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Abstract: The sulfur dioxide (SO,) compound is a primary environmental pollutant worldwide,
whereas elemental sulfur (S) is a global commodity possessing a variety of industrial as well as
commercial functions. The chemical relationship between poisonous SO, and commercially viable
elemental S has motivated this investigation using the Density Functional Theory calculation of the
relative transition state barriers for the two-step dehydro-sulfurization oxidation-reduction reaction.
Additionally, doubly-charged nanoscale platelet molybdenum disulfide (MoS;), armchair (6,6) carbon
nanotube, 28-atom graphene nanoflake (GR-28), and fullerene C-60 are utilized as catalysts. The
optimal heterogeneous and homogeneous catalysis pathways of the two-step oxidation-reduction
from SO, to elemental S are further inspired by the biomimicry of the honeybee species” multi-step
bio-catalysis of pollen conversion to organic honey. Potential applications include environmental
depollution, the mining of elemental sulfur, and the functionalization of novel technologies such as
the recently patented aerial and amphibious Lynchpin™ drones.

Keywords: fullerene; graphene; molybdenum disulfide; carbon nanotubes; catalysts; density functional
theory; enzymes; honeybee biomimicry; drones; depollution; doubly-charged negative ions

1. Introduction

Environmental depollution and mineral synthesis continue to be areas of international
interest, given the dynamics of an ever-changing analog-to-digital-to-cloud economy, de-
veloping and maintaining sustainable green industrial processes, and future pandemic
avoidance [1]. Specifically, elemental S synthesis and SO, reduction reactions remain inte-
gral to present and future commercial applications and adherence to clean environmental
protocols [2,3]. Herein, we use Density Functional Theory to investigate the two-step
dehydro-sulfurization reaction. The oxidation—reduction for this two-step reaction entails
increased water molecules between steps one and two, with the product of elemental S
remaining as the final solute and molecular water remaining as the solvent within the result-
ing solution. Therefore, the reaction can efficiently serve a two-fold function, namely as an
environmental cleaning agent, while simultaneously creating the commercially profitable
elemental S as shown by equations 1 and 2 [4,5].

It has previously been predicted and demonstrated that the application of the muon-
catalyzed fusion concept is efficient in tuning chemical reaction barriers due to orbital dis-
tortion that accelerates reaction bond breakage. Hence, in this work, we extend the muon-
catalyzed fusion concept by applying double-charged negative ions to nanoscale molecules
that also have been previously shown to be efficacious for tuning chemical reactions [6-8].
Transition metals such as gold, palladium, and silver have been shown previously to be highly
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inert in the bulk scale. In this theoretical work, we overcome the tendency for the typical
chemical inert behavior of the transition metals by investigating semi-metallic and metallic
systems at the nanoscale versus bulk scale and exciting the nanoscale catalysts by an electrical
charge equivalent to two negative charges. The introduction of doubly-charged negative ions
results in single and double bond breakage in the transition state (TS) and bond reformation
in the final state or product in the desulfurization redox reaction [9-11]. Hence, we show the
intrinsic value of optimizing the two-step dehydro-sulfurization reaction by the addition of
two negative charges to the catalysts molybdenum disulfide, graphene-nanoflake (GR-28),
(6,6) armchair carbon nanotube, and fullerene (C-60) [12]. The varying of homogeneous
and heterogeneous nanoscale catalysts in each of the two steps of the dehydro-sulfurization
reaction is motivated by the novel biomimicry of the fundamental role that the four different
enzymes invertase, amylase, glucose oxidase, and catalase play in the bio-catalysis of sucrose
conversion to organic honey. We further propose that this study may have future applications
in the realm of aero-amphibious drone natural resource mining technologies [13-17].

