Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = disulfide catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 567 KiB  
Article
A New Method of Synthesis of Epalrestat
by Zhenliang Pan, Lulu Wu, Liangxin Fan, Wankai An, Guoyu Yang and Cuilian Xu
Reactions 2025, 6(2), 37; https://doi.org/10.3390/reactions6020037 - 18 Jun 2025
Viewed by 275
Abstract
A new synthetic route of Epalrestat was proposed in this study. The new route abandons the raw material carbon disulfide, which is highly harmful to the environment, and optimizes the key steps in the typical synthesis strategy. Epalrestat was prepared through a three-step [...] Read more.
A new synthetic route of Epalrestat was proposed in this study. The new route abandons the raw material carbon disulfide, which is highly harmful to the environment, and optimizes the key steps in the typical synthesis strategy. Epalrestat was prepared through a three-step process, and the reaction products were characterized. The optimum conditions for the synthesis of the substituted rhodanine intermediate are as follows: under the catalysis of 2.0 equivalents of 25%KOH, ethanol was used as the solvent, and the reaction was carried out at 40 °C for 1 h. The optimal conditions for the synthesis of Epalrestat are as follows: under the catalysis of 2.0 equivalents of 50%KOH, ethanol was used as the solvent, and the reaction was carried out at 40 °C for 5 h. Full article
Show Figures

Graphical abstract

13 pages, 3815 KiB  
Article
Optimizing Crystalline MoS2 Growth on Technologically Relevant Platinum Substrates Using Ionized Jet Deposition: Interface Interactions and Structural Insights
by Cristian Tomasi Cebotari, Christos Gatsios, Andrea Pedrielli, Lucia Nasi, Francesca Rossi, Andrea Chiappini, Riccardo Ceccato, Roberto Verucchi, Marco V. Nardi and Melanie Timpel
Surfaces 2025, 8(2), 38; https://doi.org/10.3390/surfaces8020038 - 6 Jun 2025
Viewed by 471
Abstract
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This [...] Read more.
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This study investigates the growth and properties of MoS2 thin films on Pt substrates using ionized jet deposition, a versatile, low-cost vacuum deposition technique. We explore the effects of the roughness of Pt substrates and self-heating during deposition on the chemical composition, structure, and strain of MoS2 films. By optimizing the deposition system to achieve crystalline MoS2 at room temperature, we compare as-deposited and annealed films. The results reveal that as-deposited MoS2 films are initially amorphous and conform to the Pt substrate roughness, but crystalline growth is reached when the sample holder is sufficiently heated by the plasma. Further post-annealing at 270 °C enhances crystallinity and reduces sulfur-related defects. We also identify a change in the MoS2–Pt interface properties, with a reduction in Pt–S interactions after annealing. Our findings contribute to the understanding of MoS2 growth on Pt and provide insights for optimizing MoS2-based devices in catalysis and electronics. Full article
Show Figures

Figure 1

12 pages, 2821 KiB  
Article
Increasing the Thermostability of Luciferase from Antarctic Krill by Rational Design for Biotechnological Applications
by Yuqi Ma, Yuan Zheng, Xiaofeng Ji and Jun Sheng
Appl. Sci. 2025, 15(7), 3563; https://doi.org/10.3390/app15073563 - 25 Mar 2025
Viewed by 403
Abstract
The first luciferase from Antarctic krill (LAK) was cloned and successfully expressed in Escherichia coli BL21(DE3). LAK exhibits the unique ability to emit bright violet fluorescence at an emission wavelength of 350 nm, which represents the lowest reported bioluminescence wavelength for luciferases. However, [...] Read more.
The first luciferase from Antarctic krill (LAK) was cloned and successfully expressed in Escherichia coli BL21(DE3). LAK exhibits the unique ability to emit bright violet fluorescence at an emission wavelength of 350 nm, which represents the lowest reported bioluminescence wavelength for luciferases. However, its low thermal stability poses a limitation to its broader application. In this study, we employed a rational design approach to introduce three pairs of artificial disulfide bonds into LAK. Circular dichroism (CD) analysis revealed that the introduction of artificial disulfide bonds resulted in a significant increase in the secondary structural content of α-helices and β-sheets compared to the wild-type (WT) enzyme. However, these modifications did not influence the emission spectrum. Among the resultant mutant strains, two exhibited markedly enhanced thermal stability. Notably, Mut2 demonstrated a 6.18-fold increase in half-life at 50 °C. Molecular docking studies indicated that D-fluorescein can form additional hydrogen bonds with surrounding amino acid residues (A323, T347, and K534). The docking energies between the enzyme and substrate for WT and Mut2 were −19.5 kcal/mol and −23.4 kcal/mol, respectively, thereby establishing strong interactions within the catalytic pocket region. These interactions likely contribute to a 2.92-fold improvement in substrate affinity, as evidenced by a reduced Michaelis–Menten constant (Km). Our thermal stability and catalytic activity analyses revealed that the linker region between the N- and C-domains plays a crucial role in the overall stability of the enzyme. Furthermore, the C-terminus of LAK does not participate in substrate-binding and catalysis; its local excessive rigidity was found to restrict the release of the AMP product, thereby negatively impacting catalytic activity. These findings offer new insights into the mutagenesis of luciferases and pave the way for the further optimization of LAK for various biotechnological applications. Full article
Show Figures

