and Jianguo Liu
Remote Sens. 2022, 14(11), 2533; https://doi.org/10.3390/rs14112533 - 25 May 2022
Cited by 8 | Viewed by 2627
Abstract
Near-surface ozone is one of the significant issues in the troposphere. Recently, ozone pollution in Lhasa at an altitude of 3600 m has caused attention. The current knowledge of ozone formation in Lhasa city is still minimal. In this work, the profile of [...] Read more.
Near-surface ozone is one of the significant issues in the troposphere. Recently, ozone pollution in Lhasa at an altitude of 3600 m has caused attention. The current knowledge of ozone formation in Lhasa city is still minimal. In this work, the profile of VOCs during early summer was investigated, and alkanes were the most critical group of VOCs. The urban areas of Lhasa are under transition conditions and controlled by both VOCs and NOx. Moreover, the most effective way to decrease ozone formation is to reduce the emissions of anthropogenic VOCs and NOx. The vertical distribution of tropospheric ozone was investigated using differential absorption lidar (DIAL). The results show that ozone concentrations decreased with the elevation of altitudes over Lhasa. The vertical distribution showed clear diurnal trends and that a high ozone concentration appeared at night because of the afternoon’s accumulated O3 generated by photochemical reactions. Ozone in Lhasa is mainly distributed between 0.4 km and 0.6 km. Local generation, overnight accumulation, and NOx titration were identified as three ozone distribution modes. This work helps to understand ozone formation and distribution in the Tibetan Plateau. Full article
Show Figures

Figure 1

13 pages, 473 KiB  
Article
Characterization of VOCs Emitted by Foliage of Grapevine cv. Isabella for Prospecting Innovative Cropping Systems
by Arleen Rodríguez-Declet, Antonio Castro-Marín, Luca Moretti Conti, Alessandra Lombini, Fabio Chinnici and Adamo Domenico Rombolà
Agronomy 2022, 12(2), 272; https://doi.org/10.3390/agronomy12020272 - 21 Jan 2022
Cited by 2 | Viewed by 4383
Abstract
Volatile organic compounds play an important role in communication within plants as well as with other organisms. In this work we identified the volatile organic compounds (VOCs) emitted from the foliage of the grapevine cv. Isabella, a largely known hybrid of Vitis vinifera [...] Read more.
Volatile organic compounds play an important role in communication within plants as well as with other organisms. In this work we identified the volatile organic compounds (VOCs) emitted from the foliage of the grapevine cv. Isabella, a largely known hybrid of Vitis vinifera × Vitis labrusca. Our data show 25 VOCs emitted by cv. Isabella. Different compound classes were found, including alcohols, hydrocarbons, esters, terpenes, ketones, and a green leaf volatile (GLV). The study highlighted differences between volatile profiles for diurnal and nocturnal treatments. The compounds: trans-3-dodecene, 5,5 dibutylnonane, ethyl 2-methyllactate, 2-hexanol, 3-ethyl-2-heptanol, 3-nonanol, and 2-nonanol, have not been previously reported for Vitis vinifera foliage. Notably, eight compounds emitted by cv. Isabella, 1-heptanol, 1-octanol, 2-hexanol, 2-nonanone, β-pinene, camphene, cis-hexenyl acetate, and phenethyl alcohol, are of relevant interest for their role in plant defense. New knowledge on the emission of these compounds in cv. Isabella can help to understand the mechanisms of pathogen tolerance of this genotype and could be an important step in prospecting innovative cropping systems. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