2. Results

The calculations predict the chemical tunability of two-step transition state paths of
the doubly-charged heterogenous and homogenous nanoscale catalysts for the potential
application to toxic SO, purification systems. As shown in Tables 1 and 2, we report step 1
transition state (TS-1) values of 4.44 eV, 1.12 eV, 0.49 eV, and 0.44 eV for CNT (6,6), MoS,,
GR-28, and C-60, respectively. The step 2 transition state (TS-2) values were 4.36 eV, 1.06 eV,
4.59 eV, and 4.30 eV for CNT (6,6), M0S,, GR-28, and C-60, respectively. The introduction
of doubly-charged negative ions to the dehydro-sulfurization reaction tunes the transition
state reaction barriers of metallic and semi-metallic catalysts yielding calculation results
that are consistent with previous international academic and commercial findings [18,19].
Figure 1 predicts that each step of the two-step ORR is optimizable via the sequential
heterogenous or homogenous utilization of the doubly-charged negative planar catalysts
GR-28 for TS-1 and MoS; for TS-2 with the calculated respective relative optimal values
of 0.49 eV and 1.06 eV. However, a similar TS-1 barrier minimization was realized when
spherical C-60 and planar MoS, were applied sequentially and step-wise with TS-1 and
TS-2 predicted to be 0.44 eV and 1.06 eV. Alternatively, catalysis via the homogenous usage
of CNT (6,6) was predicted to slow down significantly the reaction speed with values of
4.44 eV and 4.36 eV for TS-1 and TS-2, respectively. The sole use of the heterogeneous
catalyst MoS; was to minimize the transition states to 1.12 eV for TS-1 and 1.06 eV for
TS-2. Some preliminary neutral transition states were identified according to Table 3, which
suggests the optimal barrier reductions for step 1 of CNT (6,6) and step 2 of C-60 due
to the addition of a negative charge. These calculations support the application of the
short-lived ion creation fundamental mechanism to multi-step chemical reactions. The
transition state barriers presented here suggest efficacy for reaction barrier optimization or
“chemical tuning” for future depollution and elemental S acquisition applications [20-25].

Table 1. Direct comparison of the calculated relative transition state barrier differential heights
from initial states (ATS = TS-initial state) for steps 1 and 2 of the oxidation-reduction reaction to
atomic sulfur are represented by ATS-1 and ATS-2 in electron-volts (eV). Armchair (6,6), carbon
nanotube (CNT (6.6)), molybdenum disulfide (M0S;), graphene flake containing 28 atoms (GR-28),
and fullerene (C-60) are the doubly-charged catalysts.

Catalyst ATS-1 Barrier (%) ATS-2 Barrier (%)
(Doubly-Charged) (eV) Change (TS-1) (eV) Change (TS-2)
CNT (6,6) 4.44 92.6 4.36 73.2
MoS; 1.12 70.5 1.06 —10.4
GR-28 0.49 32.7 4.59 74.5
C-60 0.44 25 4.30 72.8

Doubly-charged only 0.33 0 1.17 0
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Table 2. Calculated relative initial, transition, and final states in electron-volts (eV) of step 1 and
step 2 of the desulfurization redox reaction. The relative states have been calibrated to zero for
the lowest calculated potentials that were found in step 1 “or” step 2 for armchair (6,6) carbon
nanotube, molybdenum disulfide (MoS;), graphene flake containing 28 atoms (GR-28), and fullerene
(C-60) doubly-charged catalysts. The calculations performed without the assistance of a catalyst for
ATS-1 and ATS-2 are presented as (doubly-charged only) for the introduction of 2e™.

Catalyst Initial 1 TS-1 Final 1 Initial 2 TS-2 Final 2
(Doubly-Charged) (eV) (eV) (eV) (eV) (eV) (eV)
CNT (6,6) 0 4.44 15.34 8.89 4.36 5.68
MoS, 10.09 11.21 10.16 0 1.06 0.95
GR-28 10.62 11.10 7.05 0 4.59 10.29
C-60 0 0.44 2.31 11.92 4.30 9.53
Doubly-charged only 0 0.33 0.31 0.19 1.17 1.09

Table 3. Calculated neutral relative initial, transition, and final states in electron-volts (eV) of step
1 and step 2 of the desulfurization for armchair (6,6) carbon nanotube, molybdenum disulfide (MoS,),
graphene flake containing 28 atoms (GR-28), and fullerene (C-60) neutral molecular catalysts.