Figure 1

16 pages, 3977 KiB  
Article
Comparing Methods for Pyrite Surface Area Measurement Through Optical, Aqueous, and Gaseous Approaches
by Samantha Macchi, Martin Nemer, Melissa M. Mills, Melissa L. Meyerson, Hans W. Papenguth, John H. Taphouse and Noah B. Schorr
Sci 2025, 7(1), 8; https://doi.org/10.3390/sci7010008 - 13 Jan 2025
Viewed by 1013
Abstract
Accurate surface area data are imperative for the development of meaningful property–function relationships. Nitrogen gas (N2) adsorption/Brunauer–Emmet–Teller (BET) surface area analysis is a widely used technique for surface area characterization of materials because of straightforward sample preparation, automation, and low cost. [...] Read more.
Accurate surface area data are imperative for the development of meaningful property–function relationships. Nitrogen gas (N2) adsorption/Brunauer–Emmet–Teller (BET) surface area analysis is a widely used technique for surface area characterization of materials because of straightforward sample preparation, automation, and low cost. However, iron disulfide (FeS2) does not typically exhibit quantifiable N2 monolayer formation in BET measurements. FeS2 has been applied in fields such as batteries, catalysis, and adsorption, all of which would benefit from techniques that reliably assess surface area (SSA) of the active material. To address this, we evaluated FeS2 samples by combining alternative surface characterization techniques to quantify SSA. Ten different FeS2 samples from various manufacturers are characterized via BET, laser diffraction, scanning electron microscopy, non-contact profilometry, and liquid dye adsorption. Compared to BET, which resulted in a wide range of SSAs between 0.049–1.213 m2 g−1, liquid dye adsorption was found to be accurate for pyrite samples at low sample masses (<50 mg), with SSA values between 0.99–10.20 m2 g−1. Using an optical characterization approach, which combined particle size and surface roughness data, we readily estimated SSA of the particles and found these values correlated linearly with liquid adsorption but not BET values. This work serves to help researchers choose a more fitting method for examining low surface area materials like FeS2 and can easily be applied to other minerals for quantitative and qualitative surface area comparisons. Full article
Show Figures

Figure 1

47 pages, 3437 KiB  
Review
Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction
by Charlie Boutin, Camille Clément and Jean Rivoal
Int. J. Mol. Sci. 2024, 25(18), 9845; https://doi.org/10.3390/ijms25189845 - 12 Sep 2024
Cited by 6 | Viewed by 3377
Abstract
Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which [...] Read more.
Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which are mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of metabolism and signal transduction. In this review, we discuss Cys post-translational modifications (PTMs) and their role in plant metabolism and signal transduction. These modifications include the oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and localization are presented to highlight their importance in the regulation of plant metabolic and signaling pathways. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