28 pages, 17307 KiB  
Article
Compact Thermal Imager (CTI) for Atmospheric Remote Sensing
by Dong L. Wu, Donald E. Jennings, Kwong-Kit Choi, Murzy D. Jhabvala, James A. Limbacher, Thomas Flatley, Kyu-Myong Kim, Anh T. La, Ross J. Salawitch, Luke D. Oman, Jie Gong, Thomas R. Holmes, Douglas C. Morton, Tilak Hewagama and Robert J. Swap
Remote Sens. 2021, 13(22), 4578; https://doi.org/10.3390/rs13224578 - 14 Nov 2021
Cited by 5 | Viewed by 4514
Abstract
The demonstration of a newly developed compact thermal imager (CTI) on the International Space Station (ISS) has provided not only a technology advancement but a rich high-resolution dataset on global clouds, atmospheric and land emissions. This study showed that the free-running CTI instrument [...] Read more.
The demonstration of a newly developed compact thermal imager (CTI) on the International Space Station (ISS) has provided not only a technology advancement but a rich high-resolution dataset on global clouds, atmospheric and land emissions. This study showed that the free-running CTI instrument could be calibrated to produce scientifically useful radiance imagery of the atmosphere, clouds, and surfaces with a vertical resolution of ~460 m at limb and a horizontal resolution of ~80 m at nadir. The new detector demonstrated an excellent sensitivity to detect the weak limb radiance perturbations modulated by small-scale atmospheric gravity waves. The CTI’s high-resolution imaging was used to infer vertical cloud temperature profiles from a side-viewing geometry. For nadir imaging, the combined high-resolution and high-sensitivity capabilities allowed the CTI to better separate cloud and surface emissions, including those in the planetary boundary layer (PBL) that had small contrast against the background surface. Finally, based on the ISS’s orbit, the stable detector performance and robust calibration algorithm produced valuable diurnal observations of cloud and surface emissions with respect to solar local time during May–October 2019, when the CTI had nearly continuous operation. Full article
Show Figures

Figure 1

23 pages, 5721 KiB  
Article
Observations by Ground-Based MAX-DOAS of the Vertical Characters of Winter Pollution and the Influencing Factors of HONO Generation in Shanghai, China
by Shiqi Xu, Shanshan Wang, Men Xia, Hua Lin, Chengzhi Xing, Xiangguang Ji, Wenjing Su, Wei Tan, Cheng Liu and Qihou Hu
Remote Sens. 2021, 13(17), 3518; https://doi.org/10.3390/rs13173518 - 4 Sep 2021
Cited by 12 | Viewed by 3694
Abstract
Analyzing vertical distribution characters of air pollutants is conducive to study the mechanisms under polluted atmospheric conditions. Nitrous acid (HONO) is a kind of crucial species in photochemical cycles. Exploring the influence and sources of HONO in air pollution at different altitudes offers [...] Read more.
Analyzing vertical distribution characters of air pollutants is conducive to study the mechanisms under polluted atmospheric conditions. Nitrous acid (HONO) is a kind of crucial species in photochemical cycles. Exploring the influence and sources of HONO in air pollution at different altitudes offers some insights into the research of tropospheric oxidation chemistry processes. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were conducted in Shanghai, China, from December 2017 to March 2018 to investigate vertical distributions and diurnal variations of trace gases (NO2, HONO, HCHO, SO2, and water vapor) and aerosol extinction coefficient in the boundary layer. Aerosol and NO2 showed decreasing profile exponentially, SO2 and HCHO concentrations were observed relatively high values in the middle layer. SO2 was caused by industrial emissions, while HCHO was from secondary sources. As for HONO, below 0.82 km, the heterogeneous reactions of NO2 impacted on forming HONO, while in the upper layers, vertical diffusion might be the dominant source. The contribution of OH production from HONO photolysis at different altitudes was mainly controlled by the concentration of HONO. MAX-DOAS measurements characterize the vertical structure of air pollutants in Shanghai and provide further understanding for HONO formation, which can help deploy advanced measurement platforms of regional air pollution over eastern China. Full article
(This article belongs to the Special Issue Optical and Laser Remote Sensing of Atmospheric Composition)
Show Figures