Catalyst TS-1 TS-2
(Neutral) (eV) (eV)
CNT (6,6) 10.21 -
MoS, 0.05 -
GR-28 0.35 -
C-60 0.03 237
F 3
Intermediate
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-
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Figure 1. Conceptual rendition of the theoretical two-step transition state reaction path for the dehydro-
sulfurization reaction. The black curve indicates net chemical results from Equations (1) and (2)
where the activation energies (TS-1) and (TS-2) are the 2-transition state (TS) barriers calculated
by ATS = TS-initial state for barrier height values for each step represented by the green and
dark red arrows respectively. The purple arrow represents the intermediate formation of 2 molar

sulfur dioxide.
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The desulfurization reaction mechanism may serve as the fundamental process that
mimics honeybee bio-catalysis. Moreover, the focus of this work is desulfurization which
entails toxic SO, elimination with the simultaneous generation of the elemental sulfur
commodity rather than organic honey production. It is interesting to note that the mecha-
nism for the biochemical production of honey is documented as an approximated 4-step
biocatalytic process involving the four primary enzymes invertase, amylase, glucose oxi-
dase, and catalase [15]. The studied catalysts here are analogously tailored to the two-step
desulfurization reaction in lieu of SO, elimination, with simultaneous generation of ele-
mental sulfur thereby mimicking the varying of enzymes per each step of the bio-catalysis
of organic honey.

3. Discussion

The dehydro-sulfurization reaction is an oxidation-reduction mechanism (ORM), also
referred to as a redox reaction. The reactant includes the introduction of diatomic oxygen
into sulfur dihydride. Our research approach further introduces two electrons into the
chemical reaction in order to increase the catalytic reactivities of heterogeneous (moly-
disulfide) MoS; as well as the homogeneous molecules armchair (6,6) carbon nanotube,
fullerene (C-60), and graphene (Gr-28) as modelled in Table 4.

Table 4. Respective rows of geometrical optimized nanoscale molecules catalyzing the two-step
desulfurization reactions. The relative initial, transition, and final state energies are reported in
electro-Volts (eV) for the armchair carbon nanotube CNT (6,6), molydisulfide MoS,, 28-atom graphene
Gr-28, and fullerene C-60 nanoscale catalysts. The sulfur, carbon, oxygen, and hydrogen atoms are
represented by the yellow, gray, red, and white spheres, respectively.

Nanoscale

STEP 1 STEP 2

Molecules

Initial-1

TS-1 Final-1 Initial-2 TS-2 Final-2

Armchair
Carbon
Nanotube CNT
(6,6)

Energy Levels

0OeV

15.34 eV 4.36 eV 5.68 eV

MOSZ
Molydisulfide

Energy Levels

Gr-28
28-atom
Graphene

Energy Levels

11.10 eV

C-60
Fullerene 60

Energy Levels

0eV

0.44 eV 231eV 11.92 eV 4.30eV 9.53 eV
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The resulting product is sulfur dioxide precipitated in 2 molar waters due to bond
breakage and reformation as indicated by Equation (1). Additionally, two more electrons
are added to the catalysts in order to further break the bond arrangements of the reactant
in step 2 containing Sulfur dihydride and 2 molar Sulfur dioxide. Hence, the oxygen is
removed from the sulfur dioxide due to bond breakage to form 3 molar diatomic sulfurs and
4 molar water in the final product of step 2. The addition of doubly-charged negative ions
to the spherical, cylindrical, and planar nanoscale catalysts functions as a “chemical tuning”
agent for each step of the dehydro-sulfurization reaction [18-22]. Moreover, the varying
of the catalysts with each step of the redox reaction mimics the biocatalytic mechanism
of sucrose conversion to organic honey through the flow of 2e- electrons that similarly
cause bond breakage and bond reformation occurring in the reaction barriers. The relative
barriers generated by the 2e™ electrons addition are compared with reference to the initial
states according to Equation (3). The two-step chemical reaction can therefore be tailored
with various levels of control at each step of the reaction by the sequential application of
homogeneous and/or heterogeneous catalysts, as indicated by Figures 1-7. The percentage
barrier changes are calculated with Equation (5) and are presented in Table 1, showing
that the reaction barriers are increased in Figure 3 by 92.6% and 73.2% for CNT (6,6)
calculations of TS-1 and TS-2, respectively. Hence, CNT (6,6) catalysts are predicted to
slow the rate of reaction as a substrate for desulfurization. However, MoS, is calculated
to have a barrier increase of 70.5% for TS-1 and a barrier decrease of —10.2%, as shown in
Figure 4, which indicates that MoS, is predicted to be an excellent accelerator of reaction for
step 2 of desulfurization. Figure 5 illuminates that Gr-28 tends to slow the desulfurization
reaction by 32.7% and 74.5% for TS-1 and TS-2, respectively. C-60 is calculated to have
the lowest reaction impedance of 25% for step 1, as presented in Figure 6. However,
for step 2, the reaction barrier is reported to be 72.8%. Figure 8 shows the respective
calculated transition state energies and geometrically optimized view of the catalysis steps
when C-60 and MoS2 catalysts are applied to step 1 and step 2, respectively. The two
materials are predicted to effectively maintain or lower transition state barriers when
applied sequentially; C-60 changes the barrier by 25%, whereas MoS2 reduces the transition
state energy by —10.4%, according to Table 1. Figures 8-11 are geometrical optimizations of
the pollen conversion to the organic honey mechanism that honey bees use, wherefore the
enzymes invertase, amylase, glucose oxidase, and catalase are applied in nature for honey
production. Similarly, the enzymes are initiated by the flow of 2e-; therefore, we have
applied two varying inorganic molecules to each step of the reaction rather than applying
the catalysts uniformly to all steps. This approach may find efficacy in the optimization to
a plethora of other multi-step reactions.