8 pages, 3217 KiB  
Article
Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance
by Qingling Jia, Qi Wang, Lingshuai Meng, Yujie Zhao, Jing Xu, Meng Sun, Zijian Li, Han Li, Huiyu Chen and Yongxing Zhang
Nanomaterials 2024, 14(11), 968; https://doi.org/10.3390/nano14110968 - 2 Jun 2024
Cited by 8 | Viewed by 1746
Abstract
Molybdenum disulfide (MoS2), a typical layered material, has important applications in various fields, such as optoelectronics, catalysis, electronic devices, sensors, and supercapacitors. Extensive research has been carried out on few-layered MoS2 in the field of electrochemistry due to its large [...] Read more.
Molybdenum disulfide (MoS2), a typical layered material, has important applications in various fields, such as optoelectronics, catalysis, electronic devices, sensors, and supercapacitors. Extensive research has been carried out on few-layered MoS2 in the field of electrochemistry due to its large specific surface area, abundant active sites and short electron transport path. However, the preparation of few-layered MoS2 is a significant challenge. This work presents a simple one-pot hydrothermal method for synthesizing few-layered MoS2. Furthermore, it investigates the exfoliation effect of different amounts of sodium borohydride (NaBH4) as a stripping agent on the layer number of MoS2. Na+ ions, as alkali metal ions, can intercalate between layers to achieve the purpose of exfoliating MoS2. Additionally, NaBH4 exhibits reducibility, which can effectively promote the formation of the metallic phase of MoS2. Few-layered MoS2, as an electrode for supercapacitor, possesses a wide potential window of 0.9 V, and a high specific capacitance of 150 F g−1 at 1 A g−1. This work provides a facile method to prepare few-layered two-dimensional materials for high electrochemical performance. Full article
(This article belongs to the Special Issue Nanomaterials for Supercapacitors)
Show Figures

Figure 1

14 pages, 2415 KiB  
Article
The Interaction and Effect of a Small MitoBlock Library as Inhibitor of ALR Protein–Protein Interaction Pathway
by Riccardo Muzzioli and Angelo Gallo
Int. J. Mol. Sci. 2024, 25(2), 1174; https://doi.org/10.3390/ijms25021174 - 18 Jan 2024
Cited by 1 | Viewed by 1517
Abstract
MIA40 and ALR of the MIA pathway mediate the import of protein precursors that form disulfides into the mitochondrial intermembrane space. This import pathway is suggested to be a linear pathway in which MIA40 first binds to the precursor via a disulfide linkage [...] Read more.
MIA40 and ALR of the MIA pathway mediate the import of protein precursors that form disulfides into the mitochondrial intermembrane space. This import pathway is suggested to be a linear pathway in which MIA40 first binds to the precursor via a disulfide linkage and oxidizes it. Subsequently, ALR re-oxidizes MIA40 and then ALR transfers electrons to terminal electron acceptors. However, the precise mechanism by which ALR and MIA40 coordinate translocation is unknown. With a collection of small molecule modulators (MB-5 to MB-9 and MB-13) that inhibit ALR activity, we characterized the import mechanism in mitochondria. NMR studies show that most of the compounds bind to a similar region in ALR. Mechanistic studies with small molecules demonstrate that treatment with compound MB-6 locks the precursor in a state bound to MIA40, blocking re-oxidation of MIA40 by ALR. Thus, small molecules that target a similar region in ALR alter the dynamics of the MIA import pathway differently, resulting in a set of probes that are useful for studying the catalysis of the redox-regulated import pathway in model systems. Full article
(This article belongs to the Special Issue Application of NMR Spectroscopy in Biomolecules)
Show Figures

Figure 1

14 pages, 4801 KiB  
Article
Biomimetic Engineering Preparation of High Mechanical and Flame Retardant Elastomers by Introducing Sacrificial Bonds in Covalently Cross-Linked Chloroprene Rubber
by Jianliang Jiang, Junxue Zhai, Yiqun Zhang and Yakai Feng
Polymers 2023, 15(16), 3367; https://doi.org/10.3390/polym15163367 - 10 Aug 2023
Cited by 1 | Viewed by 1530
Abstract
Designing and preparing chloroprene rubber (CR) with robust mechanical and excellent flame retardancy performance are challenging. In this work, a biomimetic design for high mechanical and flame-retardant CR by synchronous introducing of sacrificial bond (disulfide) crosslinked networks into the chemically crosslinked network is [...] Read more.
Designing and preparing chloroprene rubber (CR) with robust mechanical and excellent flame retardancy performance are challenging. In this work, a biomimetic design for high mechanical and flame-retardant CR by synchronous introducing of sacrificial bond (disulfide) crosslinked networks into the chemically crosslinked network is developed based on two new types of vulcanization reactions. Under the catalysis of Mg(OH)2, the dynamic bond cross-linked network is formed by the reaction between the amino group of cystamine dihydrochloride (CA) and the allylic chlorine group of CR, while the covalently crosslinked network is synchronously formed by two types of nucleophilic substitution reactions in series between Mg(OH)2  and CR. The disulfide bonds serve as sacrificial bonds that preferentially rupture prior to the covalent network, dissipating energy and facilitating rubber chain orientation, so a CA-0.5 sample (CR/CA(0.5 wt%)/Mg(OH)2 (10 wt%) with dual crosslinked networks exhibits excellent mechanical performance, and the tensile strength and elongation at the break of CA-0.5 are 1.41 times and 1.17 times greater than those of the CR-0 sample with covalently crosslinked networks, respectively. Moreover, the addition of Mg(OH)2 significantly improves the flame retardancy of CR. Full article
Show Figures