Graphical abstract

29 pages, 1931 KiB  
Article
The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 1. Development
by Dennis Piontek, Luca Bugliaro, Marius Schmidl, Daniel K. Zhou and Christiane Voigt
Remote Sens. 2021, 13(16), 3112; https://doi.org/10.3390/rs13163112 - 6 Aug 2021
Cited by 10 | Viewed by 4006
Abstract
Volcanic ash clouds are a threat to air traffic security and, thus, can have significant societal and financial impact. Therefore, the detection and monitoring of volcanic ash clouds to enhance the safety of air traffic is of central importance. This work presents the [...] Read more.
Volcanic ash clouds are a threat to air traffic security and, thus, can have significant societal and financial impact. Therefore, the detection and monitoring of volcanic ash clouds to enhance the safety of air traffic is of central importance. This work presents the development of the new retrieval algorithm VACOS (Volcanic Ash Cloud properties Obtained from SEVIRI) which is based on artificial neural networks, the thermal channels of the geostationary sensor MSG/SEVIRI and auxiliary data from a numerical weather prediction model. It derives a pixel classification as well as cloud top height, effective particle radius and, indirectly, the mass column concentration of volcanic ash clouds during day and night. A large set of realistic one-dimensional radiative transfer calculations for typical atmospheric conditions with and without generic volcanic ash clouds is performed to create the training dataset. The atmospheric states are derived from ECMWF data to cover the typical diurnal, annual and interannual variability. The dependence of the surface emissivity on surface type and viewing zenith angle is considered. An extensive dataset of volcanic ash optical properties is used, derived for a wide range of microphysical properties and refractive indices of various petrological compositions, including different silica contents and glass-to-crystal ratios; this constitutes a major innovation of this retrieval. The resulting ash-free radiative transfer calculations at a specific time compare well with corresponding SEVIRI measurements, considering the individual pixel deviations as well as the overall brightness temperature distributions. Atmospheric gas profiles and sea surface emissivities are reproduced with a high agreement, whereas cloudy cases can show large deviations on a single pixel basis (with 95th percentiles of the absolute deviations > 30 K), mostly due to different cloud properties in model and reality. Land surfaces lead to large deviations for both the single pixel comparison (with median absolute deviations > 3 K) and more importantly the brightness temperature distributions, most likely due to imprecise skin temperatures. The new method enables volcanic ash-related scientific investigations as well as aviation security-related applications. Full article
Show Figures

Graphical abstract

14 pages, 3004 KiB  
Article
Diurnal Cycle of Passive Microwave Brightness Temperatures over Land at a Global Scale
by Zahra Sharifnezhad, Hamid Norouzi, Satya Prakash, Reginald Blake and Reza Khanbilvardi
Remote Sens. 2021, 13(4), 817; https://doi.org/10.3390/rs13040817 - 23 Feb 2021
Cited by 6 | Viewed by 3926
Abstract
Satellite-borne passive microwave radiometers provide brightness temperature (TB) measurements in a large spectral range which includes a number of frequency channels and generally two polarizations: horizontal and vertical. These TBs are widely used to retrieve several atmospheric and surface variables and parameters such [...] Read more.
Satellite-borne passive microwave radiometers provide brightness temperature (TB) measurements in a large spectral range which includes a number of frequency channels and generally two polarizations: horizontal and vertical. These TBs are widely used to retrieve several atmospheric and surface variables and parameters such as precipitation, soil moisture, water vapor, air temperature profile, and land surface emissivity. Since TBs are measured at different microwave frequencies with various instruments and at various incidence angles, spatial resolutions, and radiometric characteristics, a mere direct integration of them from different microwave sensors would not necessarily provide consistency. However, when appropriately harmonized, they can provide a complete dataset to estimate the diurnal cycle. This study first constructs the diurnal cycle of land TBs using the non-sun-synchronous Global Precipitation Measurement (GPM) Microwave Imager (GMI) observations by utilizing a cubic spline fit. The acquisition times of GMI vary from day to day and, therefore, the shape (amplitude and phase) of the diurnal cycle for each month is obtained by merging several days of measurements. This diurnal pattern is used as a point of reference when intercalibrated TBs from other passive microwave sensors with daily fixed acquisition times (e.g., Special Sensor Microwave Imager/Sounder, and Advanced Microwave Scanning Radiometer 2) are used to modify and tune the monthly diurnal cycle to daily diurnal cycle at a global scale. Since the GMI does not cover polar regions, the proposed method estimates a consistent diurnal cycle of land TBs at global scale. Results show that the shape and peak of the constructed TB diurnal cycle is approximately similar to the diurnal cycle of land surface temperature. The diurnal brightness temperature range for different land cover types has also been explored using the derived diurnal cycle of TBs. In general, a large diurnal TB range of more than 15 K has been observed for the grassland, shrubland, and tundra land cover types, whereas it is less than 5K over forests. Furthermore, seasonal variations in the diurnal TB range for different land cover types show a more consistent result over the Southern Hemisphere than over the Northern Hemisphere. The calibrated TB diurnal cycle may then be used to consistently estimate the diurnal cycle of land surface emissivity. Moreover, since changes in land surface emissivity are related to moisture change and freeze–thaw (FT) transitions in high-latitude regions, the results of this study enhance temporal detection of FT state, particularly during the transition times when multiple FT changes may occur within a day. Full article
Show Figures