ATS-1 ATS-2

Figure 2. Calculated relative transition state barrier paths values for the two-step Oxidation—Reduction
Reaction (ORR) of sulfur dioxide by utilizing armchair (6,6) carbon nanotube, molybdenum disulfide
(MoS3), 28-atomed graphene nanoflake (GR-28), and fullerene (C-60) as catalysts represented by the
inset purple, green, blue, and orange bars, respectively. The black dashed line identifies the optimal
catalytic path for the transition states 1 and 2. The relative transition state barriers (ATS-1) and (ATS-2)
for the respective steps 1 and 2 are defined by Equation (3): ATS = transition state—initial state.



Hydrogen 2023, 4 138

T5-1 No Catalyst — — — -
— ]_\ TS-2 No Catalyst
- ._.__-_3 l \ -
(SOz2) Covalent | \ 7 \

12 F Bonding | \ / \ q
_10f f v \ ]
> | —_ \

6F I \ .

4 - H -
/

2 = f -

0 : _________________________________ -

Initial-1 ~ TS-1 Final-1 Initial-2  TS-2 Final-2

—— CNT (6,6) Relative Transition State Desulfurization
Reaction Barriers

Figure 3. Calculated relative initial, transition, and final states reaction barriers of step 1 and step 2
for the oxidation-reduction of sulfur dioxide to elemental sulfur utilizing armchair carbon nanotube
CNT (6,6) represented by the purple bars. Pink Inset: geometrically optimized final state 1 (Final-1)
of SO, covalently bonding to CNT (6,6) surrounded by two water molecules. Sulfur, carbon, oxygen,
and hydrogen are represented by the yellow, gray, red, and white spheres, respectively.

16 s T5-1 No Catalyst — — — -
TS-2 No Catalyst
14 -
12 - -
10 p —— — o
9 Noncovalent
L Sk S2 and H20 Precipitatel
“— s
83 €5
Qi &
6 - i}:- . m
4k VAL
2 -
(1) S e
1 I I I I L

Initial-1 TS-1 Final-1 [Initial-2 TS-2 Final-2
—— MoS, Relative Transition State Desulfurization
Reaction Barriers