Figure 1

17 pages, 5911 KiB  
Article
Boosting the Catalytic Performance of AuAg Alloyed Nanoparticles Grafted on MoS2 Nanoflowers through NIR-Induced Light-to-Thermal Energy Conversion
by Sara Rodríguez-da-Silva, Abdel Ghafour El-Hachimi, José M. López-de-Luzuriaga, María Rodríguez-Castillo and Miguel Monge
Nanomaterials 2023, 13(6), 1074; https://doi.org/10.3390/nano13061074 - 16 Mar 2023
Cited by 5 | Viewed by 2457
Abstract
MoS2 nanoflowers (NFs) obtained through a hydrothermal approach were used as the substrate for the deposition of tiny spherical bimetallic AuAg or monometallic Au nanoparticles (NPs), leading to novel photothermal-assisted catalysts with different hybrid nanostructures and showing improved catalytic performance under NIR [...] Read more.
MoS2 nanoflowers (NFs) obtained through a hydrothermal approach were used as the substrate for the deposition of tiny spherical bimetallic AuAg or monometallic Au nanoparticles (NPs), leading to novel photothermal-assisted catalysts with different hybrid nanostructures and showing improved catalytic performance under NIR laser irradiation. The catalytic reduction of pollutant 4-nitrophenol (4-NF) to the valuable product 4-aminophenol (4-AF) was evaluated. The hydrothermal synthesis of MoS2 NFs provides a material with a broad absorption in the Vis-NIR region of the electromagnetic spectrum. The in situ grafting of alloyed AuAg and Au NPs of very small size (2.0–2.5 nm) was possible through the decomposition of organometallic complexes [Au2Ag2(C6F5)4(OEt2)2]n and [Au(C6F5)(tht)] (tht = tetrahydrothiophene) using triisopropilsilane as reducing agent, leading to nanohybrids 14. The new nanohybrid materials display photothermal properties arising from NIR light absorption of the MoS2 NFs component. The AuAg-MoS2 nanohybrid 2 showed excellent photothermal-assisted catalytic activity for the reduction of 4-NF, which is better than that of the monometallic Au-MoS2 nanohybrid 4. The obtained nanohybrids were characterised by transmission electron microscopy (TEM), High Angle Annular Dark Field—Scanning Transmission Electron Microscopy—Energy Dispersive X-ray Spectroscopy (HAADF-STEM-EDS), X-ray photoelectron spectroscopy and UV-Vis-NIR spectroscopy. Full article
(This article belongs to the Special Issue Synthesis of Nanocomposites and Catalysis Applications II)
Show Figures

Figure 1

13 pages, 12992 KiB  
Communication
Drone Delivery of Dehydro-Sulfurization Utilizing Doubly-Charged Negative Ions of Nanoscale Catalysts Inspired by the Biomimicry of Bee Species’ Bio-Catalysis of Pollen Conversion to Organic Honey
by Kelvin L. Suggs, Duminda K. Samarakoon and Alfred Z. Msezane
Hydrogen 2023, 4(1), 133-145; https://doi.org/10.3390/hydrogen4010009 - 2 Feb 2023
Viewed by 11649
Abstract
The sulfur dioxide (SO2) compound is a primary environmental pollutant worldwide, whereas elemental sulfur (S) is a global commodity possessing a variety of industrial as well as commercial functions. The chemical relationship between poisonous SO2 and commercially viable elemental S [...] Read more.
The sulfur dioxide (SO2) compound is a primary environmental pollutant worldwide, whereas elemental sulfur (S) is a global commodity possessing a variety of industrial as well as commercial functions. The chemical relationship between poisonous SO2 and commercially viable elemental S has motivated this investigation using the Density Functional Theory calculation of the relative transition state barriers for the two-step dehydro-sulfurization oxidation–reduction reaction. Additionally, doubly-charged nanoscale platelet molybdenum disulfide (MoS2), armchair (6,6) carbon nanotube, 28-atom graphene nanoflake (GR-28), and fullerene C-60 are utilized as catalysts. The optimal heterogeneous and homogeneous catalysis pathways of the two-step oxidation–reduction from SO2 to elemental S are further inspired by the biomimicry of the honeybee species’ multi-step bio-catalysis of pollen conversion to organic honey. Potential applications include environmental depollution, the mining of elemental sulfur, and the functionalization of novel technologies such as the recently patented aerial and amphibious LynchpinTM drones. Full article
Show Figures