Graphical abstract

17 pages, 2392 KiB  
Article
Spatial Distribution, Source Apportionment, Ozone Formation Potential, and Health Risks of Volatile Organic Compounds over a Typical Central Plain City in China
by Kun He, Zhenxing Shen, Jian Sun, Yali Lei, Yue Zhang and Xin Wang
Atmosphere 2020, 11(12), 1365; https://doi.org/10.3390/atmos11121365 - 16 Dec 2020
Cited by 9 | Viewed by 3413
Abstract
The profiles, contributions to ozone formation, and associated health risks of 56 volatile organic compounds (VOCs) species were investigated using high time resolution observations from photochemical assessment monitoring stations (PAMs) in Luoyang, China. The daily averaged concentration of total VOCs (TVOCs) was 21.66 [...] Read more.
The profiles, contributions to ozone formation, and associated health risks of 56 volatile organic compounds (VOCs) species were investigated using high time resolution observations from photochemical assessment monitoring stations (PAMs) in Luoyang, China. The daily averaged concentration of total VOCs (TVOCs) was 21.66 ± 10.34 ppbv in urban areas, 14.45 ± 7.40 ppbv in suburbs, and 37.58 ± 13.99 ppbv in an industrial zone. Overall, the VOCs levels in these nine sites followed a decreasing sequence of alkanes > aromatics > alkenes > alkyne. Diurnal variations in VOCs exhibited two peaks at 8:00–9:00 and 19:00–20:00, with one valley at 23:00–24:00. Source apportionment indicated that vehicle and industrial emissions were the dominant sources of VOCs in urban and suburban sites. The industrial site displayed extreme levels, with contributions from petrochemical-related sources of up to 38.3%. Alkenes and aromatics displayed the highest ozone formation potentials because of their high photochemical reactivity. Cancer and noncancer risks in the industrial site were higher than those in the urban and suburban areas, and USEPA possible risk thresholds were reached in the industrial site, indicating PAMs VOC–related health problems cannot be ignored. Therefore, vehicle and industrial emissions should be prioritized when considering VOCs and O3 control strategies in Luoyang. Full article
Show Figures

Figure 1

12 pages, 1619 KiB  
Article
Concentrations and Emissions of Ammonia from Different Laying Hen Production Systems of Conventional Cage, Aviary and Natural Mating Colony Cage in North China Plain
by Yu Liu, Guoqiang Zhang, Li Rong, Zongyang Li, Shaojie Wang and Chaoyuan Wang
Appl. Sci. 2020, 10(19), 6820; https://doi.org/10.3390/app10196820 - 29 Sep 2020
Cited by 2 | Viewed by 2483
Abstract
Ammonia (NH3) concentrations in summer were continuously monitored from three typical laying hen houses of CC (conventional cage), AV (aviary), and NM (natural mating colony cage) with manure belt systems in North China Plain to quantify their emission levels, to characterize [...] Read more.
Ammonia (NH3) concentrations in summer were continuously monitored from three typical laying hen houses of CC (conventional cage), AV (aviary), and NM (natural mating colony cage) with manure belt systems in North China Plain to quantify their emission levels, to characterize the diurnal variations, and to investigate the impact of environmental factors. Diurnal profiles were acquired by hourly measurements, and the effect of environmental factors on NH3 emissions was presented by correlation analysis. The results showed that house-level NH3 emissions in summer were the highest in the NM at 27.16 ± 13.12 mg/h·hen, followed by the AV at 4.08 ± 3.23 mg/h·hen and the CC at 3.43 ± 1.46 mg/h·hen within a complete manure removal cycle, which were significantly affected by manure accumulation inside the houses. After manure removal, NH3 concentrations were reduced by 64.29%, 28.57%, and 35.71% in CC, AV, and NM, and consequently their emissions were lowered by 67.12%, 71.36%, and 55.69%, respectively. It was suggested that the manure should not be stored on the belt for more than 4 days in NM. A positive impact of indoor and outdoor temperature and ventilation rate on NH3 emissions from AV and NM were found, while indoor and outdoor relative humidity had a negative effect. However, the above five factors did not significantly affect the emissions from CC. Full article
Show Figures