Figure 4. Calculated relative initial, transition, and final states reaction barriers of step 1 and step 2
for the oxidation-reduction of sulfur dioxide to elemental sulfur by utilizing the doubly-charged
catalyst MoS; represented by the dark green bars. White inset: geometrically optimized final state 2
(Final-2) of MoS, with noncovalent precipitated S, and HyO. Sulfur, carbon, oxygen, and hydrogen
are represented by the yellow, gray, red, and white spheres, respectively.
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Figure 5. Calculated relative initial, transition, and final states reaction barriers of step 1 and step 2 for
the oxidation-reduction of sulfur dioxide to elemental sulfur (S) by utilizing doubly-charged catalyst
graphene flake (GR-28) represented by the blue bars. Light blue inset: geometrically optimized final
state 2 (Final-2) of GR-28 with covalent bonded atomic S surrounded by 4 molar H,O. Sulfur, carbon,
oxygen, and hydrogen are represented by the yellow, gray, red, and white spheres, respectively.
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Figure 6. Calculated relative initial, transition, and final states reaction barriers of step 1 and step 2
for the oxidation-reduction of sulfur dioxide to elemental sulfur (S) by utilizing doubly-charged
negative fullerene C-60 represented by the brown bars. Light purple inset: geometrically optimized
final state 2 (Final-2) of the C-60 catalyst with [2+1] cycloaddition elemental S to fullerene C-C bonds
and 4 molar H,O as the final product for step 2. Sulfur, carbon, oxygen, and hydrogen are represented
by the yellow, gray, red, and white spheres, respectively.
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Figure 7. Calculated initial, transition, and final states for geometrically optimized doubly-charged
negative AA stacked MoS; catalyzing the oxidation-reduction of sulfur dioxide to elemental sulfur.
The Mo, S, O, and H atoms are represented by cyan, yellow, red, and white spheres, respectively. The
curved arrows demonstrate the introduction of two electrons into the reactant states, causing bond
breakage in the predicted transition states of step 1 and step 2, which describes the doubly-charged
catalytic process used for our calculations.
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Figure 8. Bee biomimicry inspired rendering of both steps of the initial, transition, and final states

for geometrically optimized doubly-charged fullerene C-60 and AA stacked MoS; heterogeneously
catalyzing the oxidation-reduction of sulfur dioxide to elemental sulfur. The Mo, S, O, and H atoms
are represented by cyan, yellow, red, and white spheres, respectively. The curved arrows demonstrate
the introduction of two electrons into the reactant states, causing bond breakage in the predicted
relative transition states of step 1 and step 2.
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Figure 9. The biocatalytic step 1 conversion of the sucrose molecule (C1,011Hpp) contained in nectar
and pollen to intermediate glucose (C4OsHj1) and fructose molecules (CgH;2Og). The orange arrow
indicates the utilization of the enzyme invertase as the biocatalytic promoter of the reaction. The blue
arrows indicate the flow of two electrons that cause bond breakage and reformation. The gray, red,
and white spheres represent carbon, oxygen, and hydrogen, respectively. The red arrows indicate
the generation of glucose intermediate and fructose molecules after the application of invertase and
bond breakage from sucrose.
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Figure 10. The step 2 and step 3 mechanisms for glucose intermediate decomposition to glucose and
the oxidation of glucose (C¢H120g) to gluconic acid (C¢H110g) and hydrogen peroxide. Step 2 uses
the enzyme amylase, whereas step 3 has the enzyme glucose oxidase as the promotor of the reaction.
The index “1” is used to indicate the position of the C=O double bond throughout the mechanism.
The gray, red, and white spheres represent carbon, oxygen, and hydrogen, respectively.
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BIOCATALYTIC STEP 4

2H,0, 2H,0 0,

Figure 11. The step 4 of the final step of the sucrose conversion to organic honey. The enzyme catalase
decomposes 2 molar hydrogen peroxide to 2 molar water and diatomic oxygen. The red and white
spheres represent oxygen and hydrogen, respectively.
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2H,S + 30, — 250, + 2H,O STEP 1 (1)

Catalyst (—2)
4H,S + 250, — 3S; + 4H,O STEP 2 (2)
6H,S + 30, — 35, + 6H,0 (“Net” Chemical Results for the Reaction) 3)
ATS = Transition State — Initial State (Relative T.S. Reaction Barriers) 4)
TST;SStd x 100% = (Barrier percentage change given reaction standard) )