Graphical abstract

12 pages, 6948 KiB  
Article
Transglutaminase Activity Is Conserved in Stratified Epithelia and Skin Appendages of Mammals and Birds
by Attila Placido Sachslehner, Marta Surbek, Bahar Golabi, Miriam Geiselhofer, Karin Jäger, Claudia Hess, Ulrike Kuchler, Reinhard Gruber and Leopold Eckhart
Int. J. Mol. Sci. 2023, 24(3), 2193; https://doi.org/10.3390/ijms24032193 - 22 Jan 2023
Cited by 14 | Viewed by 2613
Abstract
The cross-linking of structural proteins is critical for establishing the mechanical stability of the epithelial compartments of the skin and skin appendages. The introduction of isopeptide bonds between glutamine and lysine residues depends on catalysis by transglutaminases and represents the main protein cross-linking [...] Read more.
The cross-linking of structural proteins is critical for establishing the mechanical stability of the epithelial compartments of the skin and skin appendages. The introduction of isopeptide bonds between glutamine and lysine residues depends on catalysis by transglutaminases and represents the main protein cross-linking mechanism besides the formation of disulfide bonds. Here, we used a fluorescent labeling protocol to localize the activity of transglutaminases on thin sections of the integument and its appendages in mammals and birds. In human tissues, transglutaminase activity was detected in the granular layer of the epidermis, suprabasal layers of the gingival epithelium, the duct of sweat glands, hair follicles and the nail matrix. In the skin appendages of chickens, transglutaminase activity was present in the claw matrix, the feather follicle sheath, the feather sheath and in differentiating keratinocytes of feather barb ridges. During chicken embryogenesis, active transglutaminase was found in the cornifying epidermis, the periderm and the subperiderm. Transglutaminase activity was also detected in the filiform papillae on the tongue of mice and in conical papillae on the tongue of chickens. In summary, our study reveals that transglutaminase activities are widely distributed in integumentary structures and suggests that transglutamination contributes to the cornification of hard skin appendages such as nails and feathers. Full article
Show Figures

Figure 1

13 pages, 4443 KiB  
Article
Performance and Mechanism of Hydrothermally Synthesized MoS2 on Copper Dissolution
by Hao Lu, Fang Cao, Xiaoyu Huang and Honggang Yang
Catalysts 2023, 13(1), 147; https://doi.org/10.3390/catal13010147 - 9 Jan 2023
Cited by 2 | Viewed by 2453
Abstract
The recovery of copper from circuit boards is currently a hot topic. However, recycling copper from circuit boards economically and environmentally is still a considerable challenge. In this study, a simple hydrothermal method was used to synthesize MoS2 with nano-flower-like morphology using [...] Read more.
The recovery of copper from circuit boards is currently a hot topic. However, recycling copper from circuit boards economically and environmentally is still a considerable challenge. In this study, a simple hydrothermal method was used to synthesize MoS2 with nano-flower-like morphology using sodium molybdate dihydrate and thiourea as molybdenum and sulfur sources. The metal copper in the chip was successfully dissolved under the action of free radicals produced by ultrasound. The results show that under the catalytic action of hydrothermal synthesis MoS2, the concentration of Cu2+ dissolved by ultrasonic treatment for 10 h is 39.46 mg/L. In contrast, the concentration of Cu2+ dissolved by commercial MoS2 is only 2.20 mg/L under the same condition. The MoS2 is polarized by external mechanical forces and reacts with water to produce H+ and free electrons e, which can combine with O2 and OH to produce ·OH and ·O2 free radicals. Elemental Cu is converted to Cu2+ by the attack of these two free radicals. Full article
Show Figures

Figure 1

9 pages, 2380 KiB  
Article
O2 Carrier Myoglobin Also Exhibits β-Lactamase Activity That Is Regulated by the Heme Coordination State
by Shuai Tang, Ai-Qun Pan, Xiao-Juan Wang, Shu-Qin Gao, Xiang-Shi Tan and Ying-Wu Lin
Molecules 2022, 27(23), 8478; https://doi.org/10.3390/molecules27238478 - 2 Dec 2022
Cited by 1 | Viewed by 1593
Abstract
Heme proteins perform a variety of biological functions and also play significant roles in the field of bio-catalysis. The β-lactamase activity of heme proteins has rarely been reported. Herein, we found, for the first time, that myoglobin (Mb), an O2 carrier, also [...] Read more.
Heme proteins perform a variety of biological functions and also play significant roles in the field of bio-catalysis. The β-lactamase activity of heme proteins has rarely been reported. Herein, we found, for the first time, that myoglobin (Mb), an O2 carrier, also exhibits novel β-lactamase activity by catalyzing the hydrolysis of ampicillin. The catalytic proficiency ((kcat/KM)/kuncat) was determined to be 6.25 × 1010, which is much higher than the proficiency reported for designed metalloenzymes, although it is lower than that of natural β-lactamases. Moreover, we found that this activity could be regulated by an engineered disulfide bond, such as Cys46-Cys61 in F46C/L61C Mb or by the addition of imidazole to directly coordinate to the heme center. These results indicate that the heme active site is responsible for the β-lactamase activity of Mb. Therefore, the study suggests the potential of heme proteins acting as β-lactamases, which broadens the diversity of their catalytic functions. Full article
Show Figures

Figure 1

23 pages, 5501 KiB  
Review
Exfoliation of MoS2 Quantum Dots: Recent Progress and Challenges
by Luqman Ali, Fazle Subhan, Muhammad Ayaz, Syed Shams ul Hassan, Clare Chisu Byeon, Jong Su Kim and Simona Bungau
Nanomaterials 2022, 12(19), 3465; https://doi.org/10.3390/nano12193465 - 4 Oct 2022
Cited by 29 | Viewed by 5032
Abstract
Although, quantum dots (QDs) of two-dimensional (2D) molybdenum disulfide (MoS2) have shown great potential for various applications, such as sensing, catalysis, energy storage, and electronics. However, the lack of a simple, scalable, and inexpensive fabrication method for QDs is still a [...] Read more.
Although, quantum dots (QDs) of two-dimensional (2D) molybdenum disulfide (MoS2) have shown great potential for various applications, such as sensing, catalysis, energy storage, and electronics. However, the lack of a simple, scalable, and inexpensive fabrication method for QDs is still a challenge. To overcome this challenge, a lot of attention has been given to the fabrication of QDs, and several fabrication strategies have been established. These exfoliation processes are mainly divided into two categories, the ‘top-down’ and ‘bottom-up’ methods. In this review, we have discussed different top-down exfoliation methods used for the fabrication of MoS2 QDs and the advantages and limitations of these methods. A detailed description of the various properties of QDs is also presented. Full article
(This article belongs to the Special Issue Quantum Dots)
Show Figures

Figure 1

14 pages, 3023 KiB  
Article
Homocouplings of Sodium Arenesulfinates: Selective Access to Symmetric Diaryl Sulfides and Diaryl Disulfides
by Xin-Zhang Yu, Wen-Long Wei, Yu-Lan Niu, Xing Li, Ming Wang and Wen-Chao Gao
Molecules 2022, 27(19), 6232; https://doi.org/10.3390/molecules27196232 - 22 Sep 2022
Cited by 10 | Viewed by 2828
Abstract
Symmetrical diaryl sulfides and diaryl disulfides have been efficiently and selectively constructed via the homocoupling of sodium arenesulfinates. The selectivity of products relied on the different reaction systems: symmetrical diaryl sulfides were predominately obtained under the Pd(OAc)2 catalysis, whereas symmetrical diaryl sulfides [...] Read more.
Symmetrical diaryl sulfides and diaryl disulfides have been efficiently and selectively constructed via the homocoupling of sodium arenesulfinates. The selectivity of products relied on the different reaction systems: symmetrical diaryl sulfides were predominately obtained under the Pd(OAc)2 catalysis, whereas symmetrical diaryl sulfides were exclusively yielded in the presence of the reductive Fe/HCl system. Full article
(This article belongs to the Special Issue Catalysis for Green Chemistry)
Show Figures

Graphical abstract

Back to TopTop