Figure 1

17 pages, 2401 KiB  
Article
Measuring the Vertical Profiles of Aerosol Extinction in the Lower Troposphere by MAX-DOAS at a Rural Site in the North China Plain
by Siyang Cheng, Junli Jin, Jianzhong Ma, Xiaobin Xu, Liang Ran, Zhiqiang Ma, Junming Chen, Junrang Guo, Peng Yang, Yang Wang and Thomas Wagner
Atmosphere 2020, 11(10), 1037; https://doi.org/10.3390/atmos11101037 - 27 Sep 2020
Cited by 5 | Viewed by 3211
Abstract
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed during the summer (13 June–20 August) of 2014 at a rural site in North China Plain. The vertical profiles of aerosol extinction (AE) in the lower troposphere were retrieved to analyze the temporal [...] Read more.
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed during the summer (13 June–20 August) of 2014 at a rural site in North China Plain. The vertical profiles of aerosol extinction (AE) in the lower troposphere were retrieved to analyze the temporal variations of AE profiles, near-surface AE, and aerosol optical depth (AOD). The average AOD and near-surface AE over the period of study were 0.51 ± 0.26 and 0.33 ± 0.18 km−1 during the effective observation period, respectively. High AE events and elevated AE layers were identified based on the time series of hourly AE profiles, near-surface AEs and AODs. It is found that in addition to the planetary boundary layer height (PBLH) and relative humidity (RH), the variations in the wind field have large impacts on the near-surface AE, AOD, and AE profile. Among 16 wind sectors, higher AOD or AE occur mostly in the directions of the cities upstream. The diurnal variations of the AE profiles, AODs and near-surface AEs are significant and influenced mainly by the source emissions, PBLH, and RH. The AE profile shape from MAX-DOAS measurement is generally in agreement with that from light detection and ranging (lidar) observations, although the AE absolute levels are different. Overall, ground-based MAX-DOAS can serve as a supplement to measure the AE vertical profiles in the lower troposphere. Full article
(This article belongs to the Special Issue Tropospheric Aerosols: Observation, Modeling, and Assimilation)
Show Figures

Graphical abstract

11 pages, 1884 KiB  
Article
Apportioning Smoke Impacts of 2018 Wildfires on Eastern Sierra Nevada Sites
by Sean Mueller, Leland Tarnay, Susan O’Neill and Sean Raffuse
Atmosphere 2020, 11(9), 970; https://doi.org/10.3390/atmos11090970 - 11 Sep 2020
Cited by 9 | Viewed by 4442
Abstract
The summer of 2018 saw intense smoke impacts on the eastern side of the Sierra Nevada in California, which have been anecdotally ascribed to the closest wildfire, the Lions Fire. We examined the role of the Lions Fire and four other, simultaneous large [...] Read more.
The summer of 2018 saw intense smoke impacts on the eastern side of the Sierra Nevada in California, which have been anecdotally ascribed to the closest wildfire, the Lions Fire. We examined the role of the Lions Fire and four other, simultaneous large wildfires on smoke impacts across the Eastern Sierra. Our approach combined GOES-16 satellite data with fire activity, fuel loading, and fuel type, to allocate emissions diurnally per hour for each fire. To apportion smoke impacts at key monitoring sites, dispersion was modeled via the BlueSky framework, and daily averaged PM2.5 concentrations were estimated from 23 July to 29 August 2018. To estimate the relative impact of each contributing wildfire at six Eastern Sierra monitoring sites, we layered the multiple modeled impacts, calculated their proportion from each fire and at each site, and used that proportion to apportion smoke from each fire’s monitored impact. The combined smoke concentration due to multiple large, concurrent, but more distant fires was on many days substantially higher than the concentration attributable to the Lions Fire, which was much closer to the air quality monitoring sites. These daily apportionments provide an objective basis for understanding the extent to which local versus regional fire affected Eastern Sierra Nevada air quality. The results corroborate previous case studies showing that slower-growing fires, when and where managed for resource objectives, can create more transient and manageable air quality impacts relative to larger fires where such management strategies are not used or feasible. Full article
Show Figures

Figure 1

17 pages, 3731 KiB  
Article
Boundary Layer Height as Estimated from Radar Wind Profilers in Four Cities in China: Relative Contributions from Aerosols and Surface Features
by Boming Liu, Jianping Guo, Wei Gong, Yifan Shi and Shikuan Jin
Remote Sens. 2020, 12(10), 1657; https://doi.org/10.3390/rs12101657 - 21 May 2020
Cited by 14 | Viewed by 4936
Abstract
The turbulent mixing and dispersion of air pollutants is strongly dependent on the vertical structure of the wind, which constitutes one of the major challenges affecting the determination of boundary layer height (BLH). Here, an adaptive method is proposed to estimate BLH from [...] Read more.
The turbulent mixing and dispersion of air pollutants is strongly dependent on the vertical structure of the wind, which constitutes one of the major challenges affecting the determination of boundary layer height (BLH). Here, an adaptive method is proposed to estimate BLH from measurements of radar wind profilers (RWPs) in Beijing (BJ), Nanjing (NJ), Chongqing (CQ), and Wulumuqi (WQ), China, during the summer of 2019. Validation against simultaneous BLH estimates from radiosondes (RSs) yielded a correlation coefficient of 0.66, indicating that the method can be used to derive BLH from RWPs. Diurnal variations of BLH and the ventilation coefficient (VC) at four sites were then examined. A distinct diurnal cycle of BLH was observed over all four cities; BLH gradually increased from sunset, reached a maximum in the afternoon, and then dropped sharply after sunset. The maximum hourly average BLH (1.426 ± 0.46 km) occurred in WQ, consistent with the maximum hourly mean VC larger than 5000 m2/s observed there. By comparison, the diurnal variation of VC was not strong, with values ranging between 2000 and 3000 m2/s, likely owing to the high-humidity environment. Furthermore, surface sensible heat flux, latent heat flux, and dry mass of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) concentrations were found to somehow affect the vertical structure of wind and thermodynamic features, leading to a difference between RS and RWP BLH estimates. This indicates that the atmospheric environment can affect BLH estimates using RWP data. The BLH results from RWPs were better in some specific cases. These findings show great potential of RWP measurements in air quality research, and will provide key data references for policy-making toward emission reductions. Full article
Show Figures

Graphical abstract

21 pages, 6095 KiB  
Article
Probabilistic Health Risk Assessment of Vehicular Emissions as an Urban Health Indicator in Dhaka City
by Asif Iqbal, Shirina Afroze and Md. Mizanur Rahman
Sustainability 2019, 11(22), 6427; https://doi.org/10.3390/su11226427 - 15 Nov 2019
Cited by 14 | Viewed by 3146
Abstract
Emissions modelling is an important tool for assessing the urban health status of any city, but often the assessments are affected by the uncertainty of the data used for the modelling. Therefore, a Monte Carlo simulation technique was used for a probabilistic emissions [...] Read more.
Emissions modelling is an important tool for assessing the urban health status of any city, but often the assessments are affected by the uncertainty of the data used for the modelling. Therefore, a Monte Carlo simulation technique was used for a probabilistic emissions modelling of Dhaka City by simulating 20,000 scenarios for the highest and lowest values of traffic volume and speed profiles for each of the major road links. Only nitrogen oxide (NOx) emissions from on-road vehicles were considered, as vehicular sources are major contributors. Each dataset included two peak periods and an offpeak period of the day to cover the diurnal variation within each road link. Using the probability of the magnitude of emissions along with the corresponding health risk, a series of spatial urban health risk severity scenarios was generated for 2018 and 2024, suggesting that transportation and environmental planning is required for urban sustainability. Full article
(This article belongs to the Special Issue Urban Sustainability: Pavement Design, Construction and Environment)
Show Figures

Figure 1

Back to TopTop