4. Materials and Methods

[2+1] cyclo-addition is a typical phenomenon that occurs in organo—-metallic catalytic
systems, oxidation—reduction reactions, and nitrene chemistry. In this work, [2+1] cyclo-
addition is specifically used in the geometrical optimization of fullerene C-60, as shown in
the inset of Figure 5 [26-28]. However, 28-atomed graphene (GR-28), armchair nanotube
(6,6), and MoS, catalysts are geometrically optimized by covalent and noncovalent bonding
as indicated in the insets of Figures 2-5 and the entirety of Figures 4-6. The doubly-charged
MoS,, GR-28, CNT (6,6), and C-60 catalysis substrates function as reaction barrier tuning
mechanisms for the desulfurization oxidation-reduction reaction (ORR), as indicated in
Equations (1) and (2) [29,30]. The oxidation-reduction speed is, therefore, predicted to be
regulated by the size, type, and charge of any given sample of catalysts used to produce
the elemental sulfur and water products for both steps of the reaction. Hence, the quality,
quantity, and overall efficiencies of the reactions can be tailored to the reactivity of each step
of the ORR reaction, as well as the type of nanoscale catalyst that is used. Transition state
theory is executed by performing Density Functional Theory approximations shown to be
excellent for predicting chemical, physical, and electromagnetic properties of nanoscopic
systems. The initial, transition, and final states are optimized, and are dependent on the
application of two negative charges that activate the metallic and semi-metallic planar,
cylindrical, and spherical catalysts that cause single and double bond breakage in the
transition state consistent with the research findings. The GR-28 nanoflake configura-
tion investigated is due to its similar geometrical structure and chemical function as the
“Sulflower” discussed in the 2017 “MOLECULES OF THE YEAR” edition of the C&EN
journal [30-35]. We use Equation (3) in order to specifically compare the relative transition
State (ATS) values in Table 1 in order to highlight the most likely efficient heterogenous or
homogenous catalyst configuration as indicated in Figure 1 [32-37]. Figures 2-5 show that
the calculated relative reaction barriers for the initial, transition, and final states are zeroed
to the minimum potential for initial state calculated values occurring in step 1 or step 2 for
each set of nanoscale catalysts. A 3-D triclinic lattice type with lattice lengths a:12.7548,
b:12.7548, and c:17.2744 Angstroms with subsequent respective angles consisting of «:90,
3:90, u: 120 degrees being used for the AA stacked MoS, catalyst. The values of the MoS,
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are represented by a1 x 1 x 1 Monkhorst-Pack grid, as shown in the inset of Figure 3, as
well as the entirety of Figure 6. Noncovalent bonding is used to predict TS-1 and TS-2 for
MoS; versus the cyclo-addition and covalent approaches utilized for CNT (6,6), GR-28, and
C-60. Geometrical optimizations are performed via density functional theory utilizing local
density approximation (LDA) with Vosko-Wilk-Nusair (VWN) functional for calculation
efficiency. The transition states are calculated by utilizing linear synchronous transit (LST)
and quadratic synchronous transit (QST) methods minimum barrier confirmations, as
indicated by the data in Table 2, with minimum basis sets and self-consistent field (SCF)
tolerances of 0.01 Ha, and smearing values of 0.05 Ha were applied for calculation effi-
ciency consistent with theoretical studies conducted on nanoscale systems and chemical
reactions [38,39].

5. Conclusions

The transition states for spherical C-60, planar MoS; and graphene (Gr-28), and CNT
(6,6) tubal shaped have been calculated. The results indicate efficacy for the chemical
tuning of the dehydro-sulfurization reaction as inspired by nature’s biocatalytic solution
to the biocatalytic conversion of pollen or nectar to organic honey. We further propose
that our findings may assist in the understanding and development of future innovative
technologies by utilizing tangential flight-enabled amphibious Lynchpin™ drones as
patented and developed by T. Dashawn Howard et al. Some unique capabilities of the
patented drone technology include aerial bird-like flocks, bee swarms, and “schools”
of fish biomimicry that is tailorable to future multidisciplinary engineering solutions.
For example, we postulate that the implementation of our doubly-charged negative-ion
catalytic desulfurization predictions combined with the Lynchpin™ drone design may
offer promising SO, depollution remedies as well as the profitable commercial mining of
elemental sulfur [40]. Moreover, the calculations provide some insight into the effects of
negative charge on nanoscale systems, as evidenced by recent experimental desulfurization
reaction optimizations [41,42].